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Abstract. World models facilitate sample-efficient reinforcement learning (RL)
and, by design, can benefit from the multitask information. However, it is not used
by typical model-based RL (MBRL) agents. We propose a data-centric approach
to this problem. We build a controllable optimization process for MBRL agents
that selectively prioritizes the data used by the model-based agent to improve its
performance. We show how this can favor implicit task generalization in a cus-
tom environment based on MetaWorld with a parametric task variability. Further-
more, by bootstrapping the agent’s data, our method can boost the performance
on unstable environments from DeepMind Control Suite. This is done without
any additional data and architectural changes outperforming state-of-the-art vi-
sual model-based RL algorithms. Additionally, we frame the approach within the
scope of methods that have unintentionally followed the controllable optimization
process paradigm, filling the gap of the data-centric task-bootstrapping methods.

Keywords: Reinforcement Learning, Model-based Reinforcement Learning, Gen-
eralization in RL

1 Introduction

Deep reinforcement learning requires millions of online samples to converge, and the
results are often task overfitted and unstable. Modern advances in deep RL are pri-
marily associated with using model-free approaches operating in fully observable en-
vironments [1]. However, their practical use, for example, in mobile robotics [2,3] and
unmanned transport systems [4,5], is limited primarily due to they are task overfitted
[6]. Many approaches were proposed to address the problem of the task generalization
in RL, namely, goal conditioned RL [7,8], hierarchical RL [9,10], meta-RL [11,12],
imitation learning [13,14] and model-based RL [15,16,17]. The latter, however, has not
been studied in the context of the task generalization in RL [18]. One of the possible
reasons for that is a non-atomic structure of model-based agents with which both policy
and the world model should generalize [19].

In this paper, we focus on the implicit task generalization of model-based RL agents.
Classic task generalization is defined in terms of the zero-shot policy transfer [18], i.e.,
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after training the agent on a training tasks distribution pyi,(7) one should evaluate its
performance on the test task distribution pyes (7). The generalization is then measured
as the performance on the test task distribution. The compound structure of the model-
based agents appeals for implicit generalization, that is, how much can agent benefit
from the use of task data from pyi, (7) while learning on the tasks from pieg (7). Implicit
task generalization is a more broad term as it does not specify how to use the data from
the training task distribution. Hence, the zero-shot policy transfer is just an instantiation
of the way to do this.

To implement of the implicit generalization method, we propose a controllable op-
timization of the model-based agent. We build a formalism of meta-Markov Decision
Processes (meta-MDP) that black boxes the training of a machine learning model. In
this meta-MDP, which we call the training MDP, a training policy that optimizes some
reward serves as a tool for influencing the optimization of the internal model. We show
how this formalism applied to model-based RL fills the gap in specific research direc-
tions by framing several prior works into the training MDP context [20,21,22,12]. To
evaluate the agent’s performance in the training MDP, we perform two main lines of
experiments. First, we treat the agent’s training dataset as the multitask buffer for the
external agent to take samples from. This ensures how well the model can prioritize
the agent’s buffer to bootstrap the task-specific performance of the model. Second, we
assess how well our model can utilize the tasks with parametric variability. We provide
the model with a dataset with many experiences of agents solving tasks with different
parameters. Then, we train the extended agent on different tasks from the same distri-
bution and provide it access to the experiences of the prior agents. Given that, we show
how the model can leverage the existing task data to boost its performance.

Our model uses the training MDP agent to maximize the reward of the internal
task as the training MDP reward. This is in contrast with the usual approach of TD-
error maximization. We chose to maximize the reward instead since our goal is to find
the most promising experiences possibly coming from different performance tasks but
not the model prediction improvement potential. Also, we aim to build a practically
valuable algorithm that can be used for real-world reinforcement learning problems.
Therefore we consider only visual reinforcement learning problems.

The main results of the work can be summarized as follows:

1. We ground the training of the model-based agent [23,24] into the training MDP. The
training of the model-based agent is then equivalent to acting in this meta-MDP.

2. We propose a trainable agent that learns to maximize reward in such meta-MDP
by using an attention-style prioritization over the training data to propose training
samples for the model-based agent.

3. We shape existing methods [25,21,22,12] into the context of the meta-MDP acting
through prioritization.

4. We show how the proposed meta-agent can be used to bootstrap the performance
of the RL agent and implicitly generalize over parametric variation tasks.
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2 Background

2.1 Reinforcement Learning

We formulate the problem of reinforcement learning in the context of the Partially-

Observable Markov Decision Process (POMDP). Formally, POMDP is a tuple (S, A, O, P, R, O, ),
where S is the set of states of POMDP, A is the set of actions, and O is the set of ob-

servations. The environment changes its state according to the conditional transition

distribution P(s’ | s, a), but the agent only has access to the output of the observation

function 0 = O(s’,a), o € O. The agent is defined by a policy m(a; | o<y, a<y). It

interacts with a partially observable environment by taking actions on the environment

and getting a next observation. We write oy, 74 ~ p(0¢, 71 | 0<¢, a<¢) as a shorthand for

st ~ P(s¢ | st—1,a1-1), 0o = O(st,as—1), 7t = R(s¢, ar—1). The goal of the agent is

to maximize its expected discounted sum of rewards E - Zt ~yiry.

2.2 Model-Based RL via World Models

World models explicitly learn environment dynamics to generate novel experience [26,24].
Visual control tasks require efficient approaches to state prediction. When observations
are non-Markovian, this can be achieved only by incorporating latent states. For la-
tent dynamics learning, we use the Recurrent State-Space Model (RSSM) [23], which
learns the dynamics by building a Markovian latent state for each timestep s; given
previous action a;—; by autoencoding observations o; and rewards r;, which are non-
Markovian. The world model consists of a representation model, or an encoder ¢(s; |
St—1,0¢—1,0¢), a transition model p(s; | s¢—1,a:—1), an observation model p(o; | s¢),
and a reward model p(r; | s:). The representation and transition models share com-
mon parameters in the RSSM network [23]. The world model is trained to maximize
the variational lower bound on the likelihood (ELBO) of the observed trajectory con-
ditioned on the actions E, log p(01.7, 1.7 | a1.7). This is done by incorporating an
approximate posterior model ¢(s; | st—1,as—1,0¢), which is known as a representation
model. This model acts as a proposal distribution for states s;. Dreamer is trained using
a continuously growing training buffer that contains all experiences collected during the
environment interaction.

For behavioral training, we use the Dreamer agent [27] which trains the policy and
its value function by latent imagination, an approach where the policy 7(a; | s;) is
optimized by predicting both actions a; ~ 7(as | s¢) and states s;41 ~ p(St41 | St, ar)
without interaction with environment. In particular, it uses a state-value function esti-
mate on the latent state s; on which the policy is trained to maximize, i.e. Zt Va(se),
where V)\(s) is a multi-step value estimate with a hyperparameter A which controls
the bias variance trade-off [28]. As the transition and value models are parameterized
by neural networks, we can backpropagate through the value function, the transition
model, and the action sampling to compute symbolic gradients of the value estimates
w.r.t. policy parameters.
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3 Task Addressing for Prioritized Implicit Generalization

In this section, we define a meta-MDP of the agent. As the usual MDP, it is a tuple
<3 , fi, P, D, R> where everything is defined as in usual MDPs (p is an initial state dis-

tribution). We draw a correspondence between meta-MDP and the training process of
the RL agents. The state-space S is the set of all possible configurations of the agent,
usually defined as S = @ x B, where © is agent’s parameter space and B is the set
of all possible training buffers. The action space A can vary for different algorithms,
but in general, it represents the way of how we can update the agent. Usually, it is a
training sample or a batch of training samples. Finally, the transition distribution repre-
sents the implementation of the optimization algorithm as it uses the previous state of
the model (e.g., its parameters) and the update object (e.g., training batch) to stochas-
tically or deterministically map them into the next ’state®, i.e., the set of parameters.
Therefore, a policy: 7 : S — A(A) here is any rule that determines which batch to se-
lect next given the current model. In a sense, such encoding is quite natural as it builds
a direct resemblance between the code for training the model and the RL framework.
For example, the initial state distribution corresponds to the model initialization and the
dataset creation in this case. Moreover, random walks over the state space, i.e., sam-
pling uniformly random actions, corresponds to simple model optimization (as we hide
the internal optimization into the state transition distribution).

The most important part of this paradigm is a reward function of the meta-MDP
R. First, the reward function defines the general property we want our algorithm to
have, such as robustness or adaptability. Second, this allows us to harness the power
and diversity of the vast amount of reinforcement learning algorithms to optimize the
training procedure directly. Our key insight is that we can tie the internal reward of the
task with an external one of meta-MDP. This can help us in several ways. First, it can
additionally bootstrap the performance of the RL agent by selecting promising training
data. Next, it can facilitate learning general, inter-task features that helps agent to use
the multitask data to speed up the current task learning.

Our formulation means the reward prediction as we are not restricted to the case
of one task, which is why we use the model-based RL. Next, to test a wider range of
the RL algorithms, we may need to differentiate through the learned dynamics. Finally,
as we aim to build an algorithm that applies to real-world problems, it is essential to
enable visual RL. Summing this up, we use the Dreamer [27] algorithm as an instance
of the state-of-the-art RL algorithm satisfying these requirements.

3.1 Addressing Mechanism

The agent in the training MDP must act on the instance of the state space, i.e., the
whole parameter set of the neural network of the internal agent. This may lead to an
impractical algorithm as we need to predict external reward in a very high dimensional
feature space. Therefore, the design of a proper state representation is not trivial and
should be motivated by the specifics of a high-level task. In order to implement effi-
cient meta-reward (to avoid confusion, we will refer to a reward in the training MDP
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as meta-reward) optimization, we shift representation into the data space. R is an ex-
pected agent’s reward over internal trajectories, so the use of the agent’s trajectories as
representatives of its state can help to optimize this value directly.

The meta agent should output a subsample of the dataset of potentially unbounded
size. The output is also of variable size where different components do not interfere
each other. This motivates us to use an attention-like architecture for the model. In
particular, the agent’s trajectory serves as a query and the data sample is a key. We use
hard attention as we need to retrieve whole data samples.

Formally, for selecting trajectories from the dataset, we use the learned attention
model parameterized by a neural network. The model compares trajectory x = {(ay, 0¢) }1_;
from the current dataset with a batch of trajectories M from possibly different dataset.
The model projects  and each M; into the embedding space and then calculates soft-
max logits for each (, M) pair as a dot product in the embedding space. To select the
multitask trajectory, we sample index j from distribution ¢(j | z, M) that has the form:

90 (j | 2, M) o< exp(gy (fo(2)) ho(fo(M;))),

where f is the learnable embedding of trajectory = or M} parametrized by a recurrent
neural network with parameters ¢. fy consumes a sequence of actions concatenated
with observation embeddings obtained from convolutional neural network (CNN). As
the embedding, we use the last hidden vector of the recurrent neural network (RNN).
This embedding is then passed to g, and hy function parameterized as multilayer per-
ceptrons (MLP). These two serve a role of different heads acting on a common RNN
backbone. In other words, we project trajectory x and each M; into the embedding
space. Next, we calculate the inner product between the embedding of x and the em-
bedding of each M, and finally, we pass the resulting vector of the inner products to
the softmax that gives probabilities for a categorical distribution. At preliminary experi-
ments, we have observed that a trained CNN is crucial here as its presence significantly
boosts the performance. This indicates that the features that are key to a good represen-
tation are not those that are required for good addressing. Finally, without g, and hg
the optimization would lead to just learning abstract behavioral features and a similarity
search without reward maximization, as we observed during early experiments.

3.2 Expected Reward Optimization

We consider different approaches to meta-reward optimization. The most direct way
for doing this is using the simplest policy gradient estimator. This facilitates faster and
more stable learning because the task of training MDP is relatively simple.

The loss for a policy gradient has the form:

Lpc = —Eq(jjo,m)R(M);log q(j | z, M) M

where R(M); is a predicted return of the trajectory M;.
Another possible approach considered in this work is using deterministic policy gra-
dient for training the addressing model. The sampled batch as the meta-agent’s action
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goes through the differentiable world model to the value head. We feed each trajec-
tory M; = {(al,0])}?_,, which is selected with respect to a particular trajectory z;
(i.e. j ~q(j | x;, M)) to the RSSM and run latent imagination procedure to obtain its
value estimates V) (s7). Then we sum the estimates over the imagination timesteps ¢ and
backpropagate gradients of the resulting scalar loss up to the gradients w.r.t. the weights
¢ of the address network. We train the address network to minimize the objective:

Ly = —Eygja,nry Y, Vals) 2
t

To enable efficient gradient computation, we use the straight-through gradient es-
timator [29] to obtain differentiable samples j returned as one-hot vectors. We then
multiply each of these one-hot vectors by a batch of expert trajectories M to obtain
selection by index in a differentiable fashion. We considered this approach in early ex-
periments but we made final evaluations using the REINFORCE based approach as we
find that more promising.

To train a model-based agent using the addressing model, we first sample a number
of the agent’s trajectories from its training buffer. Next, we run the address inference
Jj ~ q(j | ;, M) given a batch of external experiences M. Finally, we do an opti-
mization step using a batch of several M. The overall process is outlined in Figure 1.
We refer to this method as the Task Addressing for Prioritized Implicit Generalization
(TAPIG).
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Fig. 1: A principal scheme for training TAPIG augmented agents.

An important observation is that it is not enough to use the same model fy to encode
both = and each M. Using the same model for both would mean that for a fixed index
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j the logit f,(z)T f,(M;) would not change if = were used in place of M; and M;
in place of x. However, the target which REINFORCE is training towards will change
after such a swap. Despite the corresponding gradients w.r.t. z and w.r.t M still will
differ from each other, this motivates us to use different heads for processing x; and

M;.

4 Related Work

Many approaches leverage environment modeling, use the multitask approach for rein-
forcement learning, unintentionally follow the training MDP perspective, or reweight
training samples to yield better performance of the agent’s learning process.

Multitask reinforcement learning. Plan2Explore [19] adds the exploration stage
maximizing a latent disagreement in order to build a better task-agnostic world model.
RL? [12] uses RNN to encode information about the task into a fixed-size latent vector.

Meta reinforcement learning. We emphasize that our approach is different from
the classical meta-learning formulation. We address the problem of implicit task gen-
eralization, which may or may not be solved using a meta-learning approach. In our
case, we stick to a data-centric approach that is different from the meta-RL. MAML
[11] alleviates meta reinforcement learning by training a model with meta-objective,
optimizing weights to be easily fine-tuned toward any task. Though, the meta RL can
be cast into the training MDP terms. Our formulation serves the purpose of influencing
the training process through reward optimization.

Agents in the training MDP. Prioritized DQN [20] is the simplest example of the
agent in the training MDP, which is defined implicitly. DQN is trained on prioritized
batches, which corresponds to a heuristic meta-agent that selects batches with probabil-
ity proportional to a TD error. Prioritized Level Replay [21] uses the same idea but is
applied to levels in MDP to improve generalization. Data Valuation algorithm (DVRL)
[22] uses actor-critic in the training MDP that is trained to achieve robust supervised
learning. This is done opposite to the previous two works on a static dataset. RL? [12]
fuses internal and external agents in one neural network to facilitate multitask RL. In
this context, our approach fills the gap of methods that set the external reward to be the
same as the internal reward and work on the level of data-centric methods [25,21,22].

Memory in reinforcement learning. Episodic memory models [30] leverage the
memorization mechanism to build better Q-value estimates using similarity search in
the state-action representation space. Compared to this approach, we store whole episodes
into memory and set up memory to contain episodes that represent solutions for differ-
ent tasks.

Reweighting training samples. DVRL [22] is a meta-learning algorithm that trains
a proposal distribution for data samples optimized jointly with the main model. In con-
trast to our work, it uses one dataset to focus on robustifying the supervised model.
Learning-to-Reweight [31] is a model-agnostic approach to reweighting data samples
that aim at increasing the robustness.
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S Experiments

Setup.We conducted two lines of experiments to test different research hypotheses. All
the experiments were conducted using the Dreamer model either as a baseline or as a
base model for TAPIG. In the first setting, we assume that our agent doesn’t have any
prior experience, and the addressed dataset is the agent’s training buffer. This setting
can test the addressing model without any inter-task discrepancies, i.e., its capabilities to
bootstrap the training dataset of the agent. The second setting assumes that we are given
a multitask experience buffer from some agent trained on different task distribution.
The model is then trained from scratch using this experience dataset to solve both these
and new tasks leveraging the similarity between the tasks. This way, we can evaluate
the prioritization in the case of tasks with a common causal structure. To test the first
hypothesis, we run experiments on three environments from DMC [32]: Hopper Hop,
Finger Spin, and Acrobot Swingup. For the second one, we build a custom environment
based on Metaworld [33] which we call the Rotated Drawer World. In the environment,
the goal is to open the drawer placed on a circle depending on the task vector.

Self-prioritization experiment. In the first experiment, we test the model in the
self-prioritizing regime, i.e., when the addressing model bootstraps the training dataset
of the agent. We compare the performance of the TAPIG agent and vanilla Dreamer
on Finger Spin, Hopper Hop, and Acrobot Swingup from the DMC. The performance
of the Dreamer on Hopper Hop and Finger Spin shows volatile performance among
different runs. This is probably due to the extreme sensitivity of these environments
to the initial conditions and other factors of variation. On the contrary, our approach
optimizes the performance for the Finger Spin domain and, second, makes it more pre-
dictable in terms of guaranteed performance achieved, which is higher for the TAPIG,
as can be observed on Hopper Hop. On the Acrobot Swingup task, the performance and
learning process is more stable for both models, which, however, perform equally. We
hypothesize that the task is too unstable, and both agents have converged to the same
suboptimal strategy of repeatedly rotating the joints. We repeated the runs three times
for each task and algorithm with different random seeds. The results of this experiment
are shown in Figure 2. We plot the median performance and fill the area between the
best and the worst runs.

Hopper Hop
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Fig. 2: Performance plots for self-prioritization experiment. For each task, we report the perfor-
mance of the Dreamer baseline and TAPIG in absence of external data.
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Even in the absence of external data, our algorithm shows stable improvements over
baseline in different qualities. Our results show that the proposed algorithm has such
benefits as a more stable learning process and lower variance over different runs while
having comparable or better performance than the base algorithm. We should note that
the algorithm’s performance depends on the softmax temperature parameter used by the
addressing network. While we find the choice of ¢ = 1/70 to be good in most cases, for
Hopper Hop, the temperature value of ¢ = 1/10 has shown the best performance. Such
squeezing values of temperature turned to be optimal since the size of the categorical
distribution to sample from is proportional to the number of environment samples.

In Figure 3 we show three metrics that qualitatively describe the behavior of the
addressing model. The pairwise JSD is is a Jensen-Shannon distance between the ad-
dress distributions for different agent trajectories, i.e., JISD(q(j | =, M)|lq(j | vy, M)),
averaged over many (x,y) pairs. This metric measures the flexibility of the address-
ing distribution given different chunks of episodes and different tasks. The selected
advantage is an average difference between the addressed and uniform rewards, i.e.,
Eq(j )z, a0 R(Mj) — EprpmR(M). This metric shows the level of reward improvement
of the trajectories selected by the addressing model. The last metric is the entropy of the
addressing distribution averaged over multiple agent trajectories. The key insight from
working with the described addressing model is that its distribution should be highly
adaptive to the agent’s trajectory. In that case, the model can select randomized experi-
ences by using randomized agent trajectories. We found this to be more critical for the
model to have good performance than a high entropy. This is probably because high en-
tropy of the addressing model means a wide range of behavioral features that are treated
to be similar, i.e., they are too abstract, so the addressing cannot rely on them for robust
learning. In opposition, high distribution adaptability can result in equally high entropy
through the marginalization over z of ¢(j | =, M) allowing much broader feature di-
versity. Another observation is that the addressing model should maximize reward by
selection to succeed. Ideally, it should balance a trade-off between reward maximiza-
tion, high entropy, and adaptability. For example, in the Hopper task, the model has
reached only high entropy and only high reward in the Acrobot task. On the other hand,
the Finger spin task had reached a balance and thus succeeded.

Pairwise JSD Selected Advantage

Address Entropy

Fig. 3: The metrics describing qualitative behaviour of the addressing model collected during the
training of the TAPIG model in DMC environments.
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Task prioritization experiment. In order to test how the model can benefit from
the use of the multitask data, we run the Rotated Drawer tasks experiment. The TAPIG
model was given access to multitask experiences where tasks filled only half of the task
space. This was done to test how the agent could first gain from the multitask expe-
rience and, second, efficiently reuse its own experience as the agents were trained on
the whole tasks range. The results are shown in Figure 4, left, the model show nearly
the same convergence speed as the one of the Dreamer baseline. However, the Dreamer
baseline’s resulting performance is lower in terms of the generalization ability. In Fig-
ure 4, right, we plot the evaluation reward for all angles within the whole range. Grey
zones indicate the task set provided to the TAPIG model as a multitask dataset for the
addressing model. However, the Dreamer baseline has high performance at the end of
the training. Its generalization abilities have a zone of performance decline for a hor-
izontal drawer position at the zero angle. On the other hand, the TAPIG model can
guarantee a better performance for the whole range of tasks. These two models have
equal training rewards but different evaluation rewards. This can be explained by the
fact that the training reward is equivalent to an average radius among all angles. There-
fore, an average evaluation return is almost the same for these two models, whereas the
minimal guaranteed performance is much higher for the TAPIG model.

Rotated Drawer World
O TAPIG 0O Dreamer

4000

Episode Return

3000

2000

1000

Environment Steps 225°
—— TAPIG Dreamer prior experience
500k Y 1.5M 2M >70°

Fig. 4: Performance plots for multitask experiment. For each task, we report the performance of
the Dreamer baseline and TAPIG.

6 Discussion and conclusion

The results suggest that the addressing model can facilitate an implicit task generaliza-
tion and guarantee better performance. However, many tasks are needed to tune the soft-
max temperature, which we fund very sensitive to the environment. One other limitation
is a requirement of the prior data. However, as we have shown in the first experiment,
this can be partially mitigated by bootstrapping the data. The method is applicable for a
harder environment and can boost the performance without any architectural changes of
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the underlying model. We guess that the model reorganizes its capacity to handle better
other features of the environment that lead to better rewards. This, however, means that
the resulting model is less transferable to different tasks in a zero-shot manner. We then
outline a prominent future research direction of making the model more robust in this
sense. The metrics we have shown reveal that the addressing can mix different behav-
ioral features that increase the diversity of training samples and the performance of the
agent.

In this paper, we considered the problem of influencing the training process of the
model-based RL agent. We identified a gap in the current research directions and pro-
posed a new method that can be applied in both single and multitask settings to boost
the performance of the model-based RL algorithms. We proposed a mechanism that
selectively samples training batches that can gain the performance of the model-based
RL algorithm. This model can be trained in two ways: based on value function and
REINFORCE loss. We show how the model can increase its sample efficiency without
any architectural changes using the DMC suite. We demonstrate how the model can fa-
cilitate implicit task generalization using a crafted Rotated Drawer World environment.
As a potential future direction, we suggest making the addressing more adaptive to the
training in more diverse tasks sets e.g., by providing it the task information explicitly.
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