
1

When to Switch: Planning and Learning For
Partially Observable Multi-Agent Pathfinding

Alexey Skrynnik, Anton Andreychuk, Konstantin Yakovlev, Aleksandr Panov

Abstract—Multi-agent pathfinding is a problem that involves1

finding a set of non-conflicting paths for a set of agents confined2

to a graph. In this work, we study a MAPF setting, where3

the environment is only partially observable for each agent, i.e.4

an agent observes the obstacles and other agents only within a5

limited field-of-view. Moreover, we assume that the agents do not6

communicate and do not share knowledge on their goals, intended7

actions, etc. The task is to construct a policy that maps the agent’s8

observations to actions. Our contribution is multifold. First, we9

propose two novel policies for solving partially observable multi-10

agent pathfinding: one based on heuristic search and another11

one based on reinforcement learning. Next, we introduce a mixed12

policy that is based on switching between the two. We suggest13

three different switch scenarios: the heuristic, the deterministic,14

and the learnable one. A thorough empirical evaluation of all the15

proposed policies in a variety of setups shows that the mixing16

policy demonstrates the best performance, is able to generalize17

well to the unseen maps and problem instances, and, additionally,18

outperforms the state-of-the-art counterparts (PRIMAL2 and19

PICO). The source-code is available at https://github.com/AIRI-20

Institute/when-to-switch.21

Index Terms—MAPF, PO-MAPF, Reinforcement Learning,22

Planning23

I. INTRODUCTION24

Multi-agent pathfinding (MAPF) is a challenging problem25

with topical applications in robotics, video games, logistics,26

etc. Typically, in MAPF, agents are confined to a graph, and27

at each timestep, an agent can either move to an adjacent28

vertex or stay put [1]. The task of each agent is to reach a29

predefined goal vertex. If the graph is undirected, the solution30

can be found in polynomial time [2] while finding the optimal31

solution w.r.t. a range of the objective functions is NP-hard [3].32

Moreover, if the graph is directed, even the decision variant33

of MAPF is intractable [4].34

Currently, multiple variants of MAPF formulations are35

considered. [5] considers agents of different sizes. In [6],36

MAPF with non-uniform cost actions is studied. [7] proposes37

a method that does not assume discrete time steps. An online38

variant of MAPF, where some agents appear after the other has39

already started executing the plan, is studied in [8]. MAPF40

with possibly delaying agents is explored in [9]. A lot of41

papers have studied the lifelong variant(s) of MAPF, where42

each finished agent is assigned a new goal immediately; see,43

e.g. [10]. MAPF combined with task allocation is considered44

in [11].45
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Fig. 1. A PO-MAPF instance: The red agent (like any other) observes only
a local patch of the environment within its field-of-view (inside a dashed
square). The goal location of this agent is marked with the empty red circle
(in the upper-right portion of the map). The other agents are shown in teal.

Overall, MAPF is an extensively studied problem these 46

days. Numerous algorithms exist that take into account the 47

specifics of different MAPF formulations. Still, the vast major- 48

ity of such formulations assume that the environment is fully 49

observable and that there is a centralized controller, which 50

possesses all the information and is actually in charge of 51

solving MAPF. By contrast, in this work, we focus on a variant 52

of MAPF when the environment is only partially observable 53

for each agent: PO-MAPF. Fig 1 depicts an instance of PO- 54

MAPF. PO-MAPF has no centralized controller, and each 55

agent at each timestep has to decide which action to take based 56

on the local observation or the history of local observations. 57

The latter means that at any time, an agent observes the 58

obstacles and other agents only within a limited field-of-view. 59

Besides, in this paper, we assume that the agents do not share 60

any information with each other. This makes the PO-MAPF 61

problem particularly challenging. 62

PO-MAPF requires different approaches compared to the 63

fully observable centralized MAPF. In the former case, we do 64

not seek for a set of conflict-free plans, but rather for a policy 65

that maps agents’ observations onto actions in such a way that 66

it maximizes the odds of reaching the goal while avoiding the 67

collisions and minimizing the number of actions performed. 68

To this end, we introduce two novel and conceptually 69

different policies for PO-MAPF. The first one is based on 70

the search-based re-planning (REPLAN). At each timestep, an 71

agent builds the shortest path to its goal using a history of the 72

egocentric observations by a heuristic search algorithm. Other 73

agents are considered as obstacles that need to be avoided. 74
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To mitigate the possible deadlocks and oscillating behavior of75

the agents, we augment re-planning with additional decision-76

making procedures that pick a greedy or wait action under77

certain conditions.78

The second policy is a learnable one. It utilizes a specifically79

designed reinforcement learning algorithm: Evolving Policy80

Optimization with Memory (EPOM). EPOM uses an actor-81

critic architecture with a recurrent neural network as a state82

approximator. One of the novel features of EPOM setting it83

apart from similar approaches, is the mechanism of augment-84

ing the current observation with a patch of the previously85

observed and memorized map. Not only does this help stabilize86

learning, but it also contributes to higher performance of the87

policy. To determine the hyperparameters of the model during88

the learning process, a population-based training approach is89

implemented [12].90

The following features distinguish our learnable policy from91

the similar ones proposed in the literature earlier [13], [14],92

[15]):93

• when training we do not rely on external guidance, i.e. on94

expert demonstrations from conventional MAPF solvers95

or single-agent planners;96

• no involved reward-shaping is used for training (our97

reward function, as well as the loss function, is simplistic)98

• our policy is agnostic to the observation range due to the99

introduced memory mechanism, i.e. being learned with100

one observation range; it is capable of functioning (with-101

out sacrificing the performance) with another observation102

range.103

As a next step, we suggest and investigate a combination104

of REPLAN and EPOM, introducing a switch mechanism that105

executes both policies in parallel and outputs the final action106

based on the several proposed strategies: the heuristic, the107

deterministic, and the learnable one. Empirically, we show108

that one variant of such switch leads to a constantly better109

performance in a large variety of setups and outperforms the110

state-of-the-art counterparts: PRIMAL2 [16] and PICO [17].111

Summarizing the above, the contributions of this work can112

be stated as follows:113

• We study the PO-MAPF setup when no communication114

and data-sharing between the agents is possible, and115

introduce two novel policies tailored to this setting: the116

search-based one and the learnable one. To the best of117

our knowledge, we are the first to introduce the (well-118

performing) policies for PO-MAPF, when the information119

on other agents’ goals, actions, or plans is not available.120

• Further on, we introduce three novel ways to combine121

the aforementioned policies into a single hybrid policy122

that utilizes both the search-based (re)planning and the123

learning-based decision-making.124

• We conduct a thorough empirical evaluation of the sug-125

gested techniques to show their scalability and ability126

to generalize well to the unseen maps and problem127

instances. We compare three our hybrid policies to the128

state-of-the-art competitors, PRIMAL2 and PICO, and129

show that the latter are outperformed by the approaches130

introduced in the paper.131

II. RELATED WORK 132

MAPF is increasingly gaining attention recently, as well as 133

the topic of using the learnable components in multi-agent 134

systems [18], [19], [20]. Here we, first, briefly overview the 135

works focusing on solving a conventional MAPF formulation, 136

i.e. the one that assumes the existence of the centralized 137

controller and the full knowledge of the environment. Then, 138

we proceed to the sub-areas that are more closely related to 139

our work, i.e. decentralized MAPF, learnable techniques in 140

solving MAPF, and Multi-agent Reinforcement Learning. 141

a) Centralized MAPF: Most works on MAPF assume a 142

central controller that is in charge of constructing conflict- 143

free plans before the agents actually start moving in the 144

environment. One of the early search-based algorithms to 145

solve this variant of MAPF optimally is introduced in [21]. 146

It augments the search in the joint actions space and employs 147

several techniques to reduce the branching factor. Thus, this 148

planner can be deemed as fully coupled. To deal with a high 149

branching factor and huge action space, [22] introduces a 150

sampling-based approach based on the RRT algorithm, called 151

MA-RTT*. MA-RRT* got some extensions, such as MA- 152

RRT*FN[23], that helped improve the usage of memory spent 153

on trees. However, such sampling-based approaches are only 154

applicable in cases of sparse scenarios with few agents (up to 155

10). M* [24] postpones the search in the combined action 156

space until the conflict between the agents is encountered. 157

Similarly, CBS [25], another prominent optimal MAPF solver, 158

relies on individual re-planning that is triggered by the de- 159

tection of conflicts in the set of plans. Thus, the latter two 160

algorithms can be viewed as the semi-coupled MAPF solvers. 161

Nevertheless, they are sill limited as they scale poorly to large 162

numbers of agents. The most scalable yet suboptimal (and even 163

incomplete in general) techniques are the ones based on what 164

is known as prioritized planning [26], [27], [28]. In this case, 165

individual planning for each agent is carried out sequentially 166

(in accordance with the imposed priority ordering) and the 167

previously planned agents are treated as dynamic obstacles. 168

Thus, prioritized planners can be attributed as fully decoupled, 169

i.e. planning for an agent cannot lead to altering the path 170

of the other agent, which has already been constructed. In 171

this work, we study another setting for MAPF, i.e. when each 172

agent acts individually (based on its local observations), with 173

no centralized controller. Still, we empirically compare our 174

approach with the prioritized planning algorithm CA* [29], as 175

it is a widely used MAPF baseline. 176

b) Decentralized MAPF: Algorithms like MAPP [30] or 177

DiMPP [31] solve MAPF in a decentralized fashion, meaning 178

that each agent performs a search individually and then starts 179

moving along the path. When conflicts are detected, they 180

are resolved locally, and the agents proceed. Notably, these 181

algorithms assume a fully observable environment, unlike 182

the method presented in this paper. Sometimes prioritized 183

planning algorithms (described above) are characterized as 184

decentralized, based on the fact that each agent conducts 185

its own search. However, the agents in prioritized planning 186

globally share the information about their planned paths, as 187

the agents with lower priorities have to avoid the paths of 188
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the higher-priority agents. Thus, we do not attribute these189

algorithms as the decentralized ones.190

Decentralized algorithms like ORCA [32], BVC [33], and191

others are also related to MAPF. However, these assume that192

the agents are not confined to a graph, like they are in MAPF.193

Rather, they are free to arbitrarily move in the workspace.194

In practice, these algorithms are prone to deadlocks and195

struggle to solve the instances where the coordination between196

the agents is needed. Another decentralized approach called197

DMA-RRT is introduced in [34]. Individual plans for the198

agents are built via the RRT algorithm, and the agents are199

able to communicate with each other, modify their plans to200

eliminate collisions, and improve the overall performance.201

The main difference between the (decentralized) algorithm202

presented in this work and the aforementioned ones is that the203

former does not assume the full knowledge of the environment204

beforehand (as in MAPP) and allow the agents to move205

only through the graph, representing the environment (unlike206

ORCA or BVC), without any ability to communicate (unlike207

DMA-RRT).208

c) Learning-Based MAPF: Recently, learning-based ap-209

proaches capable of solving decentralized (and often, partially210

observable) MAPF have started gaining attention. [13] in-211

troduced a learnable policy called PRIMAL. Later, it was212

modified and extended to a lifelong setting in [16]. Both these213

works utilize expert demonstrations and non-trivial manually-214

shaped rewards for learning. Moreover, they assume that not215

only the current locations of the other agents but also the216

information about the agents’ goal locations are included in217

the observation. Similar assumptions are adopted in [14],218

suggesting another learnable approach to decentralized PO-219

MAPF, which is tailored to the agents with a non-trivial220

dynamic model (e.g., quadrotors). Learnable methods that221

assume the full knowledge of the environment (but not the222

global knowledge of the other agents’ locations) are proposed223

in [15], [35]. Another recently presented approach, PICO [17],224

is also tailored to solve PO-MAPF problems, but allows225

agents, that see each other in observations, to communicate.226

Our method is different from the mentioned works in227

that it assumes zero information-sharing between the agents,228

meaning that the paths/goals of the other agents are not known229

and presented in the observation (unlike the mentioned works).230

Moreover, we do not rely on expert demonstrations for training231

and use simplistic reward function rather than involving hand-232

shaped rewards. In the empirical evaluation, we compare our233

method with PRIMAL2 and PICO.234

d) Multi-Agent Reinforcement Learning (MARL) and Hy-235

brid Polices: Reinforcement learning (RL) researchers also236

explore domains where multiple agents need to collaborate to237

achieve cooperative behaviors. These domains often include238

video games, such as Starcraft [36], characterized by large239

observation spaces and partial observability. Many algorithms240

for learning cooperative behaviors assume partial decentraliza-241

tion of agent training and rely on information-sharing among242

agents.243

For instance, QMIX [37] utilizes a mixing neural network244

that has access to the global state during training, while245

FACMAC [38] employs a decentralizable joint action-value246

function with per-agent factorization. Additionally, there is 247

considerable interest in enabling agents to communicate with 248

each other [39], [40], [41]. 249

In contrast to existing approaches, our method exhibits 250

scalability to a large number of agents and larger environments 251

(with a large global state), while maintaining a more gradual 252

decline in performance. 253

The effects of the on-policy method investigated in this 254

paper under the conditions of using the experience gained 255

using other polices are also covered in the literature. When 256

using well-known methods, such as Deep Deterministic Policy 257

Gradient (DDPG) [42] and Twin Delayed DDPG [43], a 258

particular focus is on the features of policy gradient algorithms 259

in the off-policy setting. Works, such as [44], [45], consider 260

the stability of on-policy approaches together with off-policy 261

methods or in the presence of irreversible events. In our work, 262

we pay attention to the noise effect in the recurrent memory 263

block, which serves as a state approximator, and show that 264

in switches for PO-MAPF environments, it does not lead to 265

irreversible degradation of overall performance. 266

III. PROBLEM STATEMENT 267

First, we revoke the conventional MAPF formulation and 268

then introduce the PO-MAPF problem. 269

a) MAPF: Consider n agents confined to an undirected 270

graph G = (V,E) and a discretized timeline T = {0, 1, 2, ...}. 271

Initially, at t = 0, the agents are located at their start vertices 272

Starts = {start1, ..., startn}, while their goal vertices are 273

given, too: Goals = {goal1, ..., goaln}. At each timestep, 274

an agent can either wait in its current vertex or move to 275

an adjacent one. The duration of the wait/move action is 1 276

timestep. The individual plan, pli, is a sequence of actions 277

performed at consecutive timesteps that brings the agent i from 278

starti to goali. Two individual plans are said to contain a 279

vertex conflict if the agents following them occupy the same 280

graph vertex at the same timestep. Similarly, an edge conflict 281

occurs when the agents traverse the same edge in the opposite 282

directions at the same timestep. The problem is to find a set 283

of individual plans, one for each agent, such that any pair of 284

them is conflict-free. 285

Notably, two different conventions on how agents behave at 286

their target locations are known: stay-at-target and disappear- 287

at-target. In this work, we assume that agents disappear upon 288

reaching their goals, following [16] and [46]. 289

b) Partially Observable MAPF: The principal difference 290

between the classical MAPF and the PO-MAPF is that G is 291

not given as the input explicitly, but instead, the observation 292

function O is provided (the same for all agents). At each 293

timestep, each agent obtains an observation ot = O(v, t), 294

where v is the vertex occupied by the agent. For example, if G 295

is a 4-connected grid, ot can contain information about which 296

neighboring cells are blocked/unblocked, which of them are 297

occupied by the other agents, etc. The problem of achieving 298

the goal vertex for each agent now boils down to sequential 299

decision-making, i.e. at each timestep, an agent has to decide 300

which action, either wait or move, to perform. The PO-MAPF 301

problem is to construct a decision-making policy π—the same 302
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for all agents—that maps (the history of) observations onto303

actions. Indeed, π should maximize the chance of reaching304

the goal while minimizing the number of actions needed.305

Depending on the PO-MAPF instance and on the policy π,306

the agents can continuously move around (or endlessly wait)307

without reaching their goals. To this end, the time limit (also308

known as the episode length) Tmax is introduced and becomes309

a part of the PO-MAPF problem.310

From the engineering perspective, the introduced formu-311

lation is inspired by the real multi-robotic systems. Partial312

observability is a direct consequence of the limited range313

of the conventional robotic sensors. In the case when the314

kinodynamic model of the robot is known and there is a robust315

controller, discrete actions correspond to a set of pre-computed316

motion primitives. Finally, in robotics, mapping algorithms of-317

ten produce maps in the form of highly discretized occupancy318

grids that can be upscaled to coarser grids in which the robot319

fits to a cell (our setting).320

c) Observation Model: The definition of PO-MAPF is321

agnostic to the observation function, which is assumed to322

be given as an input. In this work, we adopt the following323

assumptions to specify the observation model. First, the graph324

G is assumed to be a 4-connected grid composed of both325

blocked and unblocked cells. Second, the agent occupying326

the cell with the coordinates (i, j) is able to observe the327

status of the cells (i±R, j ±R), where R is the observation328

radius. Thus, the observation is a patch of a grid the size329

(2 ·R+1)× (2 ·R+1) centered at the currently occupied cell.330

Technically, this observation is represented as two matrices:331

the one that encodes the positions of the static obstacles and332

the other one that encodes the positions of the agents. We also333

include in the observation the current coordinates of the agent334

and its goal coordinates w.r.t. the relative coordinate frame,335

i.e. the one that is centered at the start location of the agent.336

Crucially, any information regarding the other agents, ex-337

cept their current locations (e.g., their goals, paths (or path338

segments) to the goals, etc.), is not included in the observation.339

d) Communication Model and Conflict Resolution: We340

assume that no communication is possible between the agents,341

i.e. they cannot share the information about their intended342

goals, future moves etc. We believe that PO-MAPF with no343

communication is the most restrictive and challenging variant344

of the problem to be solved. Under such assumptions, two345

(or more) agents can choose to move to the same cell at the346

same timestep, leading to a collision. To avoid this, several347

options can be considered: i) all agents stay where they are;348

ii) an arbitrarily chosen agent performs an action while the349

others stay put; or iii) the episode ends. We stick to the first350

option, which resembles the robotic applications: when two351

robots bump into each other, they stay where they are. As we352

use the discretized spatial representation, i.e. grid, “where they353

are” corresponds to the grid cells the agents occupy. 1
354

1We have also tried to experiment with the second collision-resolution
method: when one agent in a conflict is randomly chosen to be able to perform
an action, while all others stay where they are. The performance of the policies
suggested in the work is similar in this case.

IV. SEARCH-BASED RE-PLANNING FOR PO-MAPF 355

The idea of the search-based policy is to re-plan the 356

individual path at every timestep upon obtaining a new ob- 357

servation. While re-planning, we do not distinguish between 358

the static obstacles and the other agents, and consider the 359

cells occupied by them as the blocked ones. The portions of 360

the map that the agent has not seen so far are considered to 361

be fully traversable for the planner. The portions that have 362

been observed are remembered and used for planning. The 363

latter can be done using any search-based algorithm, such 364

as A* [47] or D*Lite [48]. D*Lite is typically thought of 365

as the most prominent way for solving planning problems in 366

environments with partial observability. Instead of re-planning 367

the path from scratch after applying each action, it extensively 368

reuses the previously built search tree to speed up the search. 369

However, our preliminary tests have shown that sequential 370

A* works faster than D*Lite. One reason for that might be 371

that often traversable passages in the vicinity of the agent are 372

blocked by other agents, so there is no actual path to the goal. 373

In such cases, running A* from scratch detects unsolvability 374

considerably faster compared with D*Lite, which, in effect, 375

plans backwards from the goal. 376

The vanilla re-planning policy described above is prone to 377

two problems: oscillating behavior and what is referred to 378

as the “freezing robot” problem. Oscillating behavior occurs 379

when the agent bumps into another one and seeks to detour it. 380

However, the latter detours in the same manner, so at the next 381

timestep, they face each other again and attempt to detour 382

again—and this pattern loops over. “Freezing robot” occurs 383

when an agent is not able to build a valid plan due to some 384

other agents temporarily blocking narrow passages. 385

To mitigate these issues, we augment the policy with two 386

additional techniques. The first technique is detecting loops in 387

the agent’s plans. We check if the first action of the currently 388

constructed plan leads to a location that was visited within l 389

steps prior. If it does, we substitute the planned action with the 390

wait action with the pwait probability. We experimented with 391

setting l and pwait to different values and ended up with l = 2 392

and pwait = 0.5, as this values leads to a better performance. 393

The second technique tells an agent to perform a greedy action 394

that brings it closer to the goal in case the path cannot be 395

found. The ablation study of the introduced enhancements is 396

given in Section VII-D. Additionally, there could be cases 397

for which a plan could not be found (e.g., when the path to 398

the goal is blocked by other agents). Thus, we introduce the 399

parameter Nmax, which is used to limit the allowed number 400

of iterations of the path-planning algorithm. 401

The high-level pseudocode of the search-based PO-MAPF 402

policy, REPLAN, is shown in Algorithm 1. It starts with 403

updating the map (of the static obstacles) using the current 404

observation (Line 1). After that, it executes the A* search 405

algorithm that looks for an (optimal) path from the agent’s 406

current location to the target one with respect to the map and 407

the positions of the other agents that are visible currently. If the 408

plan is found, its first action is selected for the execution (Lines 409

3–4). Otherwise, a greedy action, i.e. the one that transfers the 410

agent closer to the goal, is picked (Lines 5–6). After the action 411
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is picked, we check whether its execution will lead to a loop412

(Line 7). If the loop is detected, i.e. the chosen action transfers413

the agent to the position that was visited in the last k steps,414

with pwait probability, the wait action is returned (Line 8).415

Algorithm 1: High-level pseudocode for the search-
based policy incorporating loop detection and greedy
actions: REPLAN

Input: o — observation; map — map; pos — current
position of the agent; goal — position of the
goal; hist — sequence of the already
performed actions. At the beginning of the
episode, plan = map = ∅.

Output: a — action to perform at the current
timestep; updated hist and map.

1 map := MapUpdate(map, o);
2 plan := A*(map, pos, goal);
3 if plan ̸= ∅ then
4 a := GetFirstAction(plan);
5 else
6 a := GetGreedyAction(pos, map);

7 if DetectLoop(a, plan) then
8 With pwait probability return wait;

9 hist := hist + a;
10 return a, map, hist

V. POLICY OPTIMIZATION FOR PO-MAPF416

The interaction of an agent with the environment in PO-417

MAPF can be generally described as a partially observ-418

able Markov Decision Process (POMDP), which is a tuple419

(S,O,A, P, r, γ). Here S is the set of environment states,420

o ∈ O is a partial observation of the state, A is the set of421

agent’s actions, r(s, a) : S × A → R is a reward function,422

P : S × A → S is a state transition function, and γ is423

the discount factor, which determines the relative importance424

of future rewards compared with immediate rewards. In a425

POMDP setting, the agent does not know the true state of426

the environment; however, it can observe it. In our setting, we427

assume the observations to be deterministic, i.e. there is one-428

to-one correspondence between the state and the observation429

the agent gets in it (as specified in Section III). A policy430

for POMDP is a function that maps a belief state onto the431

distribution over the actions, where the former summarizes432

the previous experience of the agent in the environment with433

no precise knowledge of the true state [49]. The goal is to434

find a policy that maximizes the expected discounted return:435

G = Eπ[
∑Tmax

i=0 γir(si, ai)|s0, a0].436

In this work, we rely on the actor-critic methods to learn437

the policy, as they are known to be powerful and versatile RL438

tools. Specifically, we utilize a seminal actor-critic algorithm,439

Proximal Policy Optimization (PPO) [50], which has shown440

effectiveness in many challenging domains [51], [52], [53].441

Originally, PPO was designed for the agent operating in the442

fully observable environment; thus, it assumes knowing the443

true state of the environment at each timestep st.444

To adapt PPO for the POMDP setting, we approximate the 445

state st by a hidden state of a recurrent neural network (RNN) 446

ht ≈ st that depends on the previous hidden state and the 447

current observation ht = f(ht−1, ot). Further, we will assume 448

that the policy additionally depends not only on the current 449

observation but also on the hidden state at the previous step: 450

π(at|ot, ht−1) or briefly π(ot, ht−1). 451

A. Evolving Policy Optimization with Grid Memory 452

Our original variant of PPO, EPOM (Evolving Policy 453

Optimization with the Grid Memory), learns the policy in a 454

decentralized fashion, i.e. it does not require any information- 455

sharing among the agents and utilizes the following distinctive 456

features. First, as noted above, we employ RNN as the 457

state approximator. Second, we explicitly memorize the static 458

portion of the grid environment, i.e. the obstacles, and augment 459

each observation with an enlarged patch of the memorized 460

grid. Third, we rely on the specifically-designed population- 461

based training (PBT) to encourage learning of the cooperative 462

behaviors. The network architecture of the EPOM approach is 463

presented in Fig. 3. 464

Note that although we leverage PPO in this work, the 465

suggested enhancements, like the grid memory, can be used 466

for any actor-critic RL method. 467

a) Grid Memory Module: The previously introduced 468

search-based policy uses observations to construct and mem- 469

orize the map of the static obstacles, which is indeed ben- 470

eficial for solving PO-MAPF. However, incorporating such 471

map memorization directly into the learnable policy is not 472

straightforward, as the input size needs to be fixed while 473

the environments used for training and evaluation may have 474

different sizes. 475

To address this issue, we propose enhancing PPO with 476

an additional Grid Memory module, inspired by REPLAN. 477

This module explicitly stores and updates the map of the 478

environment. At each step, the initial input of the obstacles 479

matrix is extended with extra obstacles that are memorized 480

during execution. This extended observation forms a patch 481

(e.g., 15 × 15 in our experiments) which is used as input to 482

the policy encoder. The scheme of the proposed approach is 483

presented in Fig. 2. Changing the size of the obstacles matrix 484

requires the corresponding adjustment of the agents matrix. In 485

this case, additional cells are filled with zeros. The target or 486

its projection is added to the extended field-of-view. 487

As demonstrated in SectionVII-E, grid memory significantly 488

stabilizes the learning process and improves performance. 489

Furthermore, it enables an agent trained with one observation 490

radius to be deployed in a setting with a different observation 491

radius without requiring retraining (refer to Section VII-E for 492

experimental details). 493

b) Population-Based Training: Population-based training 494

(PBT) is a technique for automated hyper-parameter tuning at 495

the learning stage[54]. It has been successfully used for RL 496

and resulted in more robust policies [12]. In this work, we 497

employ PBT to adjust such parameters as the learning rate, 498

batch size, and entropy coefficient. We use the success rate 499

of the PO-MAPF instances as the PBT target objective, as 500



6

Fig. 2. The Grid Memory observation pre-processing of EPOM approach, which facilitates the storage and updating of an environment map. This module
extends the initial input of the obstacles matrix with additional obstacles observed during execution, creating a patch-like extended observation.

opposed to the individual agents’ rewards, to encourage the501

populations of the cooperative agents.502

c) Reward: We do not use any complex reward-shaping503

and let the agent receive a non-zero reward only in one case:504

when it reaches the goal. At every step, it also receives a small505

negative reward of 0.0001. An additional negative reward of506

0.0002 is added if the agent picks an action that leads to a507

collision. Indeed, this reward is based purely on an agent’s508

observation, not the true state of the environment.509

d) Learning: We use the PO-MAPF observation (as510

specified in Section III) for learning. Matrices that encode the511

obstacles’ and the other agents’ positions are passed through512

Grid Memory, which extends the observation as described513

above. Additionally, another matrix, which encodes the goal514

projection (similarly to PRIMAL [13]), is formed and passed515

to the encoder. This is done to enable goal conditioning inside516

the encoder. Furthermore, we concatenate the output of the517

encoder with the normalized coordinates of the agent’s current518

position and the target position. The resultant embedding is519

passed to the actor-critic heads of EPOM. We use a ResNet-520

based encoder and a GRU for the actor-critic. The scheme of521

the neural network is presented in Fig. 3. More details on the522

training hyperparameters are provided in VIII.523

B. Dataset524

Aiming at obtaining a versatile policy capable of solving a525

large variety of PO-MAPF problems, we create a heterogenous526

dataset for learning (and further evaluating) EPOM. In total,527

it consists of 239 maps of size 64×64 that model the environ-528

ments with different topologies. These environments include529

the re-scaled multi-player game maps, wc3 (Warcraft III), sc1530

(Starcraft I), taken from the MovingAI benchmark [1]; maps531

of the real cities, street, taken from the same benchmark;532

synthetically generated (by us) maps with random number533

of blocked cells, random; and maze maps, maze, which534

are procedurally generated (by us) using the code publicly535

available from the PRIMAL2 authors [16]. Examples of the536

maps are provided in Fig. 4.537

a) Multiplayer Maps: These are the maps used in video538

games Starcraft I (sc1) and Warcraft III (wc3). sc1 collec-539

tion contains 74 maps, while wc3 contains 35. The distinctive540

Fig. 3. The neural network architecture for the EPOM algorithm incorporates
a ResNet-based encoder and GRU heads for the actor-critic. The network
takes extended PO-MAPF observations from Grid Memory, which include
obstacle and agent positions, as well as the target or its projection. The encoder
generates an embedding, which is then concatenated with the normalized
coordinates of the agent’s current and target positions. To normalize the
coordinates, the values are clamped within the range [-64, 64] and divided by
64. Finally, this embedding is fed to the actor-critic heads.

feature of these maps is their region-based structure. By the 541

latter, we mean that, typically, on these maps, several areas of 542

the free space are present that are connected by the (sometimes 543

narrow) passages. This enforces the agents to resolve conflicts 544

that are likely to occur along their paths. Another feature 545
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of these maps is the presence of (sometimes large) obstacles546

located in the middle of the map. This means that the paths of547

the agents are likely to contain detours and not just resemble548

straight-line segments to their targets.549

b) Synthesized Maps: We generate two types of these550

maps: maze-like environments (50 maps) and random ones551

(50 maps).552

Maze-like maps are generated using the tool created by553

the authors of the seminal learning-based PRIMAL2 MAPF554

solver. The main parameters that govern the generation are555

the corridor length (we vary this parameter from 2 to 10) and556

the obstacles’ density (this parameter is varied from 25% to557

75% with a 5% increment). To generate each of the 50 maps558

of our collection, we iteratively choose these two parameters559

randomly and invoke the generator. The resultant maps contain560

large number of corridors that are likely to trap the agents that561

enter these corridors from the opposite directions.562

Maps with the randomly blocked cells are the ones that563

have no regular or predictable structure. We vary the obstacle564

density from 15% to 35%. Our preliminary tests showed that565

the 35% density is the most challenging. Lesser density results566

into more open areas where agents can easily surpass each567

other, while the higher density often results in creating several 568

isolated regions on the map. 569

c) Street Maps: We use 30 maps generated from the real 570

data taken from OpenStreetMap. Maps of this type in most of 571

the cases contain large obstacles and wide open areas, though 572

there might be some areas with small buildings and narrow 573

passages between them. 574

As said before, in total our dataset is comprised of 239 575

maps. We split it to the training-test parts in proportion 80/20, 576

i.e. 80% of the maps are used for training, while the other 20% 577

of the maps are used for testing. In such a way we are able to 578

evaluate how well our learnable policy is able to generalize to 579

the unseen maps (as no map used for testing was seen while 580

training). 581

When learning, we randomly sample the map from the train- 582

ing part of the dataset and populate it with 64 agents whose 583

start and target locations are picked randomly. Noteworthy, for 584

testing purposes we use different number of agents, up to 500. 585

This, again help us to assess how well the policy is able to 586

generalize to higher number of agents. 587

In total, EPOM has been trained for 1 billion steps on a 588

single TITAN RTX GPU in ≈ 8 hours. 589

a) sc1-ArcticStation b) sc1-WaypointJunction c) sc1-BlastFurnace d) wc3-LostTemple

e) random-s46_d0.2 f) random-s49_d0.35 g) mazes-s32_wc2_od40 h) mazes-s49_wc2_od50

i) street-Berlin_0 j) street-Denver_0 k) street-London_0 l) street-Sydney_2

Fig. 4. Examples of the maps from a diverse dataset of 239 maps of size 64× 64 representing various environments for training and evaluating PO-MAPF
solvers The dataset includes re-scaled multiplayer game maps (wc3 and sc1) from the MovingAI benchmark, real city maps (street) from the same
benchmark, synthetically generated maps (random) with random blocked cells, and procedurally generated maze maps (maze).
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Fig. 5. The general pipeline of the switching approach is as follows. The observation space of the environment consists of two matrices that encode obstacles
and agents, as well as the agent’s relative position and target. This information is fed into the learning component (i.e. EPOM) and the planning component
(i.e. RePlan). Then, the switcher decides which action to take based on the additional information. Subfigures (a), (b), and (c) show different implementations
of the switcher. The Heuristic Switcher selects EPOM when the agent count threshold is reached in the observation. The Assistant Switcher transfers control
to EPOM when it fails to find a path or detects a loop. Finally, the Learnable Switcher trains additional value estimators to evaluate each policy for the current
observation and greedily selects the best one.

VI. SWITCHING BETWEEN THE LEARNABLE AND590

PLANNING-BASED POLICIES591

The introduced policies designed to solve PO-MAPF, RE-592

PLAN and EPOM presumably have both advantages and593

drawbacks.594

EPOM requires a prepared set of the environments on595

which the policy will be trained. An incorrectly compiled set596

can lead to a weak generalization. REPLAN’s performance, on597

the other hand, largely depends on the set of the hand-crafted598

heuristics.599

To this end, we suggest several ways for integrating RE-600

PLAN and EPOM that follow the general pipeline depicted in601

Fig. 5.602

This pipeline includes a switcher that, having access to the603

outputs of both policies, as well as to the current observation,604

makes a final decision as to which action should be performed.605

Note that both policies in the switcher are executed in parallel,606

i.e. at each timestep, they both receive the observation, update607

the internal variables, and output an action. We consider the608

following switchers in our work.609

a) Heuristic-Based Switcher: This switcher (HSwitcher) 610

relies on the assumption that one may identify a set of key 611

features that impact the effectiveness of each policy, and 612

design a heuristic based on these features. Candidate features 613

are the density of obstacles, the number of observed agents, 614

the distance to the goal, etc. The algorithm of the Heuristic 615

Switcher consists of identifying significant features from ob- 616

servation and applying a set of fixed rules based on preliminary 617

experiments on the effectiveness of two policies. In our work, 618

we leverage an empirical observation that sometimes in dense 619

environments, REPLAN performs worse than EPOM and vice 620

versa. Thus, we suggest switching from REPLAN to EPOM 621

when the number of agents in the agent’s field-of-view is 622

greater than a given threshold k (in our experiments, we use 623

k = 6). 624

b) Assistant Switcher: This switcher (ASwitcher) is 625

based on the assumption that REPLAN, in general, copes well 626

with the problem at hand and should only be aided when it is 627

unable to construct a plan or when it detects the loop. In these 628

cases, we switch to the EPOM action. Note that, contrary to 629

HSwitcher, this switching technique does not rely on ad-hoc 630
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TABLE I
SUCCESS RATES OF THE EVALUATED PO-MAPF SOLVERS W.R.T. DIFFERENT MAP TYPES. IN ADDITION TO THE SUCCESS RATES, WE INCLUDE THE

STANDARD DEVIATION COMPUTED FOR EACH MAP AND NUMBER OF AGENTS, WHICH IS THEN AVERAGED ACROSS ALL INSTANCES.

agent mazes random sc1 street wc3 average success rate

REPLAN 92.41% ±16.07 66.72% ±20.84 53.29% ±18.06 87.1% ±19.88 55.51% ±28.71 69.72% ±19.66
EPOM 80.38% ±31.24 52.81% ±22.66 17.26% ±15.25 52.94% ±40.03 35.31% ±17.28 45.95% ±23.98

Assistant Switcher 97.36% ±14.73 77.84% ±13.13 67.1% ±17.06 95.1% ±12.27 82.97% ±14.53 81.71% ±14.75
Heuristic Switcher 97.18% ±5.53 73.98% ±7.16 43.73% ±13.75 78.19% ±20.54 43.73% ±12.96 66.92% ±11.28
Learnable Switcher 99.39% ±3.11 75.44% ±5.87 55.16% ±14.83 94.17% ±15.61 83.78% ±8.71 77.88 % ±9.66

heuristics and is deterministic.631

c) Learnable Switcher: This switcher (LSwitcher) is
implemented using a learnable greedy switching policy πsw.
Recall that our agent has access to two policies: πRePlan and
πEPOM ; thus, it can conduct a classical policy evaluation
on a certain set of environments. If we introduce two new
approximators with two-parameter sets θRePlan and θEPOM ,
the agent can adjust these parameters to evaluate values
V RePlan and V EPOM—the expected values of the states
conditioned to the respective policy are used till the end of
the episode. In this case, the greedy policy for switching at
the state ot to the next N steps will look as follows:

πsw(ot, ht−1) =

{
πRePlan, if V RePlan(ot) > V EPOM (ot),

πEPOM (ot, ht−1), otherwise.

We train LSwitcher using the training part of our dataset632

in the same way as EPOM. The only difference is that while633

EPOM is trained on 64 agents, LSwitcher is trained on the634

varying number of agents (from 50 to 300) for the latter to635

make correct value predictions for different numbers of agents.636

We use non-recurrent architecture for LSwitcher with the same637

encoder as in EPOM extended with two MLP 512 layers. For638

each training epoch, we sample 106 pairs ⟨oi, Ri⟩, where Ri639

is a return. To decorrelate samples, we use only 20% of data640

from each episode. The final values of the MSE loss are 0.016641

and 0.013 for REPLAN and EPOM, respectively (0.035 and642

0.036 for the validation phase).643

Finally, we only allow switching in LSwitcher when N644

timesteps have been completed by the previously active policy.645

We set the value of N to 50 based on the results of the646

preliminary experiments. Setting it lower has resulted in647

worse performance, while setting it higher has not led to an648

improvement.649

VII. EXPERIMENTAL EVALUATION650

A. Evaluation of the Suggested PO-MAPF Solvers651

We evaluate all the suggested PO-MAPF solvers on the test652

split of our dataset (20% of 239 maps that were not used653

while training). For each map, we randomly generate PO-654

MAPF instances that contain between 50 and 300 agents with655

an increment of 50 agents. One hundred different instances per656

each map for each number of agents is generated. The time657

limit (maximal episode length) is set to 512 steps.658

The main evaluation metric is the success rate: the fraction659

of the test instances for which all the agents reach their goals660

within the time limit. We also track the independent success661

rate and the averaged episode length. The former is the ratio of662

agents that successfully reach their goals in a single test run, 663

while the latter indicates how many steps each of the agents 664

performs before reaching the goal (on average). Note that in 665

case the agent has not reached its target location, its episode 666

length is equal to the limit, i.e. to 512. 667
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Fig. 6. (a) Success rate, (b) independent success rate, (c) episode length, and
(d) EPOM usage per each number of agents averaged over all the evaluated
instances. The shaded area reports confidence intervals 95%.

Success rates of all the PO-MAPF policies w.r.t. differ- 668

ent map types are presented in Table I. Clearly, REPLAN 669

shows better success rates compared with EPOM. Having 670

visualized and analyzed various runs of these two policies, 671

we make the following important observation. While the 672

overall performance of EPOM may seem underwhelming, 673

it actually performs better than REPLAN when it comes to 674

the coordination of the agents in the confined areas. This 675

explains why the hybrid polices, i.e. ASwitcher and LSwitcher, 676

demonstrate a notable boost in performance. On the one hand, 677

they leverage the capability of REPLAN to rapidly progress 678

toward the target; on the other, they utilize EPOM for conflict 679

resolution in congested areas. 680

Another view of the results is presented in Fig. 6. Here 681

the metrics are shown w.r.t. the number of agents (averaged 682

across all the test instances). In general, the observed trends 683

support the claim that ASwitcher and LSwitcher outperform 684

the other policies. In addition to the main metrics, Fig. 7 (d) 685

displays the percentage of actions performed using the EPOM 686
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algorithm. LSwitcher utilizes EPOM approximately 50% of687

the time, while ASwitcher employs it less frequently. However,688

this percentage tends to increase as the number of agents689

increases. This occurs because in such cases, RePlan often690

fails to find a path or detects a loop.691

B. Comparison with Other Solvers692

Next, we compare our switching approaches with the other693

methods described in the literature.694

The first competitor is a centralized MAPF-algorithm: Co-695

operative A* [29]. It relies on prioritized planning to eliminate696

the conflicts leveraging access to the full state of the envi-697

ronment. Thus, it is technically not a PO-MAPF solver. The698

second approach is the state-of-the-art RL-based algorithm699

that solves PO-MAPF problems: PRIMAL2 [13]. The core700

difference between PRIMAL2 and switchers is that the former701

assumes that each agent knows the goals of the other agents702

that are within its field-of-view, while our solvers rely on more703

restrictive assumptions (no information about the other agents,704

except their locations, is accessible). We use the code and the705

trained model provided by the authors of the approach2.706

The last competitor is PICO [17] – another recently pre-707

sented RL-based approach capable to solve PO-MAPF prob-708

lems. Unlike PRIMAL2 and our methods, PICO allows agents709

to communicate with each other. Moreover, originally PICO710

was tailored to solve PO-MAPF problems with agents that do711

not disappear when reaching the goals. Thus, for a fair com-712

parison the code of PICO, taken from the original repository3,713

was modified such that the agents disappear when reach their714

goal locations. The authors of the algorithm haven’t provided715

the trained model, so we trained the model ourselves in the716

same way as it was described in the paper (on 20 × 20717

grids with randomly placed obstacles and 8 agents only).718

It is also worth to note that the implementations of both719

PRIMAL2 and PICO approaches assume that agents perform720

their actions sequentially within one timestep. As a result, in721

cases when two or more agents try to occupy the same grid722

cell simultaneously, the agent with higher priority occupies it.723

We have modified the code of all other evaluated approaches724

to follow the same logic.725

For the first experiment, we use the maps and the instances726

taken from the PICO repository. The maps are represented727

by 20× 20 grids with randomly placed blocked cells with the728

density of up to 30%. The instances consist of randomly placed729

start and goal locations for 8, 16, 32, 64 agents. The episode730

length is set to 256, while the size of the field-of-view is set731

to 11× 11.732

The results of this experiment are presented in Fig. 7. As733

can be seen, all the approaches are able to solve all the734

instances when the grid is completely empty. However, with735

the rising amount of blocked cells, the success rate of PICO736

and PRIMAL2 decreases, especially on the maps with 30%737

density of obstacles, where they are able to solve only half738

of the instances with only eight agents. By contrast, all the739

switchers solve more than 80% of instances with 64 agents on740

2https://github.com/marmotlab/PRIMAL2
3https://github.com/mail-ecnu/PICO

the maps with 30% blocked cells. As expected, the absolute 741

winner is Cooperative A*, which is actually relying of the full 742

observation to solve the problem. 743
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Fig. 7. Comparison of the suggested approaches with PICO and PRIMAL2 on
20× 20 grids taken from the PICO repository. The main difference between
these maps is the obstacle density considered: 0%, 10%, 20%, and 30%.
Maps with 0% density are quite simple, and all algorithms perform well. For
maps with higher density, Switchers show the best results. The shaded area
represents 95% confidence intervals.

While PRIMAL2 shows relatively good results on the maps 744

from PICO’s dataset, it wasn’t trained to solve these instances. 745

Instead, it was trained and focused to solve instances on maze- 746

like maps. Thus, we have made an additional experiment 747

where PRIMAL2 and switchers are additionally compared on 748

maze-like maps, generated by the tool taken from PRIMAL2 749

repository. For this purpose we have reused the test part of 750

the mazes dataset. In contrast to previous experiments, the 751

number of agents in the most challenging instances for this 752

experiment is increased to 500. The episode length is set to 753

512, while the size of field-of-view is left the same – 11×11. 754

The results of this experiment are depicted in Fig. 8, where 755

both cooperative and independent success rates are shown. 756

The evident outsider in this experiment – HSwitcher, that has 757

issues while solving instances with 300+ agents. At the same 758

time all the rest approaches can successfully solve almost all 759

the instances with 300 agents. However, when the number 760

of agents exceeds 400, only Cooperative A* and ASwitcher 761

are able to solve more than 95% of the instances. On the 762

most challenging instances, with 500 agents, the cooperative 763

success rates of PRIMAL2 and LSwitcher drop down to about 764

50% while ASwitcher still able to solve more than 80% of the 765

instances. 766

Overall the conducted experiments have shown that the 767
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suggested approaches, especially ASwitcher, can compete with768

existing state-of-the-art RL-based approaches and outperform769

them even in scenarios for which the latter were specifically770

trained.771
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Fig. 8. Comparison of switchers with other approaches on the mazes
maps. Cooperative A* has access to the full state of the environment, so it
shows the best results, solving all the presented instances. The best algorithm
among those working in the PO-MAPF setting is ASwitcher. The shaded area
represents the 95% confidence intervals.

C. Scalability on Lifelong PO-MAPF772

In these experiments, a more practical setting of the auto-773

mated warehouse is modeled. In this setting, an agent does not774

disappear upon reaching its goal, but rather it is immediately775

assigned to another one. We use the warehouse map from776

the MAPF MovingAI Benchmark [1] for these experiments777

and limit the episode length to 1000. In contrast to previous778

experiments, the size of the map is much larger than 64× 64.779

It is now 159 × 61, allowing us to test the scalability of the780

proposed approach with an increased number of agents in the781

environment. We have tested up to 600 agents. The considered782

metric is the throughput, i.e. the number of accomplished goals783

(deliveries) per one timestep.784
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Fig. 9. The plot (a) demonstrates that in Lifelong PO-MAPF experiments on
the warehouse map, EPOM performs close to the best-performing switcher,
ASwitcher, based on average throughput. In plot (b), it is observed that the
steps per second remain constant even with an increasing number of agents.
Additionally, ASwitcher algorithm’s speed improves with more agents as
EPOM is utilized more frequently.

The results are presented in Fig. 9 a). Notably, the per-785

formance of EPOM in such setups is impressive. It even786

outperforms ASwitcher for certain numbers of agents. On787

the other hand, REPLAN fares poorly. This confirms our788

hypothesis that the former has a better collision-resolution789

ability, which is very important when agents are constantly790

moving in the environment.791

Fig. 9 (b) shows the average number of steps per second 792

for each agent in the environment. As can be seen, the speed 793

of the EPOM algorithm remains constant regardless of the 794

number of agents. The other algorithms also do not degrade 795

with an increase in the number of agents, except for the 796

ASwitcher algorithm, which becomes faster with more agents. 797

We attribute this to the fact that with a large number of agents, 798

RePlan quickly either terminates without finding a path or 799

detects a loop and then transfers control to EPOM, which 800

operates faster. 801

D. RePlan Enhancements Ablation 802

To evaluate how the suggested enhancements, i.e. loop 803

detection and greedy actions, improve the vanilla policy, we 804

conduct an empirical evaluation involving 64 × 64 grid with 805

30% of randomly blocked cells and 50–300 agents whose 806

starts and goals are chosen randomly. The time limit is set to 807

512 timesteps. Fig. 10 depicts the independent success rate: 808

the ratio of the agents that reached their goals within the time 809

limit. 810
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Fig. 10. Performance of the different variants of search-based PO-MAPF
policy. Disabling loop detection (LD) in RePlan significantly worsens the
results. RePlan with both greedy actions (GA) enabled and disabled exhibit
similar success rates, but the variant with greedy actions demonstrates better
results in terms of independent success rate. The shaded area represents the
95% confidence intervals.

As can be seen, the performance of the vanilla policy is 811

poor: even the instances that only contain 50 agents cannot be 812

solved efficiently. Adding greedy actions on its own does not 813

improve the performance. The enhancement that dramatically 814

improves the policy, though, is the loop detection; adding 815

greedy actions on top of it further improves the performance. 816

E. Grid Memory Ablation 817

To evaluate how the suggested Grid Memory mechanism 818

affects the learning process, we run a specifically designed 819

experiment involving one agent (using the maps from our 820

training set). We vary the observation radius of the agent in 821

the range 1, 2, 3, 4, 5 and train the agent either with or without 822

Grid Memory (whose size was 15×15). The aggregated learn- 823

ing curves for 30M steps (averaged across all the observation 824

radii) are shown in Fig. 11. As can be seen, Grid Memory 825

indeed stabilizes the learning process (the dispersion is lower) 826

and leads to a better result (the success rate is higher, and the 827

episode length is lower). 828
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Fig. 11. The effect of the suggested Grid Memory mechanism for single-
agent learning in PO-MAPF scenarios. The shaded area reports confidence
intervals 95%. The use of Grid Memory allows the agent to achieve higher
scores in terms of success rate (a) and shorter episode length (b).

F. EPOM Ablations829

In this experiment, we tested how the use of an RNN and830

changing the observation radius R in the environment affects831

the quality of the solutions produced by the EPOM algorithm.832

We compared a regular EPOM (R = 5), EPOM with a smaller833

field of view (R = 3), and EPOM with an even smaller field834

of view (R = 1), as well as a regular EPOM that resets ht835

at each step, thereby not providing the agent with all the836

previously observed information. The results are shown in837

Fig. 12. For this experiment, we used the life-long setting and838

the warehouse map. The results are averaged over six seeds.839
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Fig. 12. (a) The performance of the EPOM algorithm when RNN is disabled,
as well as when the observation radius changes in the environment. The shaded
area represents the 95% confidence intervals. (b) An example of different
observation radii on the Lifelong Warehouse map.

As can be observed from the figure, the algorithm that840

does not utilize an RNN consistently yields significantly worse841

results. This underscores the importance of incorporating the842

RNN component into the algorithm. It can also be seen that843

EPOM with a viewing radius of R = 3 shows close results844

to the regular EPOM. This demonstrates the ability of Grid845

Memory to work with different observations without retraining846

the neural network. However, significantly worse results are847

shown for R = 1 due to the fact that the agent cannot foresee848

other agents (outside its field of view) that may try to move849

to an adjacent cell, causing a conflict.850

VIII. HYPERPARAMETERS851

Table II reports the hyperparameters used in the experi-852

ments. Due to the significant training time required for the853

EPOM algorithm, we have not performed an exhaustive hyper-854

parameter search. Instead, we have employed parameters that855

have exhibited good performance in reinforcement learning 856

problems. We have mainly relied on the default settings 857

of the Sample Factory library4, along with configurations 858

that have demonstrated success in single-agent pathfinding 859

problems within stochastic environments5. To effectively train 860

the algorithm for specific tasks, it is recommended to consider 861

key parameters, namely batch size and learning rate. Selecting 862

suitable values for these parameters has yielded noteworthy 863

enhancements in comparison to alternative choices. 864

For LSwitcher, we have tuned the batch size parameter. The 865

parameter N has been separately determined using grid search 866

over values ranging from 1 to 100 with increments of 25. 867

For HSwitcher and RePlan, we have conducted a hyperpa- 868

rameter search using the maps employed in training EPOM, 869

and the table reports the best parameters found through this 870

search. The value of Nmax = 10000 has been chosen empiri- 871

cally as the smallest value that did not worsen the results. 872

TABLE II
HYPERPARAMETERS FOR EPOM, LSWITCHER, HSWITCHER AND

REPLAN APPROACHES

EPOM Hyperparameters

grid memory radius 7
learning rate 1e-4

γ 0.99
adam ϵ 1e-6

adam β1 0.9
adam β2 0.999
rollout 32

recurrence rollaut 32
clip ratio 0.1
clip value 1.0
batch size 4096

num batches per iteration 1
num epochs 1

max grad norm 4.0
entropy loss coeff 0.01
value loss coeff 0.5
max policy lag 100

PBT period env steps 5e6
PBT start mutation 2e7

PBT replace fraction 0.3
PBT mutation rate 0.15
PBT replace gap 0.1

LSwitcher Hyperparameters

learning rate 1e− 4
γ 0.99

adam ϵ 1e− 6
adam β1 0.9
adam β2 0.999

num epochs 7
batch size 512

shuffle True
N 50

HSwitcher Hyperparameters

k 6

RePlan Hyperparameters

l loop detection 2
pwait 0.5
Nmax 10000

IX. LIMITATIONS 873

Similarly to the vast majority of the MAPF-related papers, 874

in this work, we intrinsically assume that the agents have 875

perfect localization and mapping capabilities, as we mainly 876

concentrate on the planning and decision-making aspects of 877

the problem at hand. Moreover, we assume that the obstacles 878

are static part of the environment. It would be interesting 879

to study problem variants when the obstacles can rather 880

appear/disappear (closing/opening doors) or move (someone 881

has moved a chair) in a stochastic fashion. Notably, we 882

have recently presented a preliminary study for a single-agent 883

pathfinding in a presence of stochastic obstacles in [55]. 884

We assume that the agents cannot communicate and share 885

MAPF-related data, e.g. their goals, intended paths, further 886

4https://github.com/alex-petrenko/sample-factory
5https://github.com/Tviskaron/pathfinding-in-stochastic-envs

https://github.com/alex-petrenko/sample-factory
https://github.com/Tviskaron/pathfinding-in-stochastic-envs
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actions etc. The reason we have decided to adapt these limiting887

assumptions is that we wanted to obtain a solution to the888

most-restrictive problem setting on the presumption that this889

can serve as the lower bound, and adding more MAPF-related890

data to a decision-making policy is likely to only increase the891

performance. Indeed, we believe that information exchange892

could boost the performance of the proposed approach.893

The last but not least, similarly to the other prominent894

learnable methods that are tailored to (PO)-MAPF, e.g. PRI-895

MAL [13], PRIMAL2 [16], DHC [56], PICO [17], etc., we do896

not provide theoretical guarantees that the agents will reach897

their destinations. On the other hand, numerous experiments898

(in this paper and in the ones referenced above) confirm that899

practically-wise learnable methods are powerful and scalable900

tools to solve non-trivial MAPF problems.901

X. CONCLUSION902

In this work, we have investigated a challenging variant903

of the multi-agent pathfinding problem, i.e. the one with904

partial observability and no inter-agent communication. We905

have introduced two policies to solve such kind of problems:906

the planning-based one and the learning-based one. The latter907

is learned in a decentralized fashion without any external908

guidance and sophisticated reward-shaping. We have also909

proposed a hybrid policy that combines the search-based and910

the learning-based ones and introduced three different ways of911

such combination, which are all based on the parallel running912

of the policies.913

The conducted experimental evaluation on a wide range914

of different setups provides a clear evidence of the fol-915

lowing. First, the suggested idea of combining the policies916

is worthwhile, as two of the suggested switching policies917

notably outperform the solo ones. Second, this idea leads to918

outperforming the state-of-the-art competitors that also utilize919

decentralized learning.920

Possible directions for future research include further en-921

hancing the switching techniques, especially the learnable ones922

and considering even more challenging PO-MAPF settings923

(e.g. stay-at-target behavior).924

LIST OF NOTATION925

G Undirected graph used in MAPF formulation926

Tmax Time limit or episode length927

S State space, the set of all possible states in the928

environment929

O Observation function, returns the observation ot given930

the current state931

P State transition function, which maps a state-action932

pair to the next state in the system933

R Observation radius, size of the observation grid: (2 ·934

R+ 1)× (2 ·R+ 1)935

A Action space, set of all possible actions936

r(s, a) Reward function, returns a real-valued reward given937

the current state and action938

γ Discount factor, value between 0 and 1, determines939

the importance of future rewards940

π Decision-making policy, maps states to actions941

G Expected discounted return, expected sum of dis- 942

counted rewards over time 943

θ Set of parameters of a neural network, defines the 944

network’s behavior 945

ht Hidden state of the neural network, calculated based 946

on previous hidden state and current observation 947

πRePlan RePlan policy, decision-making policy based on a 948

search-based re-planning approach 949

πEPOM EPOM policy, reinforcement learning policy based 950

on the Evolving Policy Optimization with Memory 951

algorithm 952

πsw Switching policy, decides between the RePlan policy 953

and the EPOM policy 954

k Threshold that determines the policy to be used in 955

heuristic switcher based on the number of agents 956

observed 957

V EPOM Expected value of states conditioned on the EPOM 958

policy until the end of the episode 959

V RePlan Expected value of states conditioned on the RePlan 960

policy 961

l A hyperparameter used to detect loops in an agent’s 962

plans by checking if the first action of the current 963

plan leads to a previously visited location within l 964

steps. 965

Nmax The parameter is used to limit the allowed number of 966

iterations of the pathplanning algorithm (the number 967

of expansions). It is necessary for cases when the path 968

to the goal is blocked by other agents and cannot be 969

found 970

N Number of steps to transfer control between the 971

πRePlan and πEPOM policies in the learnable switcher 972
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algorithms for trajectory coordination of multiple mobile robots. IEEE1056

Transactions on Automation Science and Engineering, 12(3):835–849,1057

2015.1058

[28] Konstantin Yakovlev, Anton Andreychuk, and Vitaly Vorobyev. Pri-1059

oritized multi-agent path finding for differential drive robots. In1060

Proceedings of the 2019 European Conference on Mobile Robots (ECMR1061

2019), pages 1–6. IEEE, 2019.1062

[29] David Silver. Cooperative pathfinding. In Proceedings of the First AAAI1063

Conference on Artificial Intelligence and Interactive Digital Entertain-1064

ment, pages 117–122, 2005.1065

[30] Ko-Hsin Cindy Wang and Adi Botea. Mapp: a scalable multi-agent1066

path planning algorithm with tractability and completeness guarantees.1067

Journal of Artificial Intelligence Research, 42:55–90, 2011.1068

[31] Satyendra Singh Chouhan and Rajdeep Niyogi. Dimpp: a complete1069

distributed algorithm for multi-agent path planning. Journal of Experi-1070

mental & Theoretical Artificial Intelligence, pages 1–20, 2017.1071

[32] Van Den Berg et al. Reciprocal n-body collision avoidance. Robotics1072

research, pages 3–19, 2011.1073

[33] Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac1074

Schwager. Fast, on-line collision avoidance for dynamic vehicles1075

using buffered voronoi cells. IEEE Robotics and Automation Letters,1076

2(2):1047–1054, 2017.1077

[34] Vishnu R Desaraju and Jonathan P How. Decentralized path planning1078

for multi-agent teams in complex environments using rapidly-exploring1079

random trees. In 2011 IEEE International Conference on Robotics and1080

Automation, pages 4956–4961. IEEE, 2011.1081

[35] Binyu Wang et al. Mobile robot path planning in dynamic environments 1082

through globally guided reinforcement learning. IEEE Robotics and 1083

Automation Letters, 5(4):6932–6939, 2020. 1084

[36] Mikayel Samvelyan et al. The StarCraft multi-agent challenge. In 1085

Proceedings of the International Joint Conference on Autonomous 1086

Agents and Multiagent Systems, AAMAS, volume 4, pages 2186–2188, 1087

2019. 1088

[37] Tabish Rashid et al. QMIX: Monotonic value function factorisation for 1089

deep multi-agent reinforcement Learning. 35th International Conference 1090

on Machine Learning, ICML 2018, 10:6846–6859, 2018. 1091

[38] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre 1092
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