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Abstract

Extensive use of unmanned aerial vehicles (UAVs) in recent years has induced the rapid growth of research areas related to UAV
production. Among these, the design of control systems capable of automating a wide range of UAV activities is one of the most actively
explored and evolving. Currently, researchers and developers are interested in designing control systems that can be referred to as intel-
ligent, e.g. the systems which are suited to solve such tasks as planning, goal prioritization, coalition formation, etc. and thus guarantee
high levels of UAV autonomy. One of the principal problems in intelligent control system design is tying together various methods and
models traditionally used in robotics and aimed at solving such tasks as dynamics modeling, control signal generation, location and map-
ping, path planning, etc. with the methods of behavior modeling and planning which are thoroughly studied in cognitive science. Our
work is aimed at solving this problem. We propose layered architecture—STRL (strategic, tactical, reactive, layered)—of the control
system that automates the behavior generation using a cognitive approach while taking into account complex dynamics and kinematics
of the control object (UAV). We use a special type of knowledge representation—sign world model—that is based on the psychological
activity theory to describe individual behavior planning and coalition formation processes. We also propose path planning methodology
which serves as the mediator between the high-level cognitive activities and the reactive control signals generation. To generate these
signals we use a state-dependent Riccati equation and specific method for solving it. We believe that utilization of the proposed archi-
tecture will broaden the spectrum of tasks which can be solved by the UAV’s coalition automatically, as well as raise the autonomy level
of each individual member of that coalition.
� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

One of the obvious recent trends in science and technol-
ogy is the rapid growth of the R&D areas related to
unmanned aerial vehicle (UAV) design. UAVs are getting
cheaper and thus more available both to researchers and
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the general public due to the following factors: First,
sensors which are needed in large quantities to build any
UAV are getting smaller, cheaper and more energy efficient
while the quality of the output signal remains the same or is
improving (sensors become less noisy and more robust).
Second, other UAV components, such as rotors and car-
bon bodies are getting more widespread and available at
a moderate price. Third, the computational efficiency of
modern in-flight controllers has increased significantly.
All of these factors gave an impetus to the creation and
proliferation of the unified UAV platforms such as Parrot
AR.Drone (ardrone2; Bristeau et al., 2011), mikrokopter
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(mikrokopter), 3DR IRIS (3drobotics), equipped with the
sufficient amount of sensors, actuators, peripherals and
in-flight controllers, coupled with the core build-in soft-
ware which automates basic flight maneuvers and modes.
This software typically supports easy and seamless integra-
tion of the third-party modules via the open data exchange
protocols and application programming interfaces (APIs).
Thus, a lot of research is now focused on the development
of models and methods that can be further implemented as
software modules and plugged into existing UAV plat-
forms. The spectrum of the methods under development
and investigation is extremely wide: from methods and
algorithms for UAV dynamics modeling, identification,
and flight controller development to methods of localiza-
tion, mapping and path planning, to methods of strategic
(behavior) planning and UAV coalition formation, etc.
An informative recent survey of such methods can be
found in Kendoul (2012) for example. Developed methods
and algorithms are usually grouped in bundles and imple-
mented as software modules comprising the UAV control
system. Thus another direction of research, in which we
are more interested, exists in the broad area of UAV
design, specifically, studying the methods of interaction
between the modules of control systems and the ways of
organizing hierarchical relations between them. In other
words, we are talking about studying (and developing)
the architectures of modern UAV control systems. Control
systems which mainly attract researcher’s attention nowa-
days can be considered intelligent control systems (Albus,
2002) (ICS). ICS is a system that is capable of solving
non-trivial, intelligent tasks—planning, goal prioritization,
coalition formation, etc.—and thus guarantees high levels
of UAV autonomy. Under the cognitive approach the abil-
ity of the system to solve the abovementioned tasks relies
on its ability to model human cognitive behavior and
higher psychological functions (and thus only cognitive
systems can be characterized as intelligent) (Kurup &
Lebiere, 2012). At the same time, researchers of cognitive
systems frequently propose such cognitive architectures as
can hardly be implemented as software control systems
for real-world technical objects due to the lack of interfaces
between the proposed methods and modules for solving
high-level, intelligent tasks, and the methods for dealing
with such lower level tasks as localization, mapping, path
planning, control signal generation, etc. Our work aims
at filling this gap. On the one hand we are dealing with
the non-abstract technical objects involving complicated
dynamics and kinematics, such as multirotor UAVs, and
creating an architecture for the control system which takes
this into account. On the other hand, we are not limiting
ourselves to dealing only with low- and mid-level control
tasks (UAV stabilizing, performing standalone flight
maneuvers, localization and mapping, path planning,
etc.), but also trying to automate high-level functions (dis-
tribution of roles in the group, coalition formation, goal
setting and behavior planning) using cognitive experimen-
tal data and psychological methods. As a result, we present
the multi-layered cognitive architecture—STRL (from
Strategic, Tactical, Reactive, Layered)—of the intelligent
control system which automates the control of the coalition
of UAVs performing complex tasks in a wide range of
scenarios.

2. Related works

Numerous approaches to the creation of the UAV’s
intelligent control systems exist and the architectures of
such systems thus can be classified in many different ways.
One of the most advanced ways to do so is to use a
hierarchy along with the type of functional specification
(implicit or explicit) as a categorization factor. In that
case, at one extreme on the spectrum lie ICSs which use
simple, flat architectures based on explicit functional
decomposition (i.e. the control system is considered to be
a bundle of modules without any hierarchy and each
module is presumed to solve some functionally specific
task). Within this approach the following tasks are
typically distinguished: behavior planning, interaction
management, contingency management, situation aware-
ness, communication management, navigation (including
localization, mapping and path planning) and others.
Cognitive functions in that case are dispersed over the whole
system, so that each module can implement some of them.
One can see (Jameson, Franke, Szczerba, & Stockdale,
2005) as an example of such system (architecture).

On the other extreme there are layered architectures
(with possibly infinite number of layers) based on implicit
functional decomposition. Each level of the architecture
is composed of the elements which abstract specific control-
lable entities (vehicle subsystems, vehicles, groups of vehi-
cles, etc.) and each element is composed of fixed number
of identical modules (groups of modules) having implicit
specification. The most obvious example of such an archi-
tecture is 4D/RCS developed by the research group of pro-
fessor Albus (2002). Within 4D/RCS the following 4
implicitly specified modules (‘‘functional processes”) com-
promise each element (‘‘node”) of the architecture: behav-
ior generation, world modeling, sensory processing, value
judgement. At the higher levels of the 4D/RCS system,
behavior generation is meant to be situation planning
(i.e. planning in the context of actions, capabilities and
high-level goals and constraints) while on the lower levels
behavior generation becomes, for example, path planning
(planning in the context of spatial constraints) or control
signal generation (planning in the space of UAV control
inputs). Within such an approach, cognitive functions of
the system are concentrated mainly on its highest levels
and are specified implicitly.

In between those two extremes lie a vast number of mul-
tilayered architectures with explicit module specification.
In that case each module is considered to be in charge of
solving some specified task(s) and the modules are grouped
into layers which encapsulate the level of abstraction: the
higher the level, the more abstract representation of input
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signals it uses to solve a given task. The tasks being solved
at the highest levels of the system are considered more
sophisticated and complicated than the tasks of the lower
levels. Typically in the areas of robotics and unmanned
vehicles 3 levels of control are distinguished and the corre-
sponding 3 level architectures are proposed. Among the
most widespread examples of such architectures one can
name ATLANTIS (Gat, 1992), 3T (Bonasso et al., 1995),
and Aura (Arkin, 1987), among others. Typically within
these and other architectures, modules of the high level
are considered to automate deliberative behavior functions;
modules of the low level automate reactive behavior; and
modules of the middle provide interfaces. One of the main
differences between the architectures is the mechanism for
altering the behavior (either high-level or low-level one).
3T, for example, supports re-planning only on the deliber-
ative level while ATLANTIS uses a mid-level sequencer to
re-plan activities both on high and low levels. We believe
that the re-planning process should be a pass-through pro-
cess and propose the architecture which implements this
idea. We also would like to pay much more attention to
such tasks as collaborative behavior planning and goal dis-
tribution, which are usually left out of the focus of well-
known and widespread robotics architectures. At the same
time we consider that the idea of splitting the control sys-
tem (at least—for the UAVs) into three levels has been pro-
ven successful by the positive experience of researchers in
the robotics domain. Thus, we will now propose an original
3-level cognitive architecture.

We also should mention cognitive architectures, which
are standard for simulating cognitive functions and in
application this simulation to explain the results of cogni-
tive tests and experiments. They are not well suited for
the classification by above-mentioned schema, rarely used
for control of real hardware and cover only top level of
proposed STRL architecture of the UAV control system.

One such system with flat architecture is ACT-R
(Anderson et al., 2004; Langley, Laird, & Rogers, 2009).
Its last versions are organized into a set of modules com-
municating with central modules of productions and pro-
cessing a different type of information. These include a
visual modules for sensor processing, a motor module for
action, an intentional module for goals, and a declarative
module for long-term declarative knowledge. Each module
has an associated buffer that holds a relational declarative
structure. These buffers comprise ACT-R’s short-term
memory. The main production subsystem of ACT-R
includes realization of matching, selection and execution
procedures. In this approach hierarchical action and
knowledge representation cannot be constructed for differ-
ent levels of abstraction. All parts of ACT-R are equal and
there is no control links either top-down or bottom-up
between modules.

There are some examples of architectures with elements
of multilayer approach that particularly focus on memory
organization. The representative of this direction of
cognitive modeling is the Soar system (Derbinsky &
Laird, 2010; Laird, 2012). Procedural long-term knowledge
in Soar takes the form of production rules, which are in
turn organized in terms of operators associated with prob-
lem spaces. Some operators describe simple, primitive
actions that modify the agent’s internal state or generate
primitive external actions, whereas others describe more
abstract activities. Recently separate episodic (a history
of previous states) and semantic (a history of previously
known facts) memories have been added also. In Soar it
does not usually take into account features of the control
object model. It does not include separate layers for
productions and memories of other level of abstraction to
execute and process more accurate control as in ACT-R.

ACT-R, Soar and other cognitive architectures have not
developed solution for symbol grounding problem
(Barsalou, 1999; Harnad, 1990) and therefore do not have
flexible instruments for organizing connections with low
level control approaches that use physical model of control
object. They make particular emphasis on memory organi-
zation and several types of workflows between other mem-
ory types and do not take into account some useful
concepts of control theory such as positive feedback and
prediction. It is therefore to improve control quality and
degree of autonomy of robotics systems we develop
and propose new multilayer architecture in which all these
defects have been remedied.

3. General view of architecture

In this work we propose the control system architecture
consisting of three levels: strategic, tactical and reactive
(STRL architecture). The system controls the behavior of
the UAV, which is an individual member of the coalition
taking part in joint activity aimed at the solution of the
coalition task. The strategic level of STRL is the core cog-
nitive level of the system and is in charge of solving high-
level cognitive tasks (coalition formation and behavior
planning) and using sign knowledge representation
(Osipov, Panov, & Chudova, 2014) and extensive inter-
coalition communication to accomplish them. Tactical
and reactive levels contain modules that support these
activities and translate them into the UAV low-level con-
trol signals which serve as the actuators’ input. Overall
architecture is shown on Fig. 1 (modules are depicted as
boxes, intermodule interfaces as arrows, different world
model representations as ovals).

The strategic level’s main task is to build a plan of the
behavior for a member of the coalition coordinated with
the plans of all the others. Each participant has its own
world model constructed in accordance with the psycho-
logical theory of group activity. The world model consists
of the interlinked knowledge elements (signs) referred to
as domain objects or actions. Each element contains both
procedural and declarative knowledge about the object
(or the action). Thus, we suggest not to operate with sev-
eral types of memories, such as procedural, episodic and
others, but to have several components of the element of



Fig. 1. Schema of proposed cognitive architecture. Bold bordered nodes represent parts of the architecture realized in the program system.
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the world model, such as name, image, personal meaning
and significance (Leontiev, 2009). For example, for a sign
with the word ‘‘table” the image component presents char-
acteristic features and constituent parts of the mediated
object (real table): ‘‘square tabletop”, ‘‘four table legs”,
‘‘brown colour” and that it ‘‘is made of wood”. The signif-
icance of ‘‘table” sign is the common abstract actions asso-
ciated with the mediated object: ‘‘take food on the table”,
‘‘playing cards at the table”, etc. The personal meaning
component reflects personal actions associated with the
mediated object for the actor: ‘‘I can dance on the table”,
‘‘I can eat on the table”, etc.

One of the sign components—significance—is the same
for all members of the coalition. Therefore, if two or more
members share the name of some knowledge element
(i.e. this element is present in their world models) the
significance component will be the same while image and
personal meaning can be different. Thus only significance
component is used in the communication between coalition
members (via the designated protocol). Significance based
communication is used to share individual knowledge
and abilities as well as to avoid conflicts while generating
the behavior plan (i.e. it can make an individual plan con-
sistent with the plans of the others). At each stage of plan
execution, the description of the current state of the sign
world model (situation) is updated using the data coming
from the sensors. The temporal-spatial aspect of the situa-
tion description is extracted to form the task which is
passed to the tactical control level. This task contains a
spatial description of the goal area (location) and its
achievement. In case the task cannot be accomplished, as
informed by the tactical level planner, the strategic
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re-planning procedure is invoked and the corresponding
adjustments are made to the individual behavior plan upon
coordination with the other members of the coalition.

The tactical level of the STRL architecture is the medi-
ator between high-level activities (as described above) and
low-level activities (control signals production), and the
tasks over which it is in charge are the navigational. We
split the navigation activities into 3 major categories: map-
ping (construction, updating, refinement of the spatial
model of the world), localization (binding the UAV state
to the existing map) and path planning. The latter is
divided into three phases: prediction, generation and mon-
itoring. The planning process is used when the information
on the goal location (some area bound to the map) and
time limits on its achievement is received from the strategic
control level. Then the prediction module performs prelim-
inary calculations of the necessary movement parameters
(e.g. speed) which are needed to achieve goal area in time.
These parameters are then transferred to the lower (reac-
tive) control level of STRL, which uses them to create a
spatial (geometric) model of the UAV movement dynamics
constraints and then sends these constraints back to the
path planning module. The latter tries to generate the path
under given constraints. Depending on the result (either
successful, which means that the path is generated, or
unsuccessful, which means that the path to the desired goal
location cannot be achieved in the allotted time) the corre-
sponding message is sent to the higher (strategic) level. In
response to a failure message the strategic level is supposed
to generate an alternative navigation task (location-time
pair). Thus, path planning is an iterative process supported
with the feedback both from upper and lower levels of con-
trol. We suppose that the idea of finding spatial representa-
tion for the UAV dynamics constraints and the use of an
iterative loop ‘‘prediction - calculation geometric con-
straints - planning‘‘ will substantially improve the compu-
tational performance of the path planning process and
thus improve the overall performance of the control system
(as more navigation tasks will become solvable in the allot-
ted time). For more details, see Section 5.

The main task at the reactive level of control is to gen-
erate the control signals needed to follow the trajectory,
provided by the tactical layer as a path, under specified
movement constraints (e.g. speed), also provided by the
tactical layer. These signals are then fed to the actuators
and the control error is analyzed via sensory feedback.
For example, measured phase coordinates (current position
and speed) of the control object (UAV) are compared with
the desired ones. If the difference exceeds the predefined
threshold, the tactical layer is informed and, potentially,
a re-planning process as described above is triggered. The
control signals generation module can also work in model-
ing mode, which is needed while path geometry constrains
calculation. To calculate these constraints the input data is
received from the path prediction module residing at the
tactical layer and then integration of dynamic model
equations is triggered, coupled with the control signal
generation. As a result, phase coordinates are obtained
which are analyzed in a special way to form the needed
geometric constraints of the path, which are then pushed
back to the tactical layer.

The three-tiered approach is also reflected in the psycho-
logical Stanovitch’s tripartite framework (Stanovich,
2009), where it is suggested a tri-partition of architectural
levels in human cognition corresponding to what is called
the ‘‘Algorithmic Mind”, responsible for cognitive control,
the ‘‘Reflective Mind”, responsible for more higher order
deliberative processes and the ‘‘Autonomous Mind”. Men-
tioned levels correspond to tactical, strategic and reactive
levels of STRL architecture indicating the psychological
reliability of the STRL.

Proposed multi-layered cognitive architecture of the
intelligent control system has quite a wide range of func-
tional capabilities. It uses methods of modeling human
cognitive activities at the highest level of control to solve
the tasks of behavior planning and re-planning, group
formation and others. It utilizes novel path planning
methodology which acts as the mediator between high-
level and low-level control tasks. This methodology
includes geometry constraints calculation, which is done
at the lower (reactive control) level of the system. The
architecture is not strictly tailored to the UAV domain.
With insignificant changes it can be used to control other
types of unmanned vehicles (or, in general, complex tech-
nical objects).

4. Details of the organization on strategic level

4.1. Knowledge representation

As the basis for psychological theories, not only a qual-
itative description of the properties of cognitive functions,
but also the structural description of the underlying mental
formations, cultural-historical approach of Vygotsky-Luria
(Vygotsky, 1986), the theory of activity (Leontiev, 2009)
and the model of mind (Artemieva, 1999) were used.
According to these theories, the higher cognitive functions
are carried out within the framework of the so-called moti-
vated objective activity when objects and processes are
mediated by the external environment for the subject of
special education called signs. The process of engaging
the sign in a particular cognitive function has three gener-
ators: an image, a significant and a personal meaning (see
Fig. 2) (Osipov et al., 2014). The image component is
responsible for playback and discernment of the mediated
object or process during the activity. The significant com-
ponent defines the place of the sign in some psychological
sign system. This place reflects in the functional sense the
ways of using a mediated object or a process and is deter-
mined by general historical practice of the collectivity that
is owner of the sign system. Finally, the personal meaning
component carries its own experience of action between the
subject and the denotation of the sign, which is expressed
by the integrated estimate of the role of denotation in its



Fig. 2. Structural components of the element of the world model.
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current activities: if the process or object satisfies the cur-
rent motive.

The three-component structure of individual knowledge,
which, as mentioned above, is called the sign in psychology
and confirmed by the work of neuroscientists, is an attempt
to construct a general theory of operation of the human
brain. Thus, in the re-entry theory of Edelman (1987)
and Ivanitsky (1996) it is approved that the formation of
conscious sensation or fixing input flow occurs only when
the excitation has been activated by sensory input via the
associative cortex from the hippocampus, and then
imposed on the sensory track on the projection cortex from
hypothalamus. This ‘‘circle of sensations” that passes over
a characteristic time in the 150–300 ms sequentially acti-
vates the three components of individual knowledge: the
image (primary and sensory cortex), the significant compo-
nent (hippocampus) and the personal meaning (the
hypothalamus). In addition, the structure of the cerebral
cortex, based on modern neurophysiological concepts, is
almost uniform in its entirety (the existence of neocortical
columns). Hereby the plurality of links between small
enough areas of the cortex (the so-called connectome
(Zador, Dubnau, & Oyibo, 2012)) clearly indicates its hier-
archical structure and the presence of both uplink and back
downlink. It follows that the components of individual
knowledge elements should have a hierarchical homoge-
neous structure with ascending information flows and
descending feedback. Furthermore, the significant compo-
nent should have such recognition function, except for
the categorization of static objects and dynamic processes,
which uses a feedback signal for predicting a sign the next
time.

Presented knowledge representation on the strategic
level has common points with existing works in this area.
So, an approach that can be represented in terms of
‘‘heterogeneous proxytypes” (Lieto, 2014) should be noted.
Knowledge base contains heterogeneous pieces of informa-
tion semantically pointing to the same object and convey-
ing different types of information. Such pieces of
information may be contextually activated by an agent
according to the external stimulus being categorized. In
these categories we can also describe partitive information
communication between agents but cannot get grounding
in other levels of knowledge representation.

To define the mathematical model of components of
individual knowledge elements infinite state machine with
variable structure and finite memory (recognizing state
machine or R-SM):
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Input, output and control signals are vectors of real num-
bers. Each component of these vectors is a weight of recog-
nizing or input feature.

As a recognition function f̂ k of the k the output feature
in R-SM it is convenient to use the set of bit prediction
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. In these matrices each col-

umn �zru is the prediction vector of input features in the
moment ss þ u, where ss is a start of the calculation circle

(the moment of operation of the control signal x̂jþ1
i ). The
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r specifies the sequence of bit vectors where each

bit indicates presence of a feature recognized by the func-

tion f̂ k. The algorithm Ath that calculates the transition

function u j
i and the vector-function of outputs ~g j
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initial moment ss, the control effect x̂jþ1
i ssð Þ and the input

effect x j
i is shown on Fig. 3.

Introduction of that R-SM and several relationships on
the set of R-SM allows defining all components of the sign.
The image of the sign s corresponding to the feature f 1 is a
subset pðsÞ of features where 8f i 2 pðsÞf i@f 1. Here the
relationship @ is the relationship of subsumption of one
feature by another. If the set of columns of a prediction
matrix is divided into two subsets, columns of conditions
and columns of effects, then each feature that has such pre-
diction matrices is named as a procedural feature. If f 1 is a
feature corresponding to the sign s; f 2 is a procedural
feature and f 1@cf 2 then f 2 is named as an element of
significance of f 1. If F I is the subset of features where each
feature describes characteristics of the control system
then the definition of personal meaning will be as follows:
f 1—the feature corresponding to the sign s;@—the
procedural feature, f 1@cf 2; 9f I 2 F I : f I@cf 2; f 2 is named
as an element of personal meaning of f 1.

The proposed approach to the description of the image
component of the sign using state machine representation
has been applied to the wire toy recognition task. The input
dataset for this task contains sequences of shifted wire toy
pictures comprising of variations of eight types of figures
(see Fig. 4). Hierarchy of R-SM contains three-level



Fig. 3. Schema of the R-SM’s function. From the set of measure functions F̂ j
i subset is selected by prediction vector x̂jþ1 entering from the upper level.

This subset of active functions forms the set of active prediction matrixes Z�. This subset is filtered on each time step according to the input vector �x j and
the simple distance metric. On each time step the output vector �x� and prediction vector x̂ j into the lower level are constructed.
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counting simple Bayes classifier on the highest level. On the

lowest level of the hierarchy the set X j
i of the first R-SM

was presented by a sequence of vectors, each component
of which represented the gray scale value of the corre-

sponding pixel of the input image. The set X �j
i of the R-

SM was the set of vectors of which each component was
the likelihood of a presence of memorized patterns on the

parts of the image. The set X̂ jþ1
i contained predicted pat-

terns at the next time from the second layer. On the next
level, R-SM encoded a sequence of patterns for the corre-
sponding part of an image consisting of several pixels.
The top-level Bayes classifier took the decision about the
name of the input sign. Fig. 4 depicts the schema of the
experiment, test images and accuracy of recognition,
dependent on the level of noise on the image.

4.2. Self-organized processes

Within the process of the actor activity specific relation-
ships occur on the sets of sign components. In its turn it
leads to the formation of the world model of the UAV.
Three types of semantic networks were used as a model
Fig. 4. Experimental results of R-SM recognition tests. (a) a schema of R-SM
accuracy of recognition, dependent on the image noise level.
of the UAV’s knowledge about the world. These are the
network based on the set of sign images, the network based
on the set of sign significances and the network based on
the set of personal meanings. Self-organized processes on
these networks involve the supplementation of the relation-
ships’ collection as well as the formation of new nodes of
the network, which corresponds to the formation of a
new element of individual knowledge.

The process of the formation of a new sign includes
establishing connections between the sign components
and the naming generation structure. Until the name is
obtained, this structure is called a protosign and its compo-
nents are called percepts (evolved into the sign image), a
functional significance (evolved into the sign significance),
and a biological meaning (evolved into the personal mean-
ing after the sign formation completion). Common schema
of a new sign formation (Osipov et al., 2014).

1. The formation of a percept.
2. Generation of the set of pairs ‘‘percept—functional sig-

nificance” of the functional significance of the object
based on the previous experience or precedents.
hierarchy used in the task, (b) an example of test images with noise, (c)
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3. From the cultural environment based on the external
collective information objects (for example, texts) the
actor obtains the pair ‘‘sign name—significance”, accu-
mulated in the natural language system, and evaluates
the degree of closeness of the functional significance
obtained in the phase 2 to the significance obtained from
the cultural environment. If these significances are not
close enough, then the percept formation continues by
returning to phase 1.

4. Linking the name from the pair ‘‘sign name—signif
icance” to the percept constructed after the completion
of phases 1–3. At this time, the percept turns into an
image.

5. Formation of personal meanings of the sign based on
precedents of actions with the object.

6. Linking the name from the pair ‘‘sign name—signif
icance” to each personal meaning. From this time on,
the functional significance turns into the significance,
and the biological significance turns into the personal
meaning.

7. Continuing to map the biological significance—percept
by including the personal meaning (formed in the pre-
ceding phase) in the domain and by including the image
formed in phase 4 in the set of values.

Consideration of procedural features in the form of
rules with defined sets of added and removal features
allows algorithm construction of the main iterative process
(phases 1–3) of the described sign formation schema with
R-SM. To define conflictness and applicability properties
of rules on the set of procedural features special operations
are introduced. These are the cast of the column �z to the R-
SM R(�z ! R) and the cast of the column �z to the R-SM R

by the column �z (�z!�z
0
R).
5. Details of organization on tactical level

The tactical level lies in between a strategic level and a
reactive level and serves as a bridge which connects high-
level, intelligent activities (cognitive world modeling and
behavior generation) with the low-level ones aimed at
forming control signals needed to operate the UAV and
perform flight maneuvers. Our main idea is that both of
these classes of activities can be meditatively connected
via the spatial world model. The strategic level can output
the time-spatial reference (associated with some high-level
task the UAV has to perform) as an input to the tactical
level modules. At the same time the reactive level is able
to transform the model of UAV dynamics constraints into
spatial models of constraints (either geometry or metric or,
as we propose, both) and provide them to spatial planners
residing on the tactical layer. In that case the core activity
of the tactical level (which is the main mediator within the
architecture) is to maintain the process of spatial reason-
ing. The latter is split into three main sub-processes: locali
zation—registering the state of the UAV in the respect to
the spatial world model (SWM); mapping—maintaining
the consistency of the spatial model of the world; and path
planning—finding a sequence of states of the SWM ending
with the goal state provided from the strategic level.

In modern robotics and AI the first two abovemen-
tioned processes are usually tied together in what is called
simultaneous localization and mapping (SLAM). There
exist dozens of methods and algorithms nowadays to solve
the SLAM task, each of which differs from the others
mainly in the input data it can process (but not in the
way it processes these data). The input data include at least
the following components: a mathematical model of UAV
dynamics and the sensory data. So, practically speaking,
different SLAM methods are needed for different robotic
systems (as different robotic systems are equipped with dif-
ferent types of sensors and have different dynamic models).
If we narrow ourselves to the vertical take-off and landing
of multirotor UAVs (multicopters), the following SLAM
algorithms can be named. First of all, if the UAV is
equipped with laser range-finder SLAM algorithms, ini-
tially developed for ground robots, these can be used suc-
cessfully (with some modifications); see (Borrmann,
Elseberg, Lingemann, Nuchter, & Hertzberg, 2008) for
example. When the stereo-camera is used, the SLAM algo-
rithms based on the computational geometry and computer
vision are used (Sim, Elinas, Griffin, & Little, 2005). If the
UAV is equipped only with a single (forward-looking cam-
era), then such methods as Saxena, Sun, and Ng (2007),
Bills, Chen, and Saxena (2011) can be used. Needless to
say, in many cases there exists a prior map which is also
an input to the SLAM algorithm, so that mapping is often
not meant to be the process of building the spatial world
model from scratch (although it can be so) but of updating
and refining it. Also, in some cases a localization task
becomes trivial; for example, when the UAV is performing
outdoor flight and is equipped with global positioning sen-
sors (GPS receivers).

Path planning methods may be presumed to be more
universal than the SLAM ones as they do not deal directly
with sensor data. In effect, one path planning algorithm can
be used for many different types of robotic systems. Typi-
cally the input to the path planning module (method) is
the spatial world model (along with the references to the
desired goal state(s) and current start state), and that is
the case within our architecture. Usually, the spatial world
model is a graph where each node corresponds to some 3D
(or 2D) point (location) and each edge corresponds to so-
called elementary trajectory (typically the segment of a
straight line). This is a trajectory that can be followed in
a reactive way by the use of lower level methods and algo-
rithms—the modules of the reactive level of the control sys-
tem—so that path planning is viewed as a graph search
(Likhachev, Ferguson, Gordon, Stentz, & Thrun, 2008).

In our work, we assume that 3D (or 2D) grid (Yap,
2002) is used as the spatial world model as it is a simple
and powerful graph model successfully used both in
ground (Elfes, 1989) and aerial robotics (De Filippis,



Fig. 6. The path found by the LIAN algorithm as well as the explored
areas (shaded in light gray).
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Guglieri, & Quagliotti, 2012). Grids are so widespread
because they can be extracted from the output of the
SLAM module(s) by naive, fast and efficient algorithms
(in most cases only post-processing is done). To find a path
on a grid, one can use one of the numerous algorithms of
heuristic search: A* (Hart, Nilsson, & Raphael, 1968), R*

(Likhachev & Stentz, 2008), JPS (Harabor & Grastien,
2011), Theta* (Nash, Daniel, Koenig, & Felner, 2007),
etc. The main problem here is that the result—path found
as the sequence of free grid cells and sections—is not guar-
anteed to be executable by the lower level of the control
stack, i.e. corresponding control signals to follow the path
cannot be generated. The most obvious example of such a
path is a path containing a sharp turn when the corre-
sponding maneuver cannot be performed due to the vehi-
cle’s dynamics constraints. One way to take these
constraints into account is to extend the graph model used
to search for a path. In that case we are talking about find-
ing a path as a sequence of states which are referred not to
the elements of spatial world model but to the elements of
some extended graph model which incorporates also infor-
mation on UAV dynamics. As an example of the algorithm
exploiting such an idea one can name (Kuwata et al., 2009;
Kothari & Postlethwaite, 2013).

As mentioned above, one of the core intuitions which
underlies the proposed architecture of the control system
is that the reactive level of control can be separated from
higher levels and, for this, we are proposing the mechanism
of such separation is to find a model of geometry con-
straints which can easily be incorporated into the spatial
world model, on the one hand, and take into account
UAV dynamics, on the other. We propose the following
model of geometry constraints: we assume that the exe-
cutable trajectory corresponds to the grid path which can
be presented as the sequence of such sections that the angle
in between each pair of them does not exceed predefined
threshold am. On Fig. 5 two paths are depicted: the one
on the left violates maximum level of alteration constraints
and the one on the right does not.

The exact value of the threshold—am—is estimated by
the module which resides at the reactive level and takes into
account all constraints imposed by the vehicle dynamics,
control laws, etc. For more detail, the method of the con-
straints transformation is described in Section 6 of this
paper.
Fig. 5. Angle constrained path (on the right) and a path viola
To the best of the authors’ knowledge, there are not
many grid path planning methods capable of taking
angle-change constraints into account, although methods
based on similar ideas of constraints modeling do exist
(see Kim, Kim, Shin, Kim, & Myung, 2014 for example).
Thus, we have developed and studied both theoretically
and empirically a new path planning method for the pro-
posed model of geometry constraints—LIAN (from ‘‘lim-
ited angle”). It is pretty similar to a classic A* search as
it uses the same heuristics and strategies to focus the
search. The main difference is that at each step A* is inves-
tigating only grid cells that are immediate successors of the
current one (i.e. they are adjacent to the current one) while
LIAN ‘‘jumps” to the cells that lie at some distance from
the current cell (exact distance value—D—is an input
parameter of the algorithm). By doing this we implicitly
present each partial path (in the set of all paths under
investigation) as the sequence of sections. Thus, paths
which do not satisfy ‘‘in-between-section angle” constraint
are easily pruned. It is proved that the proposed algorithms
are sound and complete (with respect to the input parame-
ter D). More details on the proposed algorithm can be
found in Yakovlev, Makarov, and Baskin (2015) and
Yakovlev, Baskin, and Hramoin (2015).

An example of the path generated by the proposed algo-
rithm can be seen in Fig. 6. The start cell is located on the
left edge of the grid and the goal is located on the right. The
path is shown as a curved line. Cells that have been visited
ting maximum angle of alteration constraint (on the left).
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by the algorithm (so called OPEN and CLOSE lists in
heuristic search literature) are shaded in light gray. Obsta-
cles are shaded in dark gray. One can clearly see the
‘‘jumps” as the caverns of unvisited cells in between the vis-
ited ones (center and right of the picture). The most
explored area is located on top of the left-most obstacle:
LIAN has investigated a handful of variants of passing that
obstacle, in such a way that the maximum angle of alter-
ation constraint is not violated, before finally finding a suit-
able path fragment.

We have conducted an empirical study of LIAN and
compared its ability to solve angle-constrained path plan-
ning tasks and its performance to the competitors: nave
modification of Theta* which takes into account angle con-
straints—Theta*-LA; and its modification implementing
grid-weighting techniques—wTheta*-LA (for the original
description of algorithms see Kim et al. (2014), for the
details of authors implementation of algorithms and exper-
imental setup see Yakovlev, Baskin, & Hramoin (2015)).
We have used 80 different fragments of city maps (retrieved
from OpenStreetMaps (wiki.openstreetmap) database)
sized 1347 m � 1347 m each and discretized to 501 � 501
grids, and we have chosen 5 different start-goal locations
on each grid. Various angle constraints were targeted.
For example am ¼ 25 corresponds to AscTech UAV flying
at the air speed of 7 m/s, the typical cruise speed in urban
environments. Results are shown in the Table 1.

Here sr (success rate) is the number of accomplished
angle-constrained path planning tasks divided by the num-
ber of all tasks (time limit for each task was set to 60 s);
PAR-10 (penalized average runtime) is the metric that
averages the runtime and takes failures into account
(Hutter, Hoos, Leyton-Brown, & Stutzle, 2009); t (time)
is the time (in seconds) needed for an algorithm to produce
solution averaged without taking failures into account; m
(memory) is the number of intermediate grid elements (in
thousands) explored by the algorithm and stored in mem-
ory (the memory consumption of the algorithm); pl is the
length (in meters) of the resulting angle-constrained path.

Results of the experiments prove that the proposed algo-
rithm significantly outperforms existing analogs (at least
for the considered outdoor navigation scenarios): LIAN
solves more angle-constrained path planning tasks than
the competitors while using less memory and processing
time. In Yakovlev, Baskin, and Hramoin (2015) the reader
can find more details on the algorithms experimental
assessment.

In order to form a geometrical model of the executable
trajectory constraints, modules of the reactive level need to
Table 1
Comparative study of LIAN, Theta*-LA and wTheta*-LA path planning algo

am ¼ 25

sr (%) PAR-10 t m p

LIAN-5 98 12 0.5 6.3 1
Theta*-LA 12 536 2.1 37.5 1
wTheta*-LA 55 277 2.76 58.3 1
be provided with the input that defines the values of basic
UAV movement parameters (for example—speed). To cal-
culate these parameters, a path prediction module residing
on the tactical level is used. Basically path prediction can
be considered as fast, constraint-free version of path plan-
ning. In the simplest case, when the goal location and time
of the arrival is received from the higher level, the length of
the straight line connecting the current UAV location and
the goal is calculated and used to determine the desired
(minimum) speed of traversal, which is then passed to the
‘‘geometry model generation” module of the reactive level.
Furthermore, with such a straightforward computation
more complex algorithms can be used (for example, path
planning algorithms utilizing over-informative heuristics
or taking no spatial constraints (obstacles) into account).

The last module of the tactical level not described so far
is a path monitoring module. It receives the current loca-
tion of the UAV and matches it up with the planned path.
If the discrepancy exceeds a predefined threshold it triggers
again the ‘‘path prediction—geometry constraints genera-
tion—path planning” loop to find a new path to the goal
state. If such a path cannot be found, the corresponding
module at the strategic level of the control system is
informed, and the global goal-change process is triggered).

6. Details of organization on reactive level

As already noted, the main challenge for the reactive
level is to provide specified dynamic object characteristics
(speed, location, etc.), received from the tactical level, by
the means of a control signal generated by the controller.
The control signal is applied to the UAV actuators: screws
engines, ailerons, etc. Additionally, using the appropriate
procedure, the problem of calculation of geometric con-
straints on the admissible trajectory of movement is solved
at this level. Let us describe the methods of controller syn-
thesis and constraints calculation that are proposed in our
architecture.

6.1. Method of controller synthesis

In the area of automatic control there are many
approaches and techniques to the construction of the con-
troller. Some of them are indirectly related to a cognitive
human activity at the level of implementation and control
of motor actions. For example, the control based on artifi-
cial neural networks (ANN) uses the principle of learning
by examples, and control based on fuzzy logic uses the for-
malized intuitive knowledge of domain experts. The
rithms.

am ¼ 30

l sr (%) PAR-10 t m pl

617 98 11 0,5 6.1 1611
574 31 421 2.2 47.4 1580
598 73 165 2.7 61.0 1567
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application of these techniques is particularly useful if there
is no possibility to build an adequate mathematical model
of UAV. A few works on the use of ANN and fuzzy logic
to automate the UAV’s flights are outlined in Garcia and
Valavanis (2009) and Buskey, Wyeth, and Roberts
(2001). The main disadvantage of the noted approaches is
the lack of a rigorous proof of operability of such con-
trollers. On the other hand, there are many rigorous tech-
niques free from this disadvantage that do not rely on
human motor activity, such as the synthesis of linear-
quadratic controller, H-infinity methods, feedback lin-
earization and backstepping methodology. Limited area
of application is a disadvantage of such techniques: they
deal with either a linear model of the UAV or a nonlinear
model of a special kind.

In the proposed architecture one of the promising
approaches used is based on the Riccati equation with
state-dependent coefficients (SDRE—State Depended Ric-
cati Equation). Work in this area has been carrying out
actively since the mid-90s of the last century (Cimen,
2008; Mracek & Cloutier, 1998). On the one hand, develop-
ment and application of this technique provide a fairly gen-
eral methodology for constructing suboptimal, smooth,
nonlinear, state dependent controllers for nonlinear sys-
tems. On the other hand, the SDRE control allows us to
use some of the principles that are utilized in the realization
of lower cognitive human functions, associated with the
control and execution of motor actions. Namely, it is pos-
sible to adapt the control signal depending on the mode
and conditions of operation, and constraints on the con-
trol. Let us describe the approach.

The SDRE technique is based on the representation of
the original nonlinear system in the quasi-linear form. This
allows us to apply the procedure for stabilizing control
constriction similar to a procedure for optimal synthesis
for linear systems (linear-quadratic regulator synthesis)
by means of considering the corresponding algebraic Ric-
cati equation, whose coefficients are already dependent
on the state variables of the original system.

The Riccati equation, as in the linear case, is given by
the linear quadratic cost functional, reflecting the quality
requirements of the transition process by entering two
weight matrices, for state and control. The objective of
control is to minimize the functional. However, the ele-
ments of these two matrices are also non-linear functions
of the state. This fact allows the specification of different
requirements for the transition process, depending on the
operating mode of the system (areas of phase space), as
well as taking into account the existing control constraints.
For example, the requirements for the trajectory accuracy
is to be increased at the final stage of a missile flight or
at aircraft landing, so that values of the respective elements
in the weighting matrix of the system state increases to
modify the control law. Besides, one can modify a control
weight matrix to create an area in a state space, where the
gain should be lowered because of the probability of the
control saturation.
Thus, the controllers synthesized in this way can com-
pensate nonlinearity of control systems by means of the
SDRE numerical solution, taking into account (Cloutier
& Cockburn, 2001; Cloutier & Stansbery, 2002) constraints
both on control and the system state, and can continuously
change their algorithm depending on the scenario of the
task.

In contrast to the well-known linear-quadratic regulator
synthesis, the SDRE technique requires real-time perform-
ing of a number of quite computationally difficult opera-
tions to solve the matrix Riccati equation for each of the
current states of the system. This may require significant
computational resources. Technically it can be realized
only with a certain time step, varying depending on the
computational complexity of a particular problem-solving
task.

To overcome this difficulty, the authors proposed an
original method for the approximate analytical solution
of SDRE, which significantly reduces the required compu-
tations. The asymptotic stability of the resulting control
system can be rigorously proved by means of Lyapunov
function.

The performance of proposed method was confirmed by
the ‘‘classical” task of stabilizing a nonlinear second-order
system: the inverted pendulum from paper (Dutka, Ordys,
& Grimble, 2005). Constructed nonlinear control is up to
70% more effective on the considered quadratic cost func-
tion than linear control, which is optimal at the equilibrium
point of the system. However, the experiments showed that
the nonlinear control effectiveness significantly depends on
the initial conditions. It decreases when the initial condi-
tions tend toward the equilibrium point of the system. In
a small neighborhood of equilibrium point linear control,
even slightly better (up to 10%) results are produced than
in a constructed nonlinear one. In general, the estimation
of proposed analytical solution accuracy is the subject of
the further investigations.

Thus, in our architecture we use the algorithm for con-
structing a nonlinear controller, which greatly reduces the
amount of computation compared with traditional proce-
dures of the SDRE control approach. Another distinctive
feature of the approach is sufficient mathematical and rig-
orous proof of closed system stability, as well as the oppor-
tunity to use some principles which affect human motor
actions: it is possible to adapt the control signal depending
on the mode and conditions of operation and constraints
on the control. More details on the proposed method can
be found in Dmitriev and Makarov (2014).

6.2. Method of constraints calculation

In the case of horizontal flight, the tactical level algo-
rithms are trying to construct a trajectory in the form of
a straight line sequence in which the angle between any
adjacent lines of the sequence does not exceed (in absolute
value) a fixed value. It is assumed that satisfaction of this
condition ensures the feasibility of the resulting trajectory,
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i.e. the possibility of constriction of an admissible control
signal to follow the trajectory with the specified error.
The proposed method of geometric constraints calculation
is based on numerical analysis of an attainability domain of
a dynamic system. The exact solution of this problem usu-
ally requires a large computational cost. Let us confine our-
selves to a simplified approach based on certain plausible
assumptions. Nevertheless, the proposed approach is
rather general for a lot of applications.

Let us suppose that a UAV must follow the trajectory tr.
Our basic assumption consists in the idea that the flight
conditions and precise control within its constraints make
it possible to construct admissible control, which guaran-
tees that the UAV is located in some admissible neighbor-
hood of the desired straight-line trajectory. This
neighborhood is defined by the ‘‘tube” with a radius rd
(see Fig. 7). The specific value of rd depends on the type
of UAV, conditions and mode of flight, etc. It is assumed
that values of rd are known (e.g. based on the operating
experience of the selected UAV).

Obviously, in the case of trajectory breaking, shown in
Fig. 7, the location of the UAV at the point P did not
belong to the ‘‘tube”, which is the worst challenge for con-
trol. Let us consider an additional area to be defined by a
circle with a given radius Rd and to be centered at the point
P. It is assumed that any point in does not contain obsta-
cles. In fact, the radius Rd determines the turning maneuver
area.

It is assumed also that in the worst case, which is consid-
ered below, the velocity vector V g of the UAV is deflected
from desired flight trajectory before breaking in the point P
at a maximum angle av (see Fig. 7). Then the problem of
geometric constraints calculation may be formulated as fol-
lows. It is necessary to find the maximum angle a, so that
the UAV trajectory, without leaving the circle, will return
again in the admissible ‘‘tube” and will no longer leave it
(because of the basic assumption above, there is always
an admissible control which guarantees it).

Next, it is assumed that Rd value is given (for example,
by means of location map analysis) and the value of the
velocity V g is supplied as a parameter from the tactical
Fig. 7. To the method of geometric constraints calculation.
level. Besides, it is assumed that the maximum of the
UAV allowable control is applied. Let axis Oxg;Ozg of
Earth coordinate system Pxgygzg to be oriented as shown

in Fig. 7, and the axis Oyg is oriented vertically upward.

Then the following algorithm for angle a determination is
correct.

Make a numerical simulation of the UAV motion
dynamics, starting at the point P with the velocity V g, up
to the time tx at which one of the following conditions
holds:

1. The trajectory crosses the circumference corresponding
to circle C in sector I or II. Then using the geometric
considerations (see Fig. 7), one may calculate the desired
angle by the formula

aðtÞ ¼ arccos
�zgðtxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xgðtxÞ2 þ zgðtxÞ2
q

0
B@

1
CA;

where xgðtxÞ; zgðtxÞ represents UAV coordinates in
Pxgygzg at time tx.

2. The trajectory crosses the circumference corresponding
to the circle C in the sector IV. This case means that
under the current flight parameters the UAV does not
have time to make the maneuver, and the angle a ¼ 0.
It is necessary to change the flight parameters or expand
the area of the maneuver, i.e. increase the Rd value.

3. The trajectory comes to the sector III, passing through
the sectors I and II. This means that 180� 6 a 6 270�

for both given flight conditions and Rd value, i.e. geo-
metric constraints are absent. It is necessary to decrease
the Rd value.

4. The maximum simulation time is reached. It corre-
sponds to the case when the UAV behavior dynamics
are rather complicated: the trajectory does not leave sec-
tors I, II or IV of the circle C. For sufficiently larger sim-
ulation time it may be concluded that the restrictions on
geometry of the trajectory are also absent. It is necessary
to decrease the Rd value.

The proposed method was tested for the mathematical
model of the AscTec Hummingbird quadrocopter (www.
asctec). Results for different flight conditions and
av ¼ 45� are shown in Table 2.
Table 2
Calculated angle a for different flight conditions.

Rd (m) V g (m/s) a (�)

2.7 6.5 a P 180
2.7 6.9 31.7
2.7 7 24.4
2.7 7.5 7.8
2.7 8 0
5.4 8.5 a P 180
5.4 9 34.5
5.4 9.5 17.5
5.4 10 0
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Thus, a quite general method of geometric constraints
calculation is proposed. It’s based on the model of a flight
dynamics, as well as some plausible assumptions. The
method can be improved by taking into account the exter-
nal disturbance, such as wind (see the paper Yakovlev,
Makarov, and Baskin (2015) for details).

7. Conclusion

One of the obvious recent trends in science and technol-
ogy is the rapid growth of the R&D areas related to UAV
design. UAVs themselves are getting cheaper and thus
more available both to researchers and the general public.
Nowadays there exist numerous unified, moderately priced
UAV platforms equipped with all the needed hardware and
software to perform basic flight maneuvers. Typically this
software provides seamless integration of third-party mod-
ules, which has lead to the currently observed situation, in
which a lot of research is focused on the development of
methods and algorithms for existing UAV platforms
(rather than creating UAVs from scratch).

Thus, the direction of research that has a great impor-
tance now is studying the methods of interaction between
the modules of control systems and the ways of organizing
hierarchical relations between them. That is to say, study-
ing and developing the architectures of modern UAV intel-
ligent control systems. Such intelligent control systems are
able to solve non-trivial, intelligent tasks such as planning,
goal prioritization and coalition formation and thus guar-
antee high levels of autonomy for the UAV.

We follow the cognitive approach and believe that the
ability of the system to solve the abovementioned tasks
relies on its ability to model human cognitive behavior.
We have proposed a multi-layered cognitive architec
ture—STRL—for the intelligent control system using
cognitive experimental data and psychological methods.
At the same time, the STRL-based control system is also
meant to deal with the non-abstract technical objects
(multirotor UAVs) and take complicated dynamics and
kinematics of such objects into account.

Each module of the proposed architecture is supposed
to solve some specified task(s) (the architecture can be
referred to as explicitly specified) and the modules are
grouped into levels which encapsulate the level of abstrac-
tion: the higher the level, the more abstract the representa-
tion of input signals it uses to solve a given task. The tasks
being solved on higher levels of the system are considered
more sophisticated and complicated than the tasks of the
lower levels. We distinguish 3 levels of control and thus
separate the following 3 levels within the architecture:
strategic, tactical and reactive.

The main task at the strategic level is to plan the behav-
ior of the single member (UAV) of joint activity and coor-
dinate it with the other members of the coalition. The
distinguishing feature of the proposed strategic level is
the use of knowledge representation model based on neuro-
physiological and psychological studies of human cognitive
functions: the sign world model. Such a representation
allows us to construct sophisticated algorithms for coali-
tion behavior planning, goal-setting and communication.

UAV navigation tasks are solved at the tactical level,
which is the mediator between high-level activities with
the low-level ones. The main distinguishing features of
the tactical level are the utilization of spatial representation
of the UAV dynamics constraints and the use of the follow-
ing iterative loop to perform path planning: ‘‘prediction”—
‘‘calculation geometric constraints”—‘‘planning”. We
believe that such an approach (splitting planning into easily
manageable stand-alone subroutines) would substantially
improve the computational performance of the path plan-
ning process and thus improve the overall performance of
the control system (as more navigation tasks will become
solvable in the allotted time).

The main challenge for the reactive level is UAV trajec-
tory tracking control. Both desired trajectory and UAV
speed are received from the tactical level. We use the
approach of nonlinear control based on a special method
of solving the state-dependent Riccati equation. It greatly
reduces the amount of computation and increases the con-
trol accuracy.

We suppose that any intelligent control system that
implements the proposed architecture will be capable of
solving a broad range of tasks and will significantly raise
the degree of autonomy of the control object. STRL
architecture is especially tailored to the solution of the
non-trivial, complex tasks when the role distribution and
coalition behavior planning is obligatory. The architecture
provides a full stack of translation mechanisms: from
high-level behavior plans to spatial plans to control signals
needed to follow these spatial plans (trajectories). The
overall computational effectiveness of the control system
implementing the proposed architecture relies on the use
of the original methods of interaction between the planning
modules residing on different levels of the STRL hierarchy.
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