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A B S T R A C T

The state-of-the-art methods for computer vision are often trained with large amounts of data collected from
static cameras. In contrast, an embodied intelligent agent can interact with a continuous environment to
improve the perception quality. Previous methods for embodied computer vision have not considered the
task of semantic segmentation. This paper first introduces an adaptive transformer model for embodied image
semantic segmentation named SegmATRon. Its distinctive feature is the adaptation of model weights during
inference on several images using a hybrid multicomponent loss function. We studied this model on datasets
collected in the photorealistic Habitat and the synthetic AI2-THOR simulators. We showed that obtaining
additional images using the agent’s actions in an indoor environment can improve the quality of semantic
segmentation.
1. Introduction

Embodied Artificial Intelligence involves studying agents that can
olve intellectual tasks while interacting with the environment au-
onomously [1,2].

This is especially important for modern robots, which must perform
eliable scene recognition using onboard sensors (usually cameras)
hile simultaneously performing navigation or object manipulation

asks [3–5].
Recently, embodied methods in object detection [6–9] have ap-

eared, which demonstrate that the information fusion from an image
sequence during indoor navigation positively affects the quality of
etection. However, the existing embodied approaches do not con-

sider semantic segmentation, another important perception task for
intelligent agents [10].

Training semantic segmentation neural networks requires laborious
work of class annotation for every image pixel. An embodied agent is
meant to navigate through different indoor environments; therefore, its
deployment would be delayed by the necessity of collecting additional
data to fine-tune its segmentation module. A promising solution for
collecting and pre-labeling additional data may be embodied in seman-
tic segmentation methods. They allow the choice of agent movement

∗ Corresponding author at: Moscow Institute of Physics and Technology, 9 Institutsky per., Dolgoprudny, 141701, Russia.
E-mail addresses: zemskova.ts@phystech.su (T. Zemskova), margarita.kichik@gmail.com (M. Kichik), yudin.da@mipt.ru (D. Yudin), staroverov@airi.net

(A. Staroverov), panov.ai@mipt.ru (A. Panov).

policy to maximize segmentation accuracy similar to the interactive
object detection approach [7].

Annotations for collected images also can be obtained by pseudo-
labeling with accumulated semantic 3D maps [11] or requested from
human experts [12–14]. At the same time, an adaptive learning tech-
nique [15] can be used in robot visual navigation tasks to improve
domain adaptation by unfreezing the model during inference. This
technique allows the agent to perform its initial task directly without
additional exploration, aiming to collect data for fine-tuning. Inspired
by work [7], we propose and investigate an adaptive learning method
with different action policies for the improvement of semantic segmen-
tation in the Habitat [16] and AI2-THOR [17] indoor environments.
These environments are among the most popular for researching the
problems of interactive perception and navigation of embodied agents.

We propose the SegmATRon architecture, which adapts state-of-the-
art semantic segmentation models, Mask2Former [18] and MaskDINO
[19], trained on static frames, to the interactive perception setting. The
SegmATRon method fuses information from multiple frames using two
mechanisms.

First, SegmATRon employs a transformer-based Fusion Module that
aggregates predictions and image features obtained from a sequence
https://doi.org/10.1016/j.neucom.2025.130169
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Fig. 1. Simplified inference scheme of the proposed SegmATRon approach. Adapting the Semantic Segmentation Model weights during inference on several images is made via
learned loss predicted by the Fusion Module to improve the segmentation quality of the first frame. The Transformer-based Fusion Module inputs are predicted semantic logits,
mask features, and image features from the Semantic Segmentation Model. The Fusion module outputs predicted learned loss and, optionally, action. The action can be used to
hoose the next frame. The Fusion module infers the learned loss when the necessary number of frames is collected.
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f images. Second, SegmATRon utilizes a multi-component hybrid loss
unction that includes an adaptive component predicted by the model
tself. This adaptive loss function is used both during training and
nference to adjust the weights of the segmentation model, improving
egmentation quality on the first image in the sequence.

Finally, we conduct experiments on learning an action policy for
collecting new frames to the sequence, demonstrating the ability to
achieve more stable segmentation improvements compared to a ran-
dom policy.

To summarize, our contributions are the following:

• We have proposed a new architecture for an embodied adaptive
semantic segmentation neural network called SegmATRon (see
Fig. 1). In contrast to the state-of-the-art methods for semantic
segmentation, the SegmATRon actively collects additional images
from the environment to improve the semantic segmentation
quality.

• We have developed a transformer Fusion module that takes image
and mask features, predicted semantic logits, and masks as inputs
and generates output actions that an intelligent agent can perform
in the environment to obtain new images.

• We have proposed to use the multicomponent hybrid loss function
involving adaptive learned loss, which value is predicted by the
SegmATRon. This loss value is then used in the inference to adapt
the basic semantic segmentation model. It leads to an increase in
the segmentation quality of the first image of the sequence.

• To study the quality metrics of embodied semantic segmentation,
we have created two novel datasets based on the Habitat and
AI2-THOR simulators. These datasets contain not only images and
masks for semantic segmentation but also a tree of possible ac-
tions that an agent can perform from some point in indoor scenes.
Thus, we demonstrate the possibility of using our approach in a
multi-embodied mode.

The code of the proposed approach and datasets are publicly available
t https://github.com/wingrune/SegmATRon.
2. Related works

Image Semantic Segmentation. To address the semantic segmen-
ation task, methods based on CNNs and more recent transformer-based

approaches have been developed.
The newest but CNN-based foundation model InternImage [20]

and large HRNet-based [21] methods with attention mechanisms like
HRNet+OCR [22] and HRNetV2-OCR+PSA [23] belong to the first
category.

Transformer-based OneFormer [24] belongs to the second category.
It outperforms other state-of-the-art methods, such as Mask2Former
[18], k-means Mask Transformer [25], and Panoptic-Deeplab [26]
in solving tasks of semantic, instance, and panoptic segmentation.
Notably, these achievements are attained without needing to train
separately for each task.

In transformer-based approaches such as OneFormer [24] and
Mask2Former [18], learnable query vectors are fed into the transformer
mask decoder. The authors of CLUSTSEG [27] propose an improvement
o this approach by introducing task-specific query initialization, as
ell as iterative clustering and centroid updates during mask decoding.
nother approach to decoding masks from features extracted by the
ackbone is the creation of non-learnable class prototypes, as presented
n [28]. In this case, a nonparametric nearest prototype search is used
o generate dense segmentation mask predictions.

Recently, the foundation model Segment Anything (SAM) [29] has
ained popularity for image segmentation tasks. However, this model
oes not suit semantic segmentation because SAM predicts the segmen-
ation masks in a class-agnostic manner.

One of the important traits of embodied computer vision meth-
ds is the need for adaptation to different domains. One approach
o adapt a method to a new domain, where semantic segmentation
nnotations are unavailable, is Unsupervised Domain Adaptation. Ex-
sting works [30] propose unsupervised learning on an unannotated
arget domain dataset along with modules that extract discriminative
eatures between categories across domains. In the work [31], the issue
f overfitting on the source domain is addressed, and a method for

https://github.com/wingrune/SegmATRon


T. Zemskova et al.

e
g
s
d
I
t
a
f

m
c
m
s
s
s
f
g
s

m
i
e
R
m
o
q
e
w
t
w
k

f
a

a
V
t
t
V
t

M
p
V
m

m
b
f

o
t
t
A
p
a
a
a

v
a
F
b
d
t
w
t

i
t
m
v

m
l

w

s
n
t

o
a
M
d
t
s
m
i

w
f
t
t
s
f

m
t
s

m
A
t
v
t

xtracting hybrid domain features and a learning approach to improve
eneralization to a new domain are proposed. The authors of [32]
uggest an approach for reweighting labeled examples from the source
omain based on the global distribution of source and target domains.
n the SegmATRon method, the domain adaptation is done via an adap-
ive loss function. Experiments show that adaptation during inference
llows effective segmentation on a new domain without additional
ine-tuning making our method more suitable for intelligent agents.
Information Fusion for Image Segmentation. To improve seg-

entation quality, additional information beyond a single RGB image
an be used. For example, the authors of [33] propose a learning
ethod where images in the training dataset containing the same

emantic class can be used to create a pixel-wise contrastive learning
ignal, improving the quality of pixel embeddings belonging to the
ame semantic class. Another type of such information is the modalities
rom other sensors that may be installed on board an embodied intelli-
ent agent. Common types of these sensors include depth and thermal
ensors.

For instance, the authors of MFFENet [34] use the combination of
ulti-scale features extracted from RGB images and thermal maps to

mprove urban road scene parsing. FRNet [35] proposes a method to
nhance the representation quality of features by multi-level fusing of
GB and depth images. In the MTANet [36] paper, in addition to the
ulti-level fusion of RGB and thermal features, simultaneous training

n several types of segmentation tasks is used to improve segmentation
uality. The LSNet [37] work presents a lightweight architecture to
nhance the speed of multimodal RGB-T salient object detection, along
ith a boundary computation algorithm and the use of transfer learning

o improve feature generation quality. The method in [38] uses a
avelet-based MLP for feature extraction in RGBT images as well as
nowledge distillation techniques to improve training quality.

The use of additional modalities makes the method sensitive to
changes in data quality when transitioning from simulated data to real-
world domains. The authors of [39] propose gradual feature fusion and
a module to improve depth map quality using information contained in
RGB images. In the method [40], multi-level features from images and
depth maps are additionally used to improve the quality of extracted
features. These methods use RGB image features to improve features ex-
tracted from depth maps. Meanwhile, the BCINet method [41] presents
modules for mutual enhancement of features extracted from RGB and
depth data.

However, depending on the sensor, depth can be represented either
as a map or as a sparse point cloud. One of the features of SegmATRon
is its ability to adapt to different types of environments, which is
why in our work, we consider only one sensor modality—RGB images
rom a camera. This makes our method related to video segmentation
pproaches.
Video Segmentation. An embodied agent receives information

bout an environment through a frame sequence. Classical Computer
ision methods, which do not consider camera movement, solve the

ask of frame sequence segmentation in the scope of Video Segmen-
ation. Recently, densely annotated benchmarks such as CityScapes-
PS [42], VIPSeg [43], and VIPOSeg [44] have appeared, which led

o the emergence of video instance segmentation methods.
TarVIS [45] is flexible for solving segmentation and detection tasks,

askFreeVIS [46] does not use masks for training, DVIS [47] im-
lements the decoupling strategy for video instance segmentation,
ideo-kMaX [48] bridges the gap between online and offline video seg-
entation methods. These and other methods are capable of predicting

a category for every pixel of video frames.
Existing video segmentation methods propose various approaches

for utilizing the mask from the first frame to segment subsequent
frames. For example, in [49], a method for self-supervised video seg-

entation is introduced, which learns mask embeddings from unla-
eled videos using pseudo-labels and also proposes a learning method

or short-term and long-term correspondences between visual features w
f different frames. SAM2 [50] is a foundation model for video segmen-
ation that employs a lightweight image encoder and memory attention
o extract information about the target object from previous frames.
 drawback of such approaches is the requirement for a high-quality
rompt mask in the initial frame, which is then propagated, as well
s their class-agnostic nature. This setup is not suitable for deploying
 segmentation module onboard a mobile robot to extract information
bout the semantics of the environment.

A distinguishing feature of our method compared to methods for
ideo segmentation is the adaptive loss function facilitating the model
daptation across different indoor environments without fine-tuning.
urthermore, the mentioned methods require a sequence of frames to
e provided, whereas our approach uses only 5 frames acquired from
istinct domains. Finally, we show that SegmATRon can predict actions
o collect additional frames, further improving segmentation quality,
hich is not possible for methods that treat the video segmentation

ask with a static camera (See Section 6).
Embodied Computer Vision. Several environments simulating liv-

ng spaces have been developed for embodied agents, including Habi-
at [51] and AI2-THOR [17], enabling navigation within the environ-
ent and object interactions. A wide range of embodied computer

ision methods is present in the field.
The recent work [9] proposes to learn a policy for navigation that

aximizes the confidence score of a frozen object detector. [6,52]
earn to maximize segmentation quality by selecting the next best

view based on image features derived from neural network models,
hereas [53] demonstrates that a voting system based on four criteria

derived from the initial viewpoint can improve object recognition. [8,
54], and [55] exploit different policies for push actions to increase
the quality of instance segmentation for an embodied agent with a
gripper. Another important perception task for intelligent agents is
cene semantic segmentation. At the moment, for this task, there are
o active methods that allow the perception neural network to control
he agent movement to improve scene recognition quality.

Active exploration is crucial in developing embodied agents capable
f acting in complex or unfamiliar environments. Examples of such
gents include Ask4Help [56], which uses human expert hints, and
ove to See Better [57], which uses multiple frames for fine-tuning

uring testing. SEAL [58] uses a sequence of images and depth maps
o aggregate multi-view semantic information into a 3D map using self-
upervised label propagation. Unlike the works [57] and [58], our
ethod does not require depth maps as the information fusion is done

n latent space.
Another instance of an active embodied agent is the Interactron [7],

hich involves continuous fine-tuning of the detector model during in-
erence. A supervisor is incorporated into the model to adjust the detec-
or’s parameters and determine the action policy. The agent navigates
hrough the environment, executing actions from the predetermined
et of actions. A notable feature of the Interactron is its adaptive loss
unction.

Our work applies a similar approach to address the semantic seg-
entation task. We introduce a new set of actions and demonstrate

hat executing just a single additional action is sufficient to enhance
egmentation quality.

The adaptive learned loss function in our method improves the
odel quality and its ability to generalize to unseen environments.
nother strategy for effectively retraining computer vision models in

he environment is to collect data based on feedback from the computer
ision model. Our method presents the advantage of facilitating adap-
ation to new domains without necessitating further retraining, along

ith subsequent inference to improve semantic segmentation quality.
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. Method

We formulate the embodied semantic segmentation problem as
ollows. An agent spawns randomly within an unfamiliar environment
nd receives an RGB observation 𝐹0. Then, the agent collects addi-
ional RGB observations {𝐹1,… , 𝐹𝑁}, 𝑁 ∈ (1, 2, 3, 4) using the policy
. The collected frame sequence {𝐹0,… , 𝐹𝑁} is fed as input to the
gent, which predicts the multichannel semantic segmentation mask
or the initial frame 𝑀0 by aggregating information from the frame
equence using an adaptive loss function. In our experiments, we use
he following action space: turn left, turn right by angle 30◦, look up,
ook down by tilting the agent head by angle 30◦, and move backward
y 0.25 m.

The SegmATRon architecture consists of two modules: a semantic
egmentation model and the Fusion module. In our experiments, we
onsider two segmentation models, Mask2Former [18] and MaskDINO
19]. The role of the Fusion module is to aggregate information from
ultiple frames and use it to control segmentation in two ways. First,

he Fusion module predicts the value of the learned loss function,
hich is used to adapt the weights of the segmentation model during

nference. Secondly, the Fusion model is used to predict an action to
ollect the next frame.
Adaptive Learning. The key idea of adaptive semantic segmen-

ation is to train the Fusion module to predict an estimate of the
egmentation loss function for the first frame of a given frame sequence.
hen, during inference, this loss function can be used to change the
arameters of the segmentation model for a specific set of observations,
mproving the segmentation quality.

The adaptation of segmentation model weights during inference on
everal images is done via a hybrid multicomponent loss function with
n adaptive learned part 𝑎𝑑 𝑎𝑝𝑡(𝜙, 𝜃 ,𝐅). The loss function is parameter-
zed by Fusion Module parameters 𝜙 and depends on parameters 𝜃 of
 segmentation model and a sequence of frames 𝐅. The goal during the
raining process is to minimize the multicomponent loss 𝑠𝑒𝑔 𝑚(𝜃 ,𝐅) over
ll ground-truth sequences 𝐑𝑎𝑙 𝑙, where the parameters 𝜃 are updated by
ackpropagation through adaptive gradients with a learning rate equal
o 𝛼:

in
𝜃 ,𝜙

∑

𝐅∈𝐑𝑎𝑙 𝑙
𝑠𝑒𝑔 𝑚(𝜃 − 𝛼∇𝜃𝑎𝑑 𝑎𝑝𝑡(𝜙, 𝜃 ,𝐅),𝐅). (1)

The loss function (1) is optimized iteratively for each mini-batch
y first updating the parameters 𝜃 using their respective gradients,
ollowed by updating the parameters 𝜙 using the gradients with respect
o 𝜙. As the gradients for 𝜙 depend on the current values of 𝜃, the

parameters are held constant during the 𝜙 update, retaining their
re-update values from the current mini-batch.

For each of the considered segmentation models, we use the loss
unctions proposed by the authors of the respective models. We use the
ollowing segmentation loss function for the Mask2Former [18] model:

𝑀 𝑎𝑠𝑘2𝐹 𝑜𝑟𝑚𝑒𝑟
𝑠𝑒𝑔 𝑚 = 𝜆𝑐 𝑙 𝑠𝑐 𝑙 𝑠 + 𝜆𝑏𝑐 𝑒𝑏𝑐 𝑒 + 𝜆𝑑 𝑖𝑐 𝑒𝑑 𝑖𝑐 𝑒, (2)

here, 𝑐 𝑙 𝑠 is the cross-entropy loss for class prediction. The bi-
ary cross-entropy (𝑏𝑐 𝑒) and the dice loss (𝑑 𝑖𝑐 𝑒) are controlling
ask predictions. We use the set of hyper-parameters proposed in

he Mask2Former [18] for segmentation loss 𝜆𝑐 𝑙 𝑠 = 2, 𝜆𝑏𝑐 𝑒 = 5, and
𝑑 𝑖𝑐 𝑒 = 5. 𝜆𝑐 𝑙 𝑠 is set to 0.1 for the no-object prediction.

For the MaskDINO model we use the loss function proposed by Li
t al. in the original work [19]:
𝑀 𝑎𝑠𝑘𝐷 𝐼 𝑁 𝑂
𝑠𝑒𝑔 𝑚 = 𝜆𝑐 𝑙 𝑠𝑐 𝑙 𝑠+𝜆𝑓 𝑜𝑐 𝑎𝑙𝑓 𝑜𝑐 𝑎𝑙+𝜆𝑑 𝑖𝑐 𝑒𝑑 𝑖𝑐 𝑒+𝜆𝐿1𝐿1+𝜆𝑔 𝑖𝑜𝑢𝑔 𝑖𝑜𝑢, (3)

here, 𝑐 𝑙 𝑠 is the cross-entropy loss for class prediction. The focal loss
𝑓 𝑜𝑐 𝑎𝑙) and the dice loss (𝑑 𝑖𝑐 𝑒) are controlling mask predictions. The
1-regression loss (𝐿1) and the GIoU loss (𝑔 𝑖𝑜𝑢) are used for bounding
oxes predictions. We use the same set of hyper-parameters as the
uthors of MaskDINO: 𝜆 = 4, 𝜆 = 5, 𝜆 = 5, 𝜆 = 5, and 𝜆 = 5.
𝑐 𝑙 𝑠 𝑏𝑐 𝑒 𝑑 𝑖𝑐 𝑒 𝐿1 𝑔 𝑖𝑜𝑢 a
During the inference process, when a new sequence of frames
𝐹0,… , 𝐹𝑁} arrives, the prediction of a multi-channel semantic seg-
entation mask occurs in two stages. First, for every frame in the

equence the segmentation model generates image embeddings and
asks and logits predictions. Second, the Fusion Module predicts the

earned adaptive loss function value 𝑎𝑑 𝑎𝑝𝑡(𝜙, 𝜃 ,𝐅). The segmentation
odel parameters 𝜃 for a given observation are then updated using a

tochastic gradient descent step with the following formula: 𝜃𝑎𝑑 𝑎𝑝𝑡 =
−𝛼∇𝜃𝑎𝑑 𝑎𝑝𝑡(𝜙, 𝜃 ,𝐅). The segmentation model with the updated weights
𝑎𝑑 𝑎𝑝𝑡 is used to make the final prediction. After a prediction has been
ade for the current sequence of frames, the segmentation model
eights return to 𝜃 until the next observation arrives.
Action Prediction. We adopt an approach similar to the method

roposed by the authors of Interactron [7]. During training, the Seg-
ATRon gradually explores possible trajectories by randomly sampling

ctions and learns to predict the best path from the observed. The path
s considered the best if it gives the smallest ground truth weighted
egmentation loss.

State-of-the-art segmentation models like Mask2Former [18] re-
uire several hundred epochs for training. Therefore, when preserving
he best paths for a sequence of 5 frames, a situation may arise where
he best path corresponds to a local minimum of the ground-truth
oss for certain categories represented in the images. We expect that
uring training, the model will accumulate a sufficient number of
rajectory demonstrations to generalize to validation scenes only for
bject categories that appear most frequently.

Additionally, we anticipate that the frame selection policy has the
reatest impact on foreground categories that exclude the floor, ceil-
ngs, and walls. Therefore, we propose the Weighted Best Loss policy.

e assign weights to the segmentation loss term responsible for mask
lass prediction.

To learn to predict the best path from a frame sequence an addi-
ional component is added to 𝑠𝑒𝑔 𝑚 in Eq. (1):

in
𝜃 ,𝜙

∑

𝐅∈𝐑𝑎𝑙 𝑙
𝑤𝑒𝑖𝑔 ℎ𝑡𝑒𝑑
𝑠𝑒𝑔 𝑚 (𝜃𝑎𝑑 𝑎𝑝𝑡,𝐅) + 𝑐 𝑒(𝑝𝑝𝑟𝑒𝑑 , 𝑝𝑏𝑒𝑠𝑡), (4)

here, 𝑐 𝑒 – the cross-entropy loss between the predicted sequence of
ctions 𝑝𝑝𝑟𝑒𝑑 and the best sequence of actions seen so far 𝑝𝑏𝑒𝑠𝑡, 𝜃𝑎𝑑 𝑎𝑝𝑡 =
− 𝛼∇𝜃𝑎𝑑 𝑎𝑝𝑡(𝜙, 𝜃 ,𝐅) - the adapted value of the segmentation model
arameters 𝜃.

𝑤𝑒𝑖𝑔 ℎ𝑡𝑒𝑑
𝑠𝑒𝑔 𝑚 = 𝜆𝑐 𝑙 𝑠

𝐶
∑

𝑐=1
𝑤𝑐𝑐

𝑐 𝑙 𝑠 + 𝜆𝑏𝑐 𝑒𝑏𝑐 𝑒 + 𝜆𝑑 𝑖𝑐 𝑒𝑑 𝑖𝑐 𝑒. (5)

Here, 𝑐 ∈ {1, .., 𝐶} represents the set of classes in the dataset, and
the weight is defined as:

𝑐 =
𝑁𝑐

train
𝑁train

, (6)

where 𝑁𝑐
train is the number of images containing class 𝑐 in the train-

ing set if 𝑐 ∉ {wall, floor, ceiling}. 𝑁train is the number of train-
ing images that contain classes 𝑐 ∉ {wall, floor, ceiling}. If 𝑐 ∈
{wall, floor, ceiling}, then 𝑤𝑐 = 0.

We also test a random policy for action selection to collect sub-
sequent frames. In practice, action selection may be driven by other
goals, like navigation, rather than improving semantics. Even with
random frame sequences, an adaptive loss function utilization enhances
the segmentation quality (see Section 6). Therefore we consider action
prediction to be optional in our experiments.

Segmentation model. As segmentation models (see Fig. 2), we
onsider the modification of Mask2Former [18] and MaskDINO [19],
hich represent state-of-the-art methods for semantic segmentation.
he off-the-shelf Mask2Former and MaskDINO use a single frame to
ake predictions of masks and labels. The off-the-shelf models repre-

ent baseline approaches for comparison with our SegmATRon model.
Fusion module. Following the idea of Interactron [7], we choose

 Transformer model to combine predictions and image features from
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Fig. 2. Detailed scheme of the SegmATRon approach. It includes two main parts: a Semantic Segmentation Model (Mask2Former or MaskDINO) and a Fusion Module. The Semantic
Segmentation Model consists of an Image Backbone, Pixel Decoder, Transformer Block, Multi-Stage Decoder, Mask and Class Decoders. The Fusion Module aggregates features and
predictions of the Segmentation Model and predicts Actions (optional) and Learned Loss for adaptive inference of SegmATRon. The Fusion Module consists of Image Feature and
Prediction Embedders, a Transformer Module, and Decoders for Action, Loss, Logits, and Masks. The output segmentation result is shown in blue color. Also, the diagram shows
how various data are involved in calculating the considered loss functions. The red lines show the adaptive gradients flow.
several frames to predict the loss for the adaptive backward pass. As the
Transformer Model, we use the GPT [59] designed to handle sequences
of variable length.

The Fusion Module (see Fig. 2) takes as an input the 1∕32 feature
map from the Multi-scale Pixel Decoder of the segmentation model,
predicted logits of mask classification, and mask features. Mask features
are represented by the input of the last FFN layer of the last stage of
the segmentation model Multi-stage Decoder. This input is mapped to
the dimension of the Transformer module by corresponding embedders.
We change the architecture of the Prediction Embedder in the Fusion
Module compared to the Fusion Module provided by the authors of
Interactron [7]. Previous works [60] show the advantage of non-linear
projection heads for the selection of a subset of features to apply
the contrastive loss function in self-supervised tasks. Following this
observation, we replace a linear layer with a Multi-Layer Perceptron
(MLP) and consider only the mask features, whereas the authors of
Interactron [7] use predicted boxes and box features as input to the
Prediction Embedder of the Fusion Module.

The rest of the Fusion Module rests as introduced in the original
work [7]. Therefore our Fusion Module contains MLP decoders for
the learned loss, masks, logits, and actions. The Mask Decoder consists
of an MLP that computes the mask embeddings from the Transformer
Module outputs. However, in our experiments, we use only the learned
loss output.

During training, the parameters 𝜙 of the Fusion Module are updated
by the ground-truth loss computed from the segmentation annotation
and predictions made by the segmentation model after the backpropa-
gation of adaptive gradients. Then, the parameters of the segmentation
model are optimized to reduce the ground-truth loss with adapted
weights. During inference, there is no ground truth, and the parameters
of the segmentation model are updated by the learned loss predicted by
the Fusion Module.

4. Datasets for adaptive learning in indoor environment

Habitat environment. To train our SegmATRon models, we col-
lected a dataset of 1160 action trees in train scenes of HM3DSem
v0.2 [51]. A validation dataset of 144 action trees was collected from

validation scenes of HM3DSem v0.2. For the train and the validation
Table 1
Fusion module component parameters.

Component Layers Heads Hidden Dim

Image feature embedder (Linear) 1 – –
Prediction embedder (MLP) 3 – 512
Transformer (GPT-2) 4 8 512
Action decoder (MLP) 3 – 512
Mask decoder (MLP) 3 – 512
Logit decoder (Linear) 1 – –
Loss decoder (MLP) 3 – 512

datasets, we considered all possible combinations of 4 additional frames
obtained with the following agent actions: turn left, turn right, look
up, look down, and move backward. The last action corresponds to
observing a scene from a more distant point of view. All rotations
are made by 30◦. Thus, the training set contains 725k possible image
sequences corresponding to 112k unique images, whereas the valida-
tion set consists of 90k possible image sequences corresponding to
14k unique images. Different sequences of images represent different
samples for optimizing the SegmATRon weights.

Since HM3DSem v0.2 contains two sets of categories for seman-
tic segmentation annotation, the first set contains 40 Matterport3D
categories [61]. The second set contains a rich semantic with 1624 cate-
gories. We decided to leverage this large set of categories and map them
into 150 ADE20k [62] categories, which allowed us to get ground truth
semantics without pseudo-labeling. For matching categories, we left
their original names. Object categories having supercategories in the
ADE20K [62] dataset were assigned to their supercategory (e.g., wine
bottle - bottle, apple - food, solid food). Small objects with a familiar
location in scenes were assigned to their location (e.g., pen-desk). Small
objects that do not have a fixed location were categorized as unlabeled
(e.g., sponge - unlabeled).

The frame rendering parameters correspond to the Habitat Naviga-
tion Challenge 2023 [16] configuration. In particular, the image size
was fixed to 640 × 480, horizontal field of view angle was equal to
42◦.

AI2-THOR environment. To test the domain adaptation ability of

our models, we collected a test dataset of 100 action trees in the test
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able 2
omparison of SegmATRon method and the state-of-the-art Mask2Former and MaskDINO models on the Habitat dataset with 150 categories. In parentheses, here and below, we

show the relative increment of the quality metric compared to the baseline. MD denotes MaskDINO, and M2F denotes Mask2Former.
Method Adaptation on inference Action policy 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, %
MaskDINO No Single frame 20.7 64.5 29.2 75.9
SegmATRon (MD) 4 steps No Random 18.2 (−12.0%) 60.1 (−6.8%) 25.9 (−11.3%) 72.3 (−4.7%)
SegmATRon (MD) 4 steps Yes Random (mean) 20.7 (+0.0%) 65.2 (+1.1%) 28.9 (−1.3%) 76.1 (+0.3%)
SegmATRon (MD) 4 steps Yes Random (max) 22.5 (+8.7%) 66.1 (+2.5%) 30.7 (+5.1%) 76.8 (+1.2%)

Mask2Former No Single frame 21.9 65.1 31.3 76.6
SegmATRon (M2F) 4 steps No Random 20.5 (−6.4%) 62.5 (−4.0%) 27.5 (−12.1%) 75.9 (−0.9%)
SegmATRon (M2F) 4 steps Yes Random (mean) 22.6 (+3.2%) 66.5 (+2.2%) 31.6 (+1.0%) 78.0 (+1.8%)
SegmATRon (M2F) 4 steps Yes Random (max) 𝟐𝟑.𝟕 (+8.2%) 𝟔𝟕.𝟎 (+2.9%) 𝟑𝟐.𝟕 (+4.5%) 𝟕𝟖.𝟓 (+2.5%)
SegmATRon (M2F) 4 steps Yes Best loss 23.3 (+6.4%) 66.9 (+2.8%) 𝟑𝟐.𝟕 (+2.6%) 78.2 (+2.1%)
m
t

a

scenes of the iTHOR synthetic environment [17] using the same set of
ctions and the same render settings as for the Habitat environment.
s the categories set in the AI2-THOR simulator differ from the envi-

ronment in the Habitat simulator, we considered only 45 intersecting
categories from the available 125 categories in the iTHOR scenes. The
est set contains 62.5k possible image sequences corresponding to 10k
nique images.
Datasets statistics. Fig. 3 presents class distribution statistics for

he collected datasets. The histogram shows the distribution of classes
n the initial images from the action trees. Given the large number
f ADE20k classes (150 categories) spanning both indoor and outdoor
paces, only categories present in the validation set are visualized.

. Experiments

Training setup. We train neural network models on a server
ith 2×Nvidia Tesla V100 GPU. The weights of Mask2Former and
askDINO are initialized by respective models pre-trained on ADE20k

62]. To train SegmATRon as well as Mask2Former and MaskDINO we
ollow a training procedure described by authors of Interactron [7], but
e reduce the epoch number to 120 due to the fast convergence of the

egmentation model. We train the models using the AdamW optimizer
ith 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜆 = 0.05, gradient clipping with a max norm
f 0.01 and batch size of 16. The learning rate for the segmentation
odel was set to 10−5, and the learning rate for the Fusion module was

qual to 10−4. For each model design, we run the training process once.
uring the training process of SegmATRon, we resize input images to
20 × 240 resolution and pad the image to have a square shape of
20 × 320.

After training for 120 epochs, we choose checkpoints with the
est 𝑚𝐼 𝑜𝑈 value on the validation dataset. We report standard met-
ics for semantic segmentation [18]: mean Intersection over union
𝑚𝐼 𝑜𝑈), frequency-weighted Intersection over union (𝑓 𝑤𝐼 𝑜𝑈), mean
ixel accuracy (𝑚𝐴𝐶 𝐶) and pixel accuracy (𝑝𝐴𝐶 𝐶).
Implementation details. We provide Table 1 summarizing the

parameters of the GPT-based Fusion Module used in the main exper-
ments. For the segmentation models Mask2Former and MaskDINO,
e use the same parameters as those provided by the authors for the
DE20k dataset and the ResNet50 backbone.
Single Frame baselines. To distinguish the role of the adap-

ive learned loss function from the role of fine-tuning the segmenta-
ion model, we experimented with fine-tuning the Mask2Former and
askDINO model (ResNet-50 backbone) without the Fusion Module,

ollowing the segmentation model training procedure in the SegmA-
ron architecture.
Results. The SegmATRon with Random rotation action policy sig-

ificantly outperforms the baseline Mask2Former and MaskDINO ap-
roaches (see Table 2) on the validation dataset collected in the Habitat
nvironment in terms of the segmentation quality metrics. Since the
egmATRon approach requires the backpropagation of adaptive gradi-

nts during inference, more computing resources are needed for this
ethod. We show that the learned hybrid multicomponent loss func-
ion increases the segmentation quality during inference via adaptive

gradients. The results from Table 2 demonstrate the crucial role of the
daptive gradients during inference for the SegmATRon approach.

The performance of SegmATRon depends on the sequence of actions
chosen by the agent. To confirm the effectiveness of the proposed ap-
proach, we conduct 500 validation runs for SegmATRon (Mask2Former)
and SegmATRon (MaskDINO) using a random rotation policy. Ad-
ditionally, we perform 500 runs, sampling actions according to the
learned Weighted Best Loss policy for SegmATRon (Mask2Former). We
compute the mean and standard deviation of the mIoU, fwIoU, mACC,
and pACC metrics on the validation dataset in Habitat for the conducted
runs. Table 2 presents the average and maximum metric values across
500 runs.

To confirm a statistically significant improvement in the metrics,
we perform a one-sided t-test with the null hypothesis that the mean
metric distribution of SegmATRon (Mask2Former/MaskDINO) across
runs is less than or equal to the mean metric distribution of the
corresponding Single Frame baseline. Additionally, for SegmATRon
(Mask2Former), we conduct a t-test with the null hypothesis that the
mean metric distribution of SegmATRon Mask2Former with the learned
policy across runs is less than or equal to the mean metric distribution
of the corresponding SegmATRon Mask2Former with a random policy.

Fig. 5 demonstrates that SegmATRon (Mask2Former) shows a sta-
tistically significant improvement in all four metrics compared to the
baseline Single Frame approach, even with a random policy. The use of
the learned policy allows for an even greater improvement in the seg-
mentation for SegmATRon (Mask2Former). SegmATRon (MaskDINO)
(see Fig. 6) with a random policy shows a statistically significant
improvement in the frequency-weighted metrics fwIoU and pACC.

Fig. 4 shows the visualized results of SegmATRon compared to
Mask2Former and MaskDINO baselines under various scenes from
Habitat and AI2-THOR simulators. The SegmATRon models help to
correctly predict the object masks located in the corners or along
the edges of the first image in a sequence. In the first image, both
the SegmATRon (Mask2Former) and the SegmATRon (MaskDINO)
correctly discern a cabinet from a chest. In the second image, both
the SegmATRon (Mask2Former) and the SegmATRon (MaskDINO) are
capable of accurately segmenting paintings on the wall. Moreover, the
SegmATRon (MaskDINO) recognizes a chair from an armchair in front
of the camera. The SegmATRon (Mask2Former) correctly predicts a
mask for the second chair in the room. The third image demonstrates
the improvement of sink segmentation.

In the last two images, one can see a black background in the ground
truth masks. It is a distinctive characteristic of the data compiled using
AI2-THOR, which includes the ‘‘background’’ category. In the fourth
image, the SegmATRon (Mask2Former) accurately predicts a mask for
an armchair, whereas Mask2Former classifies it as a computer. In the
fifth image, our approach correctly predicts the mirror mask.
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Fig. 3. Histogram illustrating the class distribution from ADE20k across the collected Habitat training and validation datasets, along with the AI2-THOR test dataset. Sample counts
for the training, validation, and test sets are depicted in gray, pink, and blue, respectively.



T. Zemskova et al.
Fig. 4. Visualized segmentation results on Habitat and AI2-THOR validation sets. The columns left-to-right refer to the input image, the ground truth, the outputs of the Mask2Former,
the SegmATRon (Mask2Former), the MaskDINO and the SegmATRon (MaskDINO) models. The SegmATRon models improve the segmentation masks for objects located in the
corners or along the edges of the first image in a sequence.
a
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Figs. 7 and 8 show the image sequences that the Mask2Former-
based SegmATRon uses to improve the quality of the initial image
segmentation by the information fusion. The sequences show that
rotating towards objects at the image edges improves segmentation
quality.

Fig. 9 shows the image sequences that the MaskDINO-based SegmA-
TRon uses to improve the quality of the initial image segmentation by
the information fusion. From these sequences, as observed in its results
with the Mask2Former-based SegmATRon, it can be seen that rotations
towards objects located at the edge of the image improve the quality
of their segmentation as well as observing them from additional view
points.

Fig. 10 shows more segmentation results of SegmATRon models
compared to the baseline models, Mask2Former and MaskDINO, on the
images rendered with Habitat. In the provided examples, SegmATRon
models more accurately identify the object class compared to baselines
nd achieve greater precision in delineating object masks.

Fig. 11 shows more segmentation results of SegmATRon models
ompared to the baseline models on the images rendered with AI2-
HOR. Here, as observed in its results with Habitat, SegmATRon fre-
uently exhibits more accurate classification of segmented objects com-
ared to the baseline models.

. Ablation studies

We analyze SegmATRon’s components through a series of ablation
studies.
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Fig. 5. Comparison of baseline Single Frame Mask2Former, SegmATRon (Mask2Former) with Random rotation and Best loss action policies across four evaluation metrics (mIoU,
wIoU, mACC, pACC). Error bars represent standard deviations, and statistical significance is indicated by p-values 𝑝 < 10−3, demonstrating significant improvements of the
egmATRon (Mask2Former) approach over the Single Frame baseline.
Fig. 6. Comparison of baseline Single Frame MaskDINO and SegmATRon (MaskDINO) with Random rotation action policy across four evaluation metrics (mIoU, fwIoU, mACC,
pACC). Error bars represent standard deviations, and statistical significance is indicated by 𝑝 < 10−3, demonstrating significant improvements of the SegmATRon (MaskDINO)
approach over the Single Frame baseline for frequency-weighted metrics 𝑓 𝑤𝐼 𝑜𝑈 and 𝑝𝐴𝐶 𝐶.
able 3
blation study. The number of steps (additional frames). 𝑁𝑝 denotes the number of parameters in neural network model. Inference speed is measured on NVIDIA GeForce RTX
060.
Method Adaptation on inference Steps 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, % 𝑁𝑝 FPS VRAM, Gb

Mask2Former – – 21.9 65.1 31.3 76.6 44M 29.4 2.9
Mask2Former Yes – 22.6 (+3.1%) 66.2 (+1.7%) 32.1 (+2.6%) 77.8 (+1.6%) 60M 8.8 3.5

SegmATRon (M2F) Yes 1 23.4 (+6.8%) 65.0 (−0.2%) 33.6 (+7.3%) 76.6 (+0.0%) 60M 7.3 4.0
SegmATRon (M2F) Yes 2 24.0 (+9.6%) 66.1 (+1.5%) 32.5 (+3.8%) 77.6 (+1.3%) 60M 5.9 4.8
SegmATRon (M2F) Yes 3 23.7 (+8.2%) 66.3 (+1.8%) 32.2 (+2.9%) 77.9 (+1.7%) 60M 4.8 5.6
SegmATRon (M2F) Yes 4 23.7 (+8.2%) 𝟔𝟕.𝟎 (+2.9%) 32.7 (+4.5%) 𝟕𝟖.𝟓 (+2.5%) 60M 4.0 6.8
Number of Steps (Additional Frames). We study the influence of
the frame number used for the prediction of the learned loss function.
For each number of additional steps 𝑁 , we train a version of the
SegmATRon model using 𝑁 frames during training. As one can see from

able 3, the use of 4 additional frames instead of 1, 2, 3 improves the
performance of the SegmATRon (Mask2Former) model considering the
metrics 𝑓 𝑤𝐼 𝑜𝑈 and 𝑝𝐴𝐶 𝐶. All other models excel in only one type
of metric. Additional frames utilization does not drastically increase
inference time compared to the Mask2Former model with adaptive
loss, but significantly improves segmentation quality. We measure FPS
(frames per second) during inference with 𝑁 = {1, 2, 3, 4} pre-collected
frames as the model input. That is, we do not consider the time for
predicting the next action to collect a frame, since it can be different
depending on the choice of the policy type.

We observe that despite the improvement in segmentation quality
with an increasing number of frames in the sequence, the amount
of GPU memory required for model inference also increases. With a
further increase in the number of steps, we expect a significant rise in
GPU memory consumption. We propose SegmATRon as a segmentation
method for a mobile intelligent agent. Therefore, we did not consider
further increasing the number of frames in the sequence since it is
impractical due to the limited GPU memory available on the robot’s
onboard computers.

The decrease in SegmATRon (Mask2Former) inference speed is

due to the following additional operations. First, the segmentation
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Fig. 7. Visualized segmentation results of the Mask2Former-based SegmATRon on the Habitat validation set. The columns left-to-right refer to the input image, the collected
dditional images, the ground truth, the outputs of the Mask2Former model and the outputs of the Mask2Former-based SegmATRon. (a) SegmATRon (Mask2Former) utilizes
dditional information from the scene’s new frames to accurately classify the object as a cabinet, whereas Mask2Former misidentifies it as a chest. (b) SegmATRon (Mask2Former)
orrectly identifies the painting and chair located in the corner of the room, while Mask2Former erroneously labels these objects as a poster and a computer, respectively. (c)
egmATRon (Mask2Former) successfully improves the sink segmentation mask compared to Mask2Former.
Fig. 8. Visualized segmentation results of the Mask2Former-based SegmATRon on the AI2-THOR test set. The columns left-to-right refer to the input image, the collected additional
mages, the ground truth, the outputs of the Mask2Former model and the outputs of the Mask2Former-based SegmATRon. (a) SegmATRon (Mask2Former) accurately classify the

armchair, whereas Mask2Former misidentifies it as a computer. (b) SegmATRon (Mask2Former) successfully identifies the mirror, whereas Mask2Former fails to segment it.
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odel performs inference on additional frames while preserving the
omputation graph for subsequent gradient computation. Second, the
usion Module predicts learned adaptive loss function value. After that,
daptive gradients are computed with respect to the predicted adaptive
oss function. Finally, the segmentation model is called again with
pdated weights for the first frame.

Table 4 summarizes the time required for each stage of
ask2Former (SegmATRon) inference. It is important to note that
hile performing segmentation model inference on additional frames

ncreases computational complexity, it can be parallelized.
Fusion Module Architecture. We explore the impact of the trans-

ormer architecture choice in the Fusion module. In these experiments,
e use the same number of layers, heads, and hidden dimensions for
oth transformers. Table 5 shows that using the GPT transformer to
erge information from different frames provides a significant advan-

age over the DETR transformer architecture used in the [7] paper. The
ETR transformer requires fewer FLOPs than GPT, which affects the
nference speed of the Fusion Module. However, in terms of inference
ime, both transformers are faster compared to the segmentation model.
herefore, we choose GPT for further experiments. In addition, the GPT
rchitecture can easily handle sequences of frames of varying lengths,
llowing it to be used for action prediction for collecting the next frame.
Domain Adaptation. We demonstrate the benefit of an adaptive

loss function when changing the photorealistic Habitat domain to
the synthetic AI2-THOR images. We run inference on the SegmA-
TRon (Mask2Former) and SegmATRon (MaskDINO) models, which
were trained on a dataset from the Habitat environment, using a test
ataset we collected in AI2-THOR. Table 6 demonstrates the advantage

of the adaptive loss function for the SegmATRon (Mask2Former) model.
he SegmATRon (Mask2Former) is capable of adapting efficiently to a

new type of environment compared to the single-frame Mask2Former.
For the SegmATRon (MaskDINO) model, it is worth noting the positive
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Fig. 9. Visualized segmentation results of the MaskDINO-based SegmATRon on the Habitat validation set. The columns left-to-right refer to the input image, the collected additional
images, the ground truth, the outputs of the MaskDINO model and the outputs of the MaskDINO-based SegmATRon. (a) SegmATRon (MaskDINO) accurately identifies the cabinet,
while MaskDINO misclassifies it as a chest. (b) The use of additional frames enables SegmATRon (MaskDINO) to correctly classify the painting, whereas MaskDINO incorrectly
predicts it as a poster. (c) Similar to Fig. 7, SegmATRon (MaskDINO) successfully detects the sink, while MaskDINO fails to segment it.
Table 4
Performance comparison of different elements of SegmATRon (Mask2Former) inference. Inference speed is measured on NVIDIA GeForce RTX
3060.

Operation Steps Inference time, ms FLOPs

Inference of Mask2Former – 34 132B

Inference of Mask2Former (before adaptation on inference) 1 53 264B
Inference of Fusion Module 1 4 36B
Adaptive Gradients computation 1 46 52B
Inference of Mask2Former (after adaptation on inference) – 34 132B
Total 1 137 484B

Inference of Mask2Former (before adaptation on inference) 2 67 477B
Inference of Fusion Module 2 6 56B
Adaptive Gradients computation 2 62 79B
Inference of Mask2Former (after adaptation on inference) – 34 132B
Total 2 169 744B

Inference of Mask2Former (before adaptation on inference) 3 84 636B
Inference of Fusion Module 3 9 78B
Adaptive Gradients computation 3 82 107B
Inference of Mask2Former (after adaptation on inference) – 34 132B
Total 3 209 953B

Inference of Mask2Former (before adaptation on inference) 4 100 794B
Inference of Fusion Module 4 12 101B
Adaptive Gradients computation 4 103 135B
Inference of Mask2Former (after adaptation on inference) – 34 132B
Total 4 249 1162B
Table 5
Ablation study. Fusion module transformer. For comparison, we provide information on the number of parameters 𝑁𝑝, FPS, and FLOPs for the Fusion Module transformer.

Method Fusion Module 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, % 𝑁𝑝 FPS FLOPs

Mask2Former – 21.9 65.1 31.3 76.6

SegmATRon (M2F) 4 steps DETR 22.4 (+2.3%) 64.8 (−0.5%) 𝟑𝟐.𝟏 (+2.6%) 76.1 (−0.7%) 23M 138 48B
SegmATRon (M2F) 4 steps GPT 23.7 (+8.2%) 𝟔𝟕.𝟎 (+2.9%) 32.7 (+4.5%) 𝟕𝟖.𝟓 (+2.5%) 17M 82 101B
p

effect of including the adaptive loss function on the inference com-
pared to the version of SegmATRon (MaskDINO) without adapting the
weights on the inference.
 a
Policy optimization. Finally, we study the optimization of the
olicy of choosing the next frame in the sequence. We adopt the
pproach proposed by the authors [7]. As one can see from Table 7, this
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Fig. 10. Visualized segmentation results on the Habitat validation set. The columns left-to-right refer to the input image, the ground truth, the outputs of the Mask2Former model,
the outputs of the Mask2Former-based SegmATRon, MaskDINO outputs and MaskDINO-based SegmATRon results.
Table 6
Ablation study. Domain adaptation on the AI2-THOR dataset.

Method Adaptation on inference Action policy Train. dataset Val. dataset 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, %
Mask2Former No Single frame Habitat AI2-THOR 22.3 40.4 30.1 54.0
SegmATRon (M2F) 4 steps No Random Habitat AI2-THOR 18.2 (−18.4%) 39.0 (−2.5%) 24.5 (−18.6%) 52.9 (−2.0%)
SegmATRon (M2F) 4 steps Yes Random Habitat AI2-THOR 22.8 (+2.2%) 46.3 (+14.6%) 31.5 (+4.7%) 60.6 (+12.2%)

MaskDINO No Single frame Habitat AI2-THOR 𝟑𝟒.𝟑 𝟓𝟑.𝟏 𝟒𝟓.𝟏 𝟔𝟓.𝟗
SegmATRon (MD) 4 steps No Random Habitat AI2-THOR 23.0 (−32.9%) 43.6 (−17.9%) 29.9 (−33.7%) 58.1 (−11.8%)
SegmATRon (MD) 4 steps Yes Random Habitat AI2-THOR 27.1 (−20.1%) 50.0 (−5.8%) 36.9 (−18.2%) 63.4 (−3.8%)
Table 7
Ablation study. Policy optimization.

Method Adaptation on inference Action policy 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, %
Mask2Former No Single frame 21.9 65.1 31.3 76.6

SegmATRon (M2F) 4 steps Yes Random (mean) 22.6 ± 0.4 66.5 ± 0.4 31.6 ± 0.4 78.0 ± 0.3
SegmATRon (M2F) 4 steps Yes Weighted Best loss 𝟐𝟑.𝟑 𝟔𝟔.𝟗 𝟑𝟐.𝟕 𝟕𝟖.𝟐
approach for policy optimization improves the segmentation quality
f SegmATRon (Mask2Former) in terms of 𝑚𝐼 𝑜𝑈 and 𝑚𝐴𝐶 𝐶 metrics.
ig. 12 shows the qualitative difference between the random actions
election and the Weighted Best Loss policy.
7. Possible applications

Domain Adaption. SegmATRon demonstrates a higher ability to
adapt to new domains compared to the Single Frame baselines, as
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Fig. 11. Visualized segmentation results on the AI2-THOR validation set. The columns left-to-right refer to the input image, the ground truth, the outputs of the Mask2Former
model and the outputs of the Mask2Former-based SegmATRon.
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shown by the experiments in Table 6. Therefore, SegmATRon can be
used to adapt a semantic segmentation model to new domains without
additional fine-tuning if the agent can collect frame sequences in the
new environment during inference.

Robot navigation with decoupled navigation policy. One pos-
ible real-world application of SegmATRon would be its use in visual
ndoor navigation. If an indoor navigation method relies on the seman-

tics of the surrounding environment to predict an action policy in the
form of an instantaneous or accumulated semantic map, the quality of
avigation will depend on the accuracy of the semantic map construc-
ion. Our experiments show that SegmATRon can be used to improve
egmentation quality under random rotations. Thus, SegmATRon can
e paired with a navigation policy, where its observations will be used
 t
to form sequences of frames over which SegmATRon will aggregate
nformation.
Robot navigation with learned policy for active perception. Ad-

itionally, SegmATRon, with a learned policy for collecting new frames
n a sequence, can be used alongside the primary navigation policy to
urther improve segmentation quality and semantic map construction.
Resource consumption. Real-world application scenarios impose

ertain requirements on the model’s computational efficiency and per-
ormance speed. As shown in Table 3, SegmATRon demonstrates near
eal-time performance with 1 additional frame. During inference of all
ersions of the model, video memory consumption remains below 8 GB,
hich aligns with the specifications of modern on-board GPUs, such as
he Nvidia GeForce RTX3080 16 GB Mobile.
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Fig. 12. Visualized segmentation results on the Habitat validation set. The columns left-to-right refer to the input image, the collected additional images, the ground truth and the
outputs of the Mask2Former-based SegmATRon. SegmATRon (Weighted Best Loss) leverages rotational views to gather additional scene information, enabling accurate identification
f the bannister and the door, whereas SegmATRon (Random) misclassifies them as a bar and a window, respectively.
able 8
n example of accelerating SegmATRon (Mask2Former) inference by reducing the frequency of gradient computations for the adaptive loss function. Inference speed is measured
n NVIDIA GeForce RTX 3060.
Method Adaptation on inference Steps 𝑚𝐼 𝑜𝑈 , % 𝑓 𝑤𝐼 𝑜𝑈 , % 𝑚𝐴𝐶 𝐶, % 𝑝𝐴𝐶 𝐶, % 𝑁𝑝 FPS

Mask2Former – – 21.0 65.0 30.1 76.7 44M 29.4
SegmATRon (M2F) Yes, every 5 steps 4 21.4 (+1.9%) 65.4 (+0.6%) 30.1 (+0.0%) 77.1 (+0.5%) 60M 12.4
Inference acceleration. During training, SegmATRon learns to
redict the adaptive loss for all frame sequences contained in the
raining dataset. Performance analysis of SegmATRon also shows that
radient computations for weight adaptation are a computationally ex-
ensive operation. Therefore, for real-world deployment of SegmATRon
n a navigation task, the number of weight adaptation calls during
nference can be reduced by performing one weight adaptation for
very five frames. The results in Table 8 show that, under this setup,

SegmATRon achieves an inference speed of 12 FPS while maintaining
a segmentation quality advantage over the Single Frame baseline. In
this experiment, we use the Random Action policy corresponding to
the scenario where actions are sampled with a navigation policy.

8. Conclusion

Our results show that the semantic segmentation quality benefits
from the mechanism of multicomponent loss learning which allows us
to use additional points of view. We have also demonstrated that the
action strategy has a noticeable impact on the result, while further
research on the number of actions and their automatic learning is
reasonable. The proposed approach is valuable for a navigation task
in the environment, where the agent can use the observation history to
improve the quality of segmentation for the current frame.

As a limitation of the proposed approach, we can highlight the
difficulty of scaling the approach to more than 4 steps. In this case,
the need for video memory increases significantly. Another limitation is
the small number of existing datasets for training and testing embodied
segmentation methods.

A future perspective for the SegmATRon approach would be action
policy optimization via Reinforcement Learning based on segmentation
loss, which we are currently working on. Other promising future direc-
tions are the study of other basic semantic segmentation models as part
of the proposed approach, as well as its application to solve the problem

of instance segmentation.
CRediT authorship contribution statement

Tatiana Zemskova: Writing – original draft, Validation, Software,
Methodology, Investigation, Data curation. Margarita Kichik: Writ-
ing – original draft, Visualization, Validation, Software, Investigation.
Dmitry Yudin: Writing – review & editing, Writing – original draft,
Visualization, Supervision, Project administration, Funding acquisition,
Conceptualization. Aleksei Staroverov: Writing – review & editing,
Software, Data curation. Aleksandr Panov: Writing – review & editing,
Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by Russian Science Foundation, grant No.
20-71-10116, https://rscf.ru/en/project/20-71-10116/.

Data availability

The code of the proposed approach and datasets are publicly avail-
able at https://github.com/wingrune/SegmATRon.

References

[1] R. Pfeifer, F. Iida, Embodied artificial intelligence: Trends and challenges, Lecture
Notes in Comput. Sci. (2004) 1–26.

[2] M. Deitke, D. Batra, Y. Bisk, T. Campari, A.X. Chang, D.S. Chaplot, C. Chen,
C.P. D’Arpino, K. Ehsani, A. Farhadi, et al., Retrospectives on the embodied ai
workshop, 2022, arXiv preprint arXiv:2210.06849.

[3] L. Weihs, M. Deitke, A. Kembhavi, R. Mottaghi, Visual room rearrangement, in:

IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2021.

https://rscf.ru/en/project/20-71-10116/
https://github.com/wingrune/SegmATRon
http://arxiv.org/abs/2210.06849


T. Zemskova et al.
[4] R. Partsey, E. Wijmans, N. Yokoyama, O. Dobosevych, D. Batra, O. Maksymets,
Is mapping necessary for realistic PointGoal navigation? in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
17232–17241.

[5] A. Staroverov, K. Muravyev, K. Yakovlev, A.I. Panov, Skill fusion in hybrid
robotic framework for visual object goal navigation, Robotics 12 (4) (2023) 104.

[6] J. Yang, Z. Ren, M. Xu, X. Chen, D.J. Crandall, D. Parikh, D. Batra, Embodied
amodal recognition: Learning to move to perceive objects, in: Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 2040–2050.

[7] K. Kotar, R. Mottaghi, Interactron: Embodied adaptive object detection, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 14860–14869.

[8] Z. Wu, Z. Wang, Z. Wei, Y. Wei, H. Yan, Smart explorer: Recognizing objects
in dense clutter via interactive exploration, in: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 6600–6607.

[9] W. Ding, N. Majcherczyk, M. Deshpande, X. Qi, D. Zhao, R. Madhivanan, A. Sen,
Learning to view: Decision transformers for active object detection, 2023, arXiv
preprint arXiv:2301.09544.

[10] O. Maksymets, V. Cartillier, A. Gokaslan, E. Wijmans, W. Galuba, S. Lee, D.
Batra, Thda: Treasure hunt data augmentation for semantic navigation, in:
Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021, pp. 15374–15383.

[11] R. Zurbrügg, H. Blum, C. Cadena, R. Siegwart, L. Schmid, Embodied active
domain adaptation for semantic segmentation via informative path planning,
IEEE Robot. Autom. Lett. 7 (4) (2022) 8691–8698.

[12] D. Nilsson, A. Pirinen, E. Gärtner, C. Sminchisescu, Embodied visual active
learning for semantic segmentation, in: Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35, 2021, pp. 2373–2383.

[13] B. Xie, L. Yuan, S. Li, C.H. Liu, X. Cheng, Towards fewer annotations: Active
learning via region impurity and prediction uncertainty for domain adaptive
semantic segmentation, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 8068–8078.

[14] S. Agarwal, S. Anand, C. Arora, Reducing annotation effort by identifying and
labeling contextually diverse classes for semantic segmentation under domain
shift, in: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 5904–5913.

[15] M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, R. Mottaghi, Learning to learn
how to learn: Self-adaptive visual navigation using meta-learning, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 6750–6759.

[16] K. Yadav, J. Krantz, R. Ramrakhya, S.K. Ramakrishnan, J. Yang, A. Wang, J.
Turner, A. Gokaslan, V.-P. Berges, R. Mootaghi, O. Maksymets, A.X. Chang, M.
Savva, A. Clegg, D.S. Chaplot, D. Batra, Habitat challenge 2023, 2023.

[17] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke,
K. Ehsani, D. Gordon, Y. Zhu, et al., Ai2-thor: An interactive 3d environment for
visual ai, 2017, arXiv preprint arXiv:1712.05474.

[18] B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask
transformer for universal image segmentation, 2022.

[19] F. Li, H. Zhang, H. Xu, S. Liu, L. Zhang, L.M. Ni, H.-Y. Shum, Mask dino: Towards
a unified transformer-based framework for object detection and segmentation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 3041–3050.

[20] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu, H. Li, et
al., InternImage: Exploring large-scale vision foundation models with deformable
convolutions, 2022, arXiv preprint arXiv:2211.05778.

[21] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X.
Wang, W. Liu, B. Xiao, Deep high-resolution representation learning for visual
recognition, TPAMI (2019).

[22] A. Tao, K. Sapra, B. Catanzaro, Hierarchical multi-scale attention for semantic
segmentation, 2020, arXiv preprint arXiv:2005.10821.

[23] H. Liu, F. Liu, X. Fan, D. Huang, Polarized self-attention: Towards high-quality
pixel-wise regression, 2021, arXiv preprint arXiv:2107.00782.

[24] J. Jain, J. Li, M.T. Chiu, A. Hassani, N. Orlov, H. Shi, Oneformer: One trans-
former to rule universal image segmentation, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp. 2989–2998.

[25] Q. Yu, H. Wang, S. Qiao, M. Collins, Y. Zhu, H. Adam, A. Yuille, L.-C. Chen, K-
means mask transformer, in: European Conference on Computer Vision, Springer,
2022, pp. 288–307.

[26] B. Cheng, M.D. Collins, Y. Zhu, T. Liu, T.S. Huang, H. Adam, L.-C. Chen,
Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic
segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 12475–12485.

[27] J. Liang, T. Zhou, D. Liu, W. Wang, Clustseg: Clustering for universal
segmentation, 2023, arXiv preprint arXiv:2305.02187.

[28] T. Zhou, W. Wang, Prototype-based semantic segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. (2024).
[29] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S.
Whitehead, A.C. Berg, W.-Y. Lo, et al., Segment anything, 2023, arXiv preprint
arXiv:2304.02643.

[30] M. Liao, G. Hua, S. Tian, Y. Zhang, W. Zou, X. Li, Exploring more concen-
trated and consistent activation regions for cross-domain semantic segmentation,
Neurocomputing 500 (2022) 938–948.

[31] Y. Zhang, S. Tian, M. Liao, W. Zou, C. Xu, A hybrid domain learning framework
for unsupervised semantic segmentation, Neurocomputing 516 (2023) 133–145.

[32] Y. Zhang, S. Tian, M. Liao, G. Hua, W. Zou, C. Xu, A global reweighting approach
for cross-domain semantic segmentation, Signal Process., Image Commun. 130
(2025) 117197.

[33] T. Zhou, W. Wang, Cross-image pixel contrasting for semantic segmentation, IEEE
Trans. Pattern Anal. Mach. Intell. (2024).

[34] W. Zhou, X. Lin, J. Lei, L. Yu, J.-N. Hwang, MFFENet: Multiscale feature fusion
and enhancement network for RGB–thermal urban road scene parsing, IEEE
Trans. Multimed. 24 (2021) 2526–2538.

[35] W. Zhou, E. Yang, J. Lei, L. Yu, FRNet: Feature reconstruction network for RGB-D
indoor scene parsing, IEEE J. Sel. Top. Signal Process. 16 (4) (2022) 677–687.

[36] W. Zhou, S. Dong, J. Lei, L. Yu, MTANet: Multitask-aware network with
hierarchical multimodal fusion for RGB-T urban scene understanding, IEEE Trans.
Intell. Veh. 8 (1) (2022) 48–58.

[37] W. Zhou, Y. Zhu, J. Lei, R. Yang, L. Yu, LSNet: Lightweight spatial boosting
network for detecting salient objects in RGB-thermal images, IEEE Trans. Image
Process. 32 (2023) 1329–1340.

[38] W. Zhou, F. Sun, Q. Jiang, R. Cong, J.-N. Hwang, WaveNet: Wavelet network
with knowledge distillation for RGB-T salient object detection, IEEE Trans. Image
Process. 32 (2023) 3027–3039.

[39] W. Zhou, E. Yang, J. Lei, J. Wan, L. Yu, PGDENet: Progressive guided fusion
and depth enhancement network for RGB-D indoor scene parsing, IEEE Trans.
Multimed. 25 (2022) 3483–3494.

[40] W. Zhou, G. Xu, M. Fang, S. Mao, R. Yang, L. Yu, PGGNet: Pyramid gradual-
guidance network for RGB-D indoor scene semantic segmentation, Signal
Process., Image Commun. 128 (2024) 117164.

[41] W. Zhou, Y. Yue, M. Fang, X. Qian, R. Yang, L. Yu, BCINet: Bilateral cross-modal
interaction network for indoor scene understanding in RGB-D images, Inf. Fusion
94 (2023) 32–42.

[42] D. Kim, S. Woo, J.-Y. Lee, I.S. Kweon, Video panoptic segmentation, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2020.

[43] J. Miao, X. Wang, Y. Wu, W. Li, X. Zhang, Y. Wei, Y. Yang, Large-scale
video panoptic segmentation in the wild: A benchmark, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
21033–21043.

[44] Y. Xu, Z. Yang, Y. Yang, Video object segmentation in panoptic wild scenes,
2023, arXiv preprint arXiv:2305.04470.

[45] A. Athar, A. Hermans, J. Luiten, D. Ramanan, B. Leibe, Tarvis: A unified approach
for target-based video segmentation, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp. 18738–18748.

[46] L. Ke, M. Danelljan, H. Ding, Y.-W. Tai, C.-K. Tang, F. Yu, Mask-free video
instance segmentation, in: CVPR, 2023.

[47] T. Zhang, X. Tian, Y. Wu, S. Ji, X. Wang, Y. Zhang, P. Wan, DVIS: Decoupled
video instance segmentation framework, 2023, arXiv preprint arXiv:2306.03413.

[48] I. Shin, D. Kim, Q. Yu, J. Xie, H.-S. Kim, B. Green, I.S. Kweon, K.-J. Yoon, L.-C.
Chen, Video-kMaX: A simple unified approach for online and near-online video
panoptic segmentation, 2023, arXiv preprint arXiv:2304.04694.

[49] L. Li, W. Wang, T. Zhou, J. Li, Y. Yang, Unified mask embedding and
correspondence learning for self-supervised video segmentation, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 18706–18716.

[50] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C.
Rolland, L. Gustafson, et al., Sam 2: Segment anything in images and videos,
2024, arXiv preprint arXiv:2408.00714.

[51] K. Yadav, R. Ramrakhya, S.K. Ramakrishnan, T. Gervet, J. Turner, A. Gokaslan,
N. Maestre, A.X. Chang, D. Batra, M. Savva, et al., Habitat-matterport 3d
semantics dataset, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4927–4936.

[52] G. Chaudhary, L. Behera, T. Sandhan, Active perception system for enhanced
visual signal recovery using deep reinforcement learning, in: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, IEEE, 2023, pp. 1–5.

[53] P. Hoseini, S.K. Paul, M. Nicolescu, M. Nicolescu, A one-shot next best view
system for active object recognition, Appl. Intell. 52 (5) (2022) 5290–5309.

[54] Z. Liu, Z. Wang, S. Huang, J. Zhou, J. Lu, GE-grasp: Efficient target-oriented
grasping in dense clutter, in: 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, IEEE, 2022, pp. 1388–1395.

http://arxiv.org/abs/2301.09544
http://arxiv.org/abs/1712.05474
http://arxiv.org/abs/2211.05778
http://arxiv.org/abs/2005.10821
http://arxiv.org/abs/2107.00782
http://arxiv.org/abs/2305.02187
http://arxiv.org/abs/2304.02643
http://arxiv.org/abs/2305.04470
http://arxiv.org/abs/2306.03413
http://arxiv.org/abs/2304.04694
http://arxiv.org/abs/2408.00714


T. Zemskova et al.
[55] H. Luo, Z. Wu, H. Yan, AE-reorient: Active exploration based reorientation for
robotic pick-and-place, 2023.

[56] K.P. Singh, L. Weihs, A. Herrasti, A. Kembhavi, R. Mottaghi, Ask4Help: Learning
to leverage an expert for embodied tasks, in: NeurIPS, 2022.

[57] Z. Fang, A. Jain, G. Sarch, A.W. Harley, K. Fragkiadaki, Move to see better:
Towards self-supervised amodal object detection, 2020, arXiv:2012.00057.

[58] D.S. Chaplot, M. Dalal, S. Gupta, J. Malik, R.R. Salakhutdinov, Seal: Self-
supervised embodied active learning using exploration and 3d consistency, Adv.
Neural Inf. Process. Syst. 34 (2021) 13086–13098.

[59] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

[60] K. Gupta, T. Ajanthan, A.v.d. Hengel, S. Gould, Understanding and improving
the role of projection head in self-supervised learning, 2022, arXiv preprint
arXiv:2212.11491.

[61] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S.
Song, A. Zeng, Y. Zhang, Matterport3D: Learning from RGB-D data in indoor
environments, in: International Conference on 3D Vision, 3DV, 2017.

[62] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, Scene parsing
through ADE20k dataset, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

Tatiana Zemskova received an M.S. degree in Applied
Mathematics and Computer Science from the Moscow Insti-
tute of Physics and Technology, Moscow, Russia, 2023 and
an M.S. degree in Engineering from Ecole Polytechnique,
Palaiseau, France, 2023. She is currently pursuing a Ph.D.
degree in computer science at the Moscow Institute of
Physics and Technology, Moscow, Russia. From 2024 to
the present, she has been working as a Junior Research
Scientist at the Artificial Intelligence Research Institute,
Moscow, Russia. Her research interests include computer
vision, embodied AI and robotic systems.

Margarita Kichik received an B.S. degree in Applied Math-
ematics and Physics from the Moscow Institute of Physics
and Technology, Moscow, Russia, 2023. She is currently
pursuing an M.S. degree in Applied Mathematics and Com-
puter Science from the Moscow Institute of Physics and
Technology, Moscow, Russia.

From 2022 to the present, she has been working as an
Engineer at the Moscow Institute of Physics and Technology,
Moscow, Russia. Her research interests include computer
vision and robotic systems.
Dmitry A. Yudin received the engineering diploma in
automation of technological processes and production in
2010 and the Ph.D. degree in computer science from the
Belgorod State Technological University (BSTU) named af-
ter V.G. Shukhov, Belgorod, Russia in 2014. From 2009
to 2019, he was a Researcher and Assistant Professor
with Technical Cybernetics Department at BSTU n.a. V.G.
Shukhov. Since 2019, he has been the head of the Intelligent
Transport Laboratory at the Moscow Institute of Physics and
Technology, Moscow, Russia. Since 2021, he has been a
Senior Researcher at AIRI (Artificial Intelligence Research
Institute), Moscow, Russia.

He is the author of more than 100 articles. His re-
search interests include computer vision, deep learning, and
robotics.

Aleksei Staroverov received an M.S. degree from Bau-
man Moscow State Technical University, Moscow, Russia in
2019. He is currently pursuing a Ph.D. degree in computer
science at the Moscow Institute of Physics and Technology,
Moscow, Russia. His research thesis involves the methods
and algorithms for the automatic determination of subgoals
in a reinforcement learning problem for robotic systems.

From 2022 to the present, he has been working as
a Researcher at the Artificial Intelligence Research In-
stitute, Moscow, Russia. His research interests include
reinforcement learning, deep learning, and robotic systems.

Aleksandr I. Panov earned an M.S. in Computer Science
from the Moscow Institute of Physics and Technology,
Moscow, Russia, 2011 and a Ph.D. in Theoretical Computer
Science from the Institute for Systems Analysis, Moscow,
Russia, in 2015. In 2024 he defended the thesis for the
degree of Doctor of Science in AI and ML.

Since 2010, he has been a research fellow with the
Federal Research Center ‘‘Computer Science and Control’’
of the Russian Academy of Sciences, Moscow, Russia. Since
2018, he has headed the Cognitive Dynamic System Labo-
ratory at the Moscow Institute of Physics and Technology,
Moscow, Russia. He authored three books and more than
100 research papers. In 2021, he joined the research group
on Neurosymbolic Integration at the Artificial Intelligence
Research Institute, Moscow, Russia. His academic focus
areas include behavior planning, reinforcement learning,
embodied AI, and cognitive robotics.

http://arxiv.org/abs/2012.00057
http://arxiv.org/abs/2212.11491

	SegmATRon: Embodied adaptive semantic segmentation for indoor environment
	Introduction
	Related works
	Method
	Datasets for Adaptive Learning in Indoor Environment
	Experiments
	Ablation studies
	Possible applications
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


