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ABSTRACT Object navigation remains a fundamental challenge in robotics, particularly when agents must
reach targets specified by semantic categories. While existing approaches often treat semantic understanding
and navigation as separate components, we demonstrate that their tight coupling is crucial for robust
performance. We present SegDT (Segmenting Decision Transformer), a novel architecture that jointly learns
to predict semantic segmentation masks and navigation actions through a unified transformer-based model.
Our key insight is that temporal information from sequential observations can simultaneously enhance both
segmentation quality and navigation decisions. To address the inherent challenges of transformer-based
navigation—notably poor sample efficiency and computational complexity—we introduce a two-phase
training approach: offline pretraining on expert demonstrations followed by online policy refinement
through knowledge transfer from a recurrent neural network. Extensive experiments in the Habitat simulator
demonstrate that SegDT achieves higher results using predicted segmentation masks, outperforming a
single-frame baseline with a pre-trained semantic segmentation model and approaching the performance
of systems using ground truth semantic information. Our ablation studies reveal that SegDT’s temporal
processing also improves segmentation quality, highlighting the synergistic benefits of joint optimization.
When integrated into complete object navigation systems, SegDT enhances overall performance by 9.6% in
path efficiency compared to the state-of-the-art method. The code of SegDT is made publicly available at
https://github.com/CognitiveAISystems/SegDT

INDEX TERMS Navigation, reinforcement learning, semantic segmentation, robotics.

I. INTRODUCTION
Object-centric navigation for intelligent agents (e.g., robots)
in unknown environments remains a significant challenge
in robotics and computer vision. This is evidenced by
performance metrics in modern simulation environments
such as Habitat [1], AI2Thor [2], and similar platforms.
Two fundamental limitations persist. First, state-of-the-art
neural networks operating in real-time still struggle with
reliable object segmentation, particularly for distant or
partially occluded objects [3], [4]. Second, the prediction
of agent actions from visual data exhibits substantial error
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rates across both modular approaches [5] and end-to-end
neural architectures [6], indicating significant room for
improvement in navigation performance.

The challenge of image sequence segmentation for
intelligent agents presents additional complexities. Current
approaches employ various strategies: direct fusion of image
sequence features [7], [8], auto-regressive prediction of
segmentation masks [9], [10], and incorporation of three-
dimensional constraints [11], [12], [13], [14], including
Gaussian blending techniques [15], [16]. However, these
methods still demonstrate significant limitations when
applied to indoor navigation scenarios, particularly in
maintaining consistent object recognition across varying
viewpoints and distances.
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FIGURE 1. Semantic Goal Reacher task in the Habitat environment. The episode starts from the agent’s initial position (left), where the target object is
visible, and the objective is to reach within 1.0 m of the target (right). In a full ObjectNav pipeline, earlier steps of locating the target can be performed
by exploration algorithms; GoalReacher is the critical final stage that efficiently approaches the goal once it is detected. On the visualization map, the
black segment of the trajectory corresponds to the GoalReacher phase, and the red zone indicates the success region where the episode is
considered successful.

Navigation tasks inherently represent partially observable
reinforcement learning (RL) problems where historical
context must be processed by sequence models [17]. While
transformers have demonstrated remarkable capabilities in
computer vision and natural language processing tasks [18],
[19] and exhibit strong long-term memory capabilities [20],
they generally suffer from poor sampling efficiency and
do not improve long-term credit assignment compared
to recurrent neural networks (RNNs) [21]. To address
these limitations, we propose a novel method that simul-
taneously trains RNN-based and transformer-based policy
versions. This approach leverages the RNN-based policy’s
ability to effectively solve navigation tasks using ground
truth segmentation from the simulator, while enabling the
transformer-based policy to predict segmentation from RGB
frame sequences and generate action sequences through
knowledge transfer from the RNN-based policy.

These challenges are particularly evident in Semantic
Object Navigation tasks which, in the literature [22], are
defined as scenarios where an agent, randomly initialized
within an unfamiliar environment, must navigate toward an
instance of a specified object category C ∈ {c1, c2, . . . , cn}
(e.g., a plant). Typically, modular methods [5], [23], [24]
decompose ObjectNav into sub-skills including exploration,
recognition, and goal reaching, with specialized components
for each sub-skill. The solution generally consists of two
stages: environment exploration to locate an instance of the
given semantic goal, followed by reaching the identified
object. The latter stage presents particular challenges in
unseen scenes and object episodes, as it heavily relies on
semantic goal understanding. Recent work [25] demonstrates
that incorporating bee-lining (goal reaching) capabilities with
pretrained object detection networks into existing end-to-
end solutions can significantly improve overall ObjectNav
metrics on validation episodes.

In this work, we propose to unify action prediction
and RGB-D image sequence segmentation within a single
transformer model, focusing specifically on the semantic

goal-reaching stage. We initialize the agent at a random
viewpoint of the semantic goal at a maximum distance
of ten meters (Fig. 1). Our results demonstrate that this
unified approach enhances both image segmentation quality
and action generation accuracy in solving the navigation
problem for semantically-specified objects. This semantic
object navigation capability has practical applications in
robotics scenarios where embodied agents must navigate in
non-deterministic environments [22].
The main contributions of this work include:
• We introduce SegDT, a novel multimodal transformer
architecture that jointly learns segmentation and naviga-
tion policies by processing sequences of RGB-D frames.
Our model leverages temporal information to simulta-
neously improve segmentation quality and navigation
performance through a unified training objective, unlike
previous approaches that treat segmentation only as an
auxiliary task.

• We develop a two-phase training strategy that addresses
fundamental limitations of transformer-based naviga-
tion: poor sampling efficiency and inadequate long-term
credit assignment. Our approach combines offline
pretraining on collected trajectories with online policy
fine-tuning through a knowledge transfer mechanism
between an RNN-based policy (using ground-truth
segmentation) and our transformer-based model (which
learns to predict segmentation).

• Through extensive experiments in Habitat Sim,
we demonstrate that our unified approach achieves
superior performance compared to both traditional
navigation methods and state-of-the-art approaches.
Notably, SegDT maintains robust navigation perfor-
mance when transitioning from ground-truth to pre-
dicted segmentation masks and improves segmentation
quality by aggregating temporal information during
navigation.

The code of SegDT is made publicly available at
https://github.com/CognitiveAISystems/SegDT.
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II. RELATED WORK
Recentmethods for object goal navigation use scene semantic
information for action prediction to reduce overfitting and
increase the navigation quality for unseen environments.
The scene semantic can be available in the form of a 2D
semantic segmentation mask. For instance, authors of the
THDA method [26] introduce a policy network that uses
depth and multichannel semantic masks as input. SkillFusion
approach [27] proposes a goal-reaching policy that leverages
an RGB observation and a binary segmentation mask of the
object goal. During inference time, the success rate of such
navigation approaches heavily relies on the quality of input
segmentation masks [27]. Despite the active development
of neural network architectures, the state-of-the-art meth-
ods for semantic segmentation (e.g. Mask2Former [28],
OneFormer [29], OpenSeeD [30], MQ-Former [31]) still
show imperfect segmentation quality, especially for indoor
environments, where objects can vary a lot within one
semantic category.

In addition, the state-of-the-art methods for semantic
segmentation do not take into account the peculiarities of
an embodied agent interacting with its environment during
navigation. The agent has a limited field of view; therefore,
instant observations may contain erroneous semantics when
looking at the object from certain view angles. During
the navigation episode, the agent can update its semantic
understanding of the scene by observing the scene from
more advantageous viewpoints. Such refinement can occur
explicitly by using the accumulated semantic map of the
environment [32], [33], [34]. The explicit semantic maps
of the environment can be used as input to predict action
policy [11], [23], [35]. Other methods, such as [6], use
implicit maps to model the history of observations. However,
to build a semantic map, one needs to have information about
the agent’s pose at each moment in time, while our method
uses only RGB images and depth maps as input.

We use a method that aggregates sequence information
from previous semantic observations to refine semantic
segmentation on the current frame and predict the next action.
In this sense, our method is related to methods that solve the
task of video segmentation [36], [37] and Vision-Language-
Navigation models such as NavGPT [38]. However, unlike
such methods, our approach allows the agent to control
its observations to navigate to the goal and improve the
segmentation quality. At the same time, our method differs
from existing embodied computer vision methods [39], [40],
[41], [42], [43], [44]. These methods aim to improve the
quality of visual perception, while our method increases both
the quality of navigation and the quality of segmentation. The
methods for embodied computer vision often operate in the
next-best-view paradigm or use a small sequence of frames
to predict the next action. However, the agent needs a longer
history of observations to successfully solve the object goal
navigation task. Unlike [7], we consider a complex photo-
realistic 3D environment of the HM3DSem v0.2 [45] scenes.

A special feature of our method is the joint training of a
semantic segmentation model and a transformer to predict
the next actions. Our work aligns with transformer-based
segmentation advances in challenging environments [46],
[47], [48]. Additionally, transformer-based scene segmenta-
tion with unsupervised domain adaptation has been explored
in [49]. Previous works [26], [50] consider semantic loss as
an additional task formodel training. However, thesemethods
use semantic loss only to improve the action policy, and not to
improve the quality of semantic segmentation by aggregating
information from a sequence of frames.

III. TASK SETUP
We formulate the Semantic Goal Reaching task as a Partially
Observable Markov Decision Process (POMDP) defined by
the tuple (S,A,P,R, ρ0, γ ) for the underlying observation
space S, action space A, transition distribution P, reward
function R, initial state distribution ρ0, and discount factor γ .
At each timestep t , the agent receives an observation ot

consisting of:
• An RGB-D image pair (It ,Dt ), where It ∈ RH×W×3 and
Dt ∈ RH×W .

• A target category c ∈ C, where C is the set of valid object
categories.

The action space A consists of six discrete actions:
callstop to terminate the episode, forward by 0.25 m,
turnleft or turnright by angle 15◦, lookup,
lookdown by turning the agent’s head by angle 30◦.
Episodes are initialized with the agent randomly placed at
a position where the target object is within the agent’s field
of view and the geodesic distance to the target is at most
10 meters. An episode terminates when either the agent
executes the callstop action or the maximum episode
length of 64 timesteps is reached.

Following standard metrics in object navigation litera-
ture [22], we evaluate performance using:

• Success Rate (SR): Percentage of episodes where the
agent successfully reaches within 1.0m of the target.

• Success weighted by inverse Path Length (SPL): SR
weighted by the ratio of shortest path to actual path
length.

• SoftSPL: A soft version of SPL that provides partial
credit for incomplete episodes.

This formulation builds upon prior work in visual navi-
gation [22] while specifically focusing on the goal-reaching
phase, where semantic understanding of the target object is
crucial for success.

A. REWARD FUNCTION
During online fine-tuning, we use a shaped per-step reward
together with a terminal bonus. Let dt be the geodesic
distance from the agent to the closest valid point of the target
object at time t , and let st denote the area (in pixels) of
the predicted binary mask of the target object in the current
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FIGURE 2. Architectural overview of the proposed Segmenting Decision Transformer (SegDT). The model processes multimodal inputs through parallel
streams: (1) a segmentation branch using an image encoder, pixel decoder, and multistage mask decoder, and (2) a decision branch that aggregates
temporal information to predict actions. The transformer architecture enables joint optimization of both segmentation quality and navigation policy
through shared representations.

frame. The per-step reward is

rt=−0.03+clip(dt−1 − dt , −1, 1)+clip(st − st−1, −1, 1),

where the first term is a small-time penalty, the second term
rewards progress toward the goal, and the third term rewards
increased evidence of the goal in the current observation via
the predicted mask.

When the agent executes the callstop action, a terminal
reward is given

rT =


10, if dt ≤ 1.0m and st ≥ τ,

5, if dt ≤ 1.0m and st < τ,

−1, otherwise,

with threshold τ = 100 pixels.

IV. METHOD
We modify the original Decision Transformer architec-
ture [51] from two perspectives. First, we add a segmentation
branch, demonstrating the synergy between semantic seg-
mentation and goal reaching tasks. Second, we propose an
adaptation of the Decision Transformer training method,
which enables SegDT to be effectively fine-tuned in an online
environment, thereby improving navigation performance
compared to training on offline data. Prediction at time t
involves two stages. An observation at time t consists of an
image It , a depth map Dt , and a target category name c.
First, multi-scale feature maps of It are generated using an
image encoder and a pixel decoder. These feature maps, along
with trainable query features, are then fed into the decision
transformer. After processing, the trainable query features

are decoded by a multi-stage mask decoder to generate
segmentation masks for a fixed set of categories. From the set
of masks, a binary mask for the target category is selected,
and its embedding is extracted. This embedding, combined
with the depth map and the category name embedding,
completes the observation sequence embeddings. In the
second step, the full sequence of observation embeddings is
fed into the decision transformer to predict the probability
distribution and state value of the next action.We then sample
action at and add its embedding to the observation sequence
to predict actions at time t + 1. Figure 2 illustrates the model
architecture.

A. SEGMENTATION MODULES
When choosing the architecture of the Segmenting Decision
Transformer (SegDT) modules responsible for segmentation,
we take Mask2Former [28] as a basis. Mask2Former is
one of the state methods for semantic segmentation. This
method considers the segmentation problem as a problem of
predicting a set of binary masks and their classification. The
segmentation model is given an image of size (H ,W ,C) as
input.

The main components of Mask2Former are an image
encoder, a pixel decoder, and a multistage decoder. We use
ResNet50 as the backbone. The output of the backbone is fed
to the pixel decoder to generate 4maps of high-resolution per-
pixel embeddings. The per-pixel embeddings have 1/4, 1/8,
1/16, and 1/32 of the resolution of the input image. We use
a 1/32 per-pixel embedding map as the image embedding for
the Transformer model input.
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In the original single-frame Mask2Former model, binary
segmentation masks and their classification logits are
decoded from N learnable query features using multiscale
feature maps. In our work, we use N learnable query
features as input to the Transformer model to take into
account the context of previous observations. After passing
through the transformer, the updated query features are
passed through the multistage decoder. Here, similar to the
Mask2Former model, we use multi-scale feature maps to
predict binary segmentation masks and their logits. From
these binary masks, a multi-channel semantic segmentation
mask is formed for Ncl = 40. We then select the target
semantic mask and use the ResNet50 encoder to create a
semantic feature of size (1, dsem). This feature describes the
presence of the semantic goal in the current observation,
similar to TDHA [26].

1) OBSERVATIONS EMBEDDINGS
For each time point, we describe the current observation
using 29 embeddings obtained from different encoders and
projected into the GPT hidden dimension dGPT = 768.
For each of the T-frames, we flatten the image pixel
embeddings from Mask2Former into a sequence and project
the image embeddings into dGPT using a linear layer. Thus,
the image embedding for an image has a dimension of (H ·

W/32, dGPT ). The learnable queries are represented by a set
of 50 embeddings with dimension (1, dGPT ). We encode the
semantics of each image using ResNet50 features obtained
from the binary segmentation mask of the target object into a
feature vector of dimension (1, dsem). Thus, after projection,
the embedding of semantic predictions for 1 image has a
dimension of (1, dGPT ). We encode depth for each of the
observations using ResNet18, resulting in a feature vector
of dimension (1, ddepth). Using a linear layer, we project
the depth features into the dGPT feature space. Thus, the
feature embedding of the depth observation has dimension
(1, dGPT ). To encode the target category and the performed
action, we use a look-up table of learnable embeddings
of dimensions (Ncl, dGPT ) and (Nactions, dGPT ), respectively.
We populate the GPT input sequence with T observation
embeddings. Thus, the dimension of the input sequence of
observation embeddings is (T · (H ·W/32 + 4), dGPT ).

2) PREDICTIONS
Since the goal of the semantic object navigation task is
to reach an object of a certain target category, we expect
that using the observation history can improve the segmen-
tation quality for this target category. To decode semantic
predictions, we use an idea from the original Mask2Former
segmentation model [28]. We take the output learnable
query features from the SegDT and pass them through the
multistage decoder. To obtain the binary segmentation masks
and their logits at time t , we additionally use the multi-scale
feature maps predicted by the pixel decoder at time t . We use
MLPs to decode the action distribution for the actor head.

To predict the action at step t, we use the set of observations
{o0, . . . , ot } and the previous actions {a0, . . . , at−1}. First,
the sequence {o0, a0, . . . , ot−1, at−1, ot } is passed to the
SegDT input to predict the segmentation masks {Mpred

i }
t
i=0.

The mask corresponding to the target object category is used
as the semantic observation for the time t . Next, SegDT
makes another prediction of the action at , taking into account
the segmentation mask, the depth, and the target category at
time t . In this case, the last token of the output sequence of
the transformer is used as input of the action decoder, i.e., the
last token of the observation ot .

B. LEARNING PROCESS
1) JOINT LEARNING ON OFFLINE DATA
As a central aspect of our experiment, we initialize the
image encoder, the pixel decoder, and the multi-stage decoder
responsible for segmentation prediction with parameters of
a pre-trained segmentation model. The primary goal during
the initial phase of training is to establish an effective
representation of the observations intended for navigation.
To achieve this goal, we rely on an offline demonstra-
tion dataset composed of semantic goal-reaching instances
between the start coordinates and the most proximal target.
We collect the action probability distribution of a pre-trained
RL agent with RNN and ground truth segmentation as input.
During these initial stages, both SegDT (ourmulti-stagemask
decoder) and our action decoder are trained simultaneously.
To optimize mask prediction, we use the sum of the pixel-
by-pixel binary cross-entropy Lbce, the dice loss Ldice, and
the cross-entropy loss Lce for mask classification as our loss
function. Behavior cloning (Lbce) is used to predict the action
sequence.

Ltotal = λsegmLsegm + λactbceLbce, (1)

Lsegm = λ
segm
bce Lbce + λdiceLdice + λceLce. (2)

We use the following values of hyper-parameters: λsegm =

1, λactbce = 1, λMSE = 0.1, λsegmbce = 5, λdice = 5, λce = 2.

2) ONLINE FINETUNING
While behavior cloning provides a strong initialization for
our policy, it suffers from two fundamental limitations:
distribution shift between training and deployment states,
and an inability to improve beyond the demonstrator’s
performance. To address these limitations, we employ online
reinforcement learning to continuously adapt the policy
through direct environment interaction.

However, online reinforcement learning (RL) requires a
significant number of samples to achieve robust performance,
which can be a significant limitation. Additionally, the use of
the transformer model introduces substantial computational
cost, especially for long sequences, as causal transformers
require O(t2) time to compute the representation at time
step t , so they typically exhibit poor sample efficiency
compared to recurrent architectures (10 times more during
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FIGURE 3. Schematic representation of the online fine-tuning process for SegDT. The RNN-based policy, operating with
ground-truth segmentation, generates expert trajectories that guide the transformer through advantage-weighted
regression loss. This knowledge transfer mechanism enables efficient learning of both segmentation and navigation
capabilities while maintaining computational tractability.

our experiments), requiring more training time to achieve
comparable performance.

To overcome these challenges, we introduce a novel
knowledge transfer approach, shown in Figure 3. Let
πRNN(at |st ) denote an RNN-based policy trained using
ground truth segmentationmasks, andπSegDT(at |st ) represent
our transformer-based policy that must learn to predict
segmentation masks. We simultaneously train both policies
using the following composite loss for πSegDT and πRNN:

Ltotal = LπRNN
PPO + λAWRL

πSegDT
AWR + λsegmL

πSegDT
segm , (3)

LπSegDT
AWR =

n−1∑
i=0

logπSegDT(at+i|st , at:t+i−1) ∗ exp(AπRNN
t−1 /β),

(4)

where LPPO is the standard PPO objective that is used for the
πRNN(at |st ) policy, LAWR [52] encourages the transformer
policy to match the RNN policy’s action distributions con-
sidering the advantage calculated by the πRNN(at |st ) policy,
and Lseg is the segmentation loss defined in Equation 2. The
hyperparameters we used: λAWR = 2, λsegm = 1, β = 1.
This approach leverages the sample efficiency of the RNN

policy while allowing the transformer to simultaneously
improve its segmentation predictions and action selection.
The RNN policy, with access to ground truth segmentation,
can quickly learn effective navigation strategies. Through
knowledge distillation, these strategies are transferred to the
transformer policy, which must additionally learn to predict
accurate segmentation masks from raw observations.

Our empirical results demonstrate that this training strategy
enables SegDT to achieve performance comparable to

the RNN policy with ground truth segmentation, despite
operating solely with predicted segmentation masks during
deployment. This suggests that the joint optimization of
navigation and segmentation allows the model to develop
robust representations that support both tasks.

V. EXPERIMENTS
The main goal of our experiments is to navigate an
autonomous agent toward its target object by minimizing
cumulative distance and maximizing the understanding of the
environment. To achieve this, we have followed a twofold
training phase strategy: with the first phase focusing on
obtaining high-quality semantic segmentation masks, and the
second phase shifting towards action prediction with the use
of an online Reinforcement Learningmethod for an adaptable
learning experience.

A. EXPERIMENTAL SETUP
1) DATASETS
The experiments were carried out in the Habitat environ-
ment [1]. For the experiments, we selected 146 training and
36 validation scenes of the HM3DSem v0.2 dataset [45].
These scenes were divided into a training set of 173 scenes
and a validation set of 9 scenes. We provide a visualization of
the selected scenes in Figure 4. These validation scenes were
not included in the training set for either the Mask2Former
segmentation model (including the pretraining phase) or
SegDT. Thus, our validation experiments are conducted in
unseen environments that contain various room types: living
room, kitchen, bedroom, bathroom, and office. Next, we sam-
ple episodes in each scene. The episode is characterized by
the agent’s starting position, the coordinates, and the semantic
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FIGURE 4. Visualization of scenes from the HM3DSem validation subset used for validation
experiments. We use the following validation scenes: 0877-4ok3usBNeis, 0853-5cdEh9F2hJL,
0890-6s7QHgap2fW, 0849-a8BtkwhxdRV, 0827-BAbdmeyTvMZ, 0873-bxsVRursffK,
0810-CrMo8WxCyVb, 0891-cvZr5TUy5C5, 0824-Dd4bFSTQ8gi.

type of the target object. We randomly sample starting points
for episodes satisfying two conditions of the Goal Reaching
task: the target object is in the agent’s field of view, and the
agent is no more than 10 meters away from the goal.

For offline training of SegDT, we collect a dataset
consisting of 16080 episodes in our 173 training scenes.
The ground truth trajectories for behavioral cloning were
obtained from the state-of-the-art RL algorithm for object
goal navigation [27] using ground truth segmentation as
input. The dataset for offline training contains 40 categories
of the Matterport3D dataset [53] as goals for navigation,
except 12 object categories: curtain, ceiling, column, door,
floor, misc, objects, stairs, unlabeled, wall, window, and
picture.

2) OFFLINE TRAINING
We pre-train the Mask2Former segmentation model on a
dataset consisting of 125K images collected in HM3DSem
v0.2 training scenes with the same training parameters as in
the original Mask2Former paper [28].
For training and validation of SegDT, we use the rendering

parameters from the Habitat Challenge 2023 [54], except
for the image resolution, which is changed to a lower
160 × 120 to save computational resources. As input to
Mask2Former, we use the square input resolution, i.e., pad
images to 160 × 160. For baseline methods, we compare
SegDT against, we use the rendering parameters provided by

the authors of the methods. During offline training, we freeze
Image Encoder, Pixel Decoder, and MultiStage Decoder with
Mask and Logits Decoders. To train the remaining Decision
Transformer module and learnable query features of SegDT,
we use the AdamW [55] optimizer with a learning rate
of 3 × 10−4, β1 = 0.9, β2 = 0.98, λ = 0.01, and
linear decay of learning rate. We use a batch size equal to
8 and a maximum of 64 frames from GT trajectories during
training. The parameters of pretrained Mask2former are used
to initialize the parameters of the segmentation modules of
SegDT.

3) ONLINE FINE-TUNING
As an RL algorithm, we use PPO with Generalized Advan-
tage Estimation [56]. We set the discount factor γ to 0.99 and
the GAE parameter τ to 0.95. Each worker collects (up to)
64 frames of experience from 18 agents running in parallel
(all in different scenes) and then performs 5 epochs of PPO.
We use Adam [57] with a learning rate of 1 × 10−5. The
shaped and terminal rewards follow the definition in the Task
Setup paragraph above.

B. TRAINING DYNAMICS AND STABILITY
We track the optimization signals of all components during
training to ensure robust convergence: the PPO objectives
for the auxiliary RNN teacher, the advantage-weighted
regression (AWR) loss that guides SegDT, and the total
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FIGURE 5. Training dynamics of SegDT during online fine-tuning. Shown: (a): SR moving average, (b) and (c): RNN PPO actor/critic losses (teacher), (d):
total segmentation loss and (e): SegDT AWR loss (student). Solid lines denote moving averages; shaded bands indicate variability across parallel workers.
All curves evolve smoothly without spikes, evidencing stable joint optimization.

segmentation loss Lsegm (Eq. 2). Figure 5 summarizes these
curves.

Across runs, we observe:

• Monotonic performance growth: the moving aver-
age of Success Rate increases steadily and plateaus
smoothly, with narrowing variance over time.

• Well-behaved control losses: PPO policy/value losses
of the RNN teacher decrease with only mild on-policy
oscillations typical of PPO, and no signs of instability.

• Stable knowledge transfer: the AWR loss for SegDT
decreases gradually, indicating that matching the teacher
distribution remains well-conditioned.

• Consistent perception improvement: the total seg-
mentation loss Lsegm decreases throughout training,
confirming that temporal aggregation does not conflict
with policy learning.

These trends collectively demonstrate that our unified
training procedure is stable: perception and action objectives
optimize jointly without interference, and no regime shifts or
loss spikes are observed.

C. SENSITIVITY TO EXPERT POLICY QUALITY
To assess how susceptible SegDT is to the quality of the
expert RNN policy used for knowledge transfer, we perform
an ablation in which the student is distilled from teacher
checkpoints during online fine-tuning of both (RNN and
SegDT) models (Fig. 6). All evaluations in this subsection
use the 79◦ field-of-view configuration, and each validation
episode is allowed up to 500 environment steps.

Conclusion. SegDT benefits from stronger teachers, but
its performance is proportional to expert quality. Advantage-
weighted regression, together with the auxiliary segmentation
objective, provides a stable training signal that allows the
student to learn effectively even when the teacher is only
moderately competent.

D. ONLINE SEGMENTATION QUALITY
1) BASELINE SEGMENTATION
SegDT aggregates information from several previous frames
to improve the segmentation quality for the current frame.
Therefore, we compare the performance of the SegDT
approach with the Single Frame Mask2Former [28] baseline

FIGURE 6. Effect of expert policy quality on SegDT. Curves show the
evolution of the success rate during online fine-tuning when distilling
from weak, medium, and strong RNN teachers. Shaded regions indicate
variation across seeds. The dependency is monotonic yet moderate,
evidencing robustness to suboptimal experts.

that makes predictions for the same frame sequence as
SegDT. The Single Frame Mask2Former segments every
frame in the sequence individually. We expect segmenta-
tion improvement for episodes where the agent frequently
observes the target object. Therefore, we evaluate the
segmentation quality on shortest path trajectories for all
112 validation episodes. The shortest path trajectories were
obtained from a classical planning algorithm [58]. This
planner greedily fits actions to follow the geodesic shortest
path between the agent’s starting point and the goal position.
For each step t , we consider as a baseline segmentation the
Single Frame Mask2Former masks predicted for the input
image It .

2) SEGMENTATION METRIC
SegDT uses only target object masks to predict actions,
so the navigation quality depends primarily on the quality
of segmentation of these categories. For each episode,
we compute the standard mean Intersection over Union
(mIoU ) [29] metric for six target categories: sofa, TV, chair,
plant, toilet, and bed. We then average the resulting values
across all episodes.

E. RESULTS
We evaluate our approach through comprehensive compar-
isons with state-of-the-art methods and detailed ablation
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TABLE 1. Comprehensive performance comparison between SegDT and state-of-the-art object navigation methods on Goal Reacher task. Notable
differences in sensor requirements and environmental parameters (FOV, turn angle) are included to ensure fair comparison. Results demonstrate SegDT’s
superior performance despite more constrained operating conditions.

TABLE 2. Ablation study analyzing the relationship between segmentation quality and navigation performance. Results compare ground truth
segmentation, single-frame Mask2Former predictions, and SegDT’s temporal approach. Mean Intersection over Union (mIoU) is computed on Shortest
Path Follower trajectories to provide standardized evaluation conditions. The analysis demonstrates the effectiveness of temporal information in
improving both segmentation accuracy and navigation metrics.

studies. All evaluations use a validation set of 112 episodes
across 9 scenes, with 6 target object categories from the
Habitat Challenge.

1) COMPARISON WITH STATE-OF-THE-ART METHODS
Table 1 presents a comprehensive comparison between
SegDT and existing object navigation approaches. Several
key observations emerge. DD-PPO achieves only a 10.2%
success rate with 2.1% SPL, highlighting the limitations of
methods that don’t explicitly leverage semantic understand-
ing. Methods like OnavRIM and PIRLNav, while achieving
higher success rates with extended 500-step episodes (56.3%
and 68.7% respectively), show significantly lower path
efficiency compared to SegDT on the Goal Reacher task.
This is likely due to their exploration-heavy approach
inherited from human demonstrations. Our SegDT model
achieves strong performance even with more constrained
operating conditions (42◦ FOV vs 79◦ FOV used by other
methods) and without requiring GPS/compass sensors. With
ground truth segmentation, SegDT achieves 47.3% SR and
44.7% SPL, demonstrating efficient goal-reaching behavior.
We fine-tune SegDT using a wider field of view, 79◦, and
30-degree rotation angles. Table 1 shows that with this sensor
configuration, SegDT achieves high navigation performance,
demonstrating a +15.5% SPL improvement over the SOTA
method PIRLNav, while achieving a comparable SR relying
solely on RGB and depth images. Changing the camera’s
field of view does not alter the model architecture. However,
a wider field of view facilitates the navigation task, as a single
observation contains more information about the surrounding
environment (see Figure 7). In particular, a single frame

FIGURE 7. Comparison of RGB observations with rendering parameters of
42 and 79 FOV. Visually, it can be seen that for navigation, the
wider 79 FOV is an easier setting, as it provides more information within
a single observation.

contains more objects, and they do not disappear when the
view is rotated.

2) IMPACT OF SEGMENTATION QUALITY
Table 2 analyzes how different segmentation approaches
affect navigation performance. Navigation with ground
truth segmentation provides the upper bound performance
(47.3% SR, 44.7% SPL). Single-frame Mask2Former pre-
dictions achieve 51.8% mIoU on shortest path trajectories,
resulting in 38.0% SR and 36.2% SPL. SegDT’s tem-
poral approach improves segmentation quality to 53.7%
mIoU, leading to better navigation performance (40.2%
SR, 38.3% SPL). This demonstrates the value of incor-
porating temporal information for both segmentation and
navigation.

We investigate how the goal mIoU metric is distributed
for each category and how it relates to the successful
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FIGURE 8. Per-category analysis of the relationship between Goal Reaching episode success and the goal mIoU metric for
the corresponding category. For most categories (bed, plant, sofa, toilet), we observe a correlation between successful
episode completion and relatively high goal mIoU for the corresponding target object. Episodes with high goal mIoU but
unsuccessful completion correspond to errors related to navigation.

or unsuccessful completion of episodes containing that
category. For the binary target mask in each episode of length
N , we define goal mIoU as follows:

Goal mIoU =

∑T
t=1 Intersection(M

pred
t ,Mgt

t )∑T
t=1 Union(M

pred
t ,Mgt

t )
, (5)

where Mpred
t is the predicted target mask, Mgt

t is the
ground-truth target mask, t ∈ [1, . . . ,T ] are the timesteps
of the episode where either Mpred

t or Mgt
t is present,

Intersection(Mpred
t ,Mgt

t ) is the number of pixels in the
intersection of Mpred

t and Mgt
t , and Union(Mpred

t ,Mgt
t ) is the

number of pixels in their union.
Figure 8 shows the results of the per-category analysis.

For most categories (bed, plant, sofa, toilet), there is a
clear trend that successfully completed episodes tend to
have a relatively high goal mIoU. The share of unsuccessful
episodes with high goal mIoU corresponds to episodes
with navigation errors. Objects in the tv category are
recognized well in both successful and failed episodes,
indicating that the main difficulty for this category lies in
navigation.

The distribution modes where successful completion
occurs despite relatively low goal mIoU for categories such
as chair and plant may correspond to objects with complex
shapes. In this case, the object is correctly recognized, but
the precise shape of the mask contains errors. These episodes
may also correspond to navigation success achieved due to
RGBD modalities.

TABLE 3. Analysis of the Role of the Segmentation Branch for the SegDT
Model. The presence of a target binary mask encoder and learnable
queries for segmentation in the SegDT architecture improves the
adaptation quality of the strategy to new scenes in the validation set.

3) ROLE OF THE SEGMENTATION BRANCH FOR THE SEGDT
MODEL
We perform an ablation study to assess how the presence
of a segmentation branch affects navigation quality in the
SegDT architecture. To this end, we conduct an experiment
using our own implementation of the Decision Transformer:
a version of SegDT in which the encoded target binary
mask and learnable queries are removed from the observation
embeddings. This results in a transformer-based baseline for
our method, with the segmentation branch entirely excluded.
The results in Table 3 clearly demonstrate that the presence
of the segmentation branch in the SegDT architecture (40.2%
SR, 38.3% SPL) helps improve performance on validation
scenes compared to the baseline Decision Transformer
(33.4% SR, 29.7% SPL), which does not account for
segmentation.

4) ROLE OF THE SEGMENTATION LOSS FUNCTION DURING
ONLINE FINE-TUNING
We investigate the impact of the segmentation loss function
during online fine-tuning of SegDT. We conduct two
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FIGURE 9. Qualitative comparison of segmentation results between SegDT and the baseline Mask2Former model across diverse object
categories and viewpoints. SegDT demonstrates superior performance in maintaining consistent object segmentation by leveraging temporal
information, particularly evident in cases of partial occlusion and varying object scales.

TABLE 4. Analysis of the Role of the Segmentation Loss Function During Online Fine-Tuning. We use single-frame Mask2Former segmentation for
experiments where the segmentation loss function is not included in the training objective during online fine-tuning. The results demonstrate the crucial
role of the segmentation loss function during online fine-tuning in improving navigation performance with predicted segmentation.

TABLE 5. Analysis of behavioral cloning performance using different
sources of ground truth trajectories. Comparison between classical
shortest path following and RNN-based goal reaching demonstrates the
importance of expert demonstration quality in offline pretraining. Metrics
indicate significant advantages of learning from policy-generated
trajectories over geometric planning approaches.

experiments: in the first, we fully unfreeze the model, allow-
ing maximum optimization of its parameters for navigation.
In the second, we keep the parts of SegDT responsible
for encoding the RGB image frozen—specifically, the
Image Encoder and Pixel Decoder. Table 4 shows that
freezing the Image Encoder and Pixel Decoder positively
affects navigation performance on validation scenes in the
absence of a segmentation loss and when using predicted
segmentation (36.8%SR vs. 33.5%SR, 33.7%SPL vs. 30.0%
SPL). However, incorporating the segmentation loss function
during online fine-tuning significantly improves navigation
performance when using segmentation predicted by SegDT
(40.2% SR vs. 36.8% SR, 38.3% SPL vs. 33.7% SPL).

5) OFFLINE TRAINING ANALYSIS
Table 5 examines the impact of different demonstration
sources for behavioral cloning. Using shortest path follower
trajectories results in poor performance (8.0% SR, 6.7%
SPL). Training on RNN-based goal reacher demonstra-
tions significantly improves results (18.0% SR, 16.3%

TABLE 6. Integration analysis of SegDT within complete ObjectNav
systems. Results demonstrate the effectiveness of combining PIRLNav
exploration with SegDT goal reaching compared to single-model
approaches. Performance gains in both success rate and path efficiency
highlight the benefits of specialized skill decomposition.

SPL), highlighting the importance of high-quality expert
demonstrations.

6) INTEGRATION WITH COMPLETE OBJECTNAV SYSTEMS
Finally, Table 6 shows how SegDT can enhance existing
ObjectNav systems. Using PIRLNav for both exploration and
goal reaching achieves 61.9% SRwith 26.0% SPL. Replacing
PIRLNav’s goal reaching with SegDT improves performance
to 63.6% SR and 30.3% SPL, demonstrating the effectiveness
of our specialized goal-reaching approach.

These results collectively demonstrate that SegDT’s uni-
fied approach to segmentation and navigation, combined with
its efficient training strategy, enables robust goal-reaching
performance while maintaining computational tractability.

F. VISUALIZATION
Figure 9 demonstrates the qualitative effect of improving
segmentation using SegDT for different categories of target
objects. The main effect is expressed in filling segmentation
gaps if the target object was present in previous frames. The
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FIGURE 10. Dependence of per-step inference time on the step index,
measured on an Nvidia RTX 3060 GPU. The average inference time is
shown as a blue line, and the standard deviation is indicated by the light
blue shaded area for each step.

aggregation of information from several frames improves the
quality of the instantaneous predicted mask contours.

G. INFERENCE TIME
To keep our architecture lightweight and suitable for deploy-
ment on mobile onboard platforms, we use a lightweight
ResNet50 backbone forMask2Former, as well as a low image
resolution (160 × 120 pixels). Additionally, the computed
observation features from one step can be reused for inference
at subsequent steps. During inference, we use a history
of up to 64 steps. Figure 10 shows the average inference
time per step in the sequence, along with its standard
deviation, measured on an RTX 3060. Thanks to the efficient
reuse of observation features, the per-step inference time
does not exceed 25 ms, which corresponds to an inference
speed of 40 FPS. Overall, during inference, SegDT uses
3.8 GB of video RAM, which, combined with its inference
speed, makes it suitable for deployment on real-time robotic
platforms.

VI. CONCLUSION
In this work, we introduced SegDT, a novel transformer-
based architecture that unifies semantic segmentation and
navigation for embodied agents. Our results demonstrate that
jointly optimizing these traditionally separate tasks leads to
improved performance in both domains - achieving a 40.2%
success rate and 38.3% SPL with predicted segmentation
on the goal reacher task, approaching the performance of
systems using ground truth semantic information (47.3% SR,
44.7% SPL).

The key innovation of our approach lies in its two-phase
training strategy that addresses fundamental limitations of
transformer-based navigation. By combining offline pre-
training with online policy fine-tuning through knowledge
transfer from an RNN-based policy, we achieve robust
performance while maintaining computational tractability.
Our empirical results show that this approach not only

improves segmentation quality (53.7% mIoU vs 51.8%
baseline) but also enablesmore efficient navigation compared
to existing methods that treat segmentation as merely an
auxiliary task.

While our method demonstrates significant advantages,
there remain opportunities for improvement. The computa-
tional overhead of transformer-based architectures presents
challenges for real-time deployment, and the reliance on
pre-trainedMask2Former components could potentially limit
generalization to novel environments. Future work could
explore more efficient architectures and end-to-end training
approaches that eliminate the need for pre-trained compo-
nents. Another direction for future work is the adaptation
of the SegDT approach to the open-vocabulary object goal
navigation setting, in particular by using open-vocabulary
segmentation models such as OpenSeeD [30] or OV-SAM
[61] as backbone segmentation models.

Additionally, investigating methods for selective frame
processing during training could further improve both com-
putational efficiency and learning effectiveness. Despite these
limitations, our results suggest that unified approaches to
perception and action, as demonstrated by SegDT, represent
a promising direction for developing more capable embodied
agents.
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