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ABSTRACT In this work, we propose and investigate an original approach to using a pre-trained multimodal
transformer of a specialized architecture for controlling a robotic agent in an object manipulation task based
on language instruction, which we refer to as RozumFormer. Our model is based on a bimodal (text-image)
transformer architecture originally trained for solving tasks that use one or both modalities, such as language
modeling, visual question answering, image captioning, text recognition, text-to-image generation, etc. The
discussed model was adapted for robotic manipulation tasks by organizing the input sequence of tokens
in a particular way, consisting of tokens for text, images, and actions. We demonstrated that such a model
adapts well to new tasks and shows better results with fine-tuning than complete training in simulation and
real environments. To transfer the model from the simulator to a real robot, new datasets were collected
and annotated. In addition, experiments controlling the agent in a visual environment using reinforcement
learning have shown that fine-tuning the model with a mixed dataset that includes examples from the initial
visual-linguistic tasks only slightly decreases performance on these tasks, simplifying the addition of tasks
from another domain.

INDEX TERMS Action generation, bimodal transformer models, intelligent agent, robotic manipulator arm
control.

I. INTRODUCTION
Transformers [1] are finding applications in increasingly di-
verse fields. Initially applied to natural language processing
tasks [1], [2], this class of models quickly became a universal
architecture used in computer vision [3], multimodal task
solving [4], [5], reinforcement learning [6], and other do-
mains [7]. Transformers have formed the basis of foundation
models [8] and generalist agents [9].

In this work, we propose and explore the use of a pre-
trained multimodal transformer of a specialized architecture
to control an intelligent agent, which we call RozumFormer.
In contrast to work that focuses on the use of large language
models (LLMs) [10]–[12], we base our approach on a large
bimodal (text-image) model, initially designed for solving
tasks that require text and image modalities, such as question
answering, text generation, visual question answering, image
captioning, text-to-image generation, and others. However,

the adaptation of this model for the control of an intelligent
agent is complicated by the specific organization of the input
token sequence, which needs to be maintained when address-
ing new tasks. Despite this, we have shown that such a model
adapts well to new tasks. We illustrate this with the task of
controlling a robotic manipulator arm from the VIMA-Bench
benchmark [13] in both virtual and real environments. In
addition, we conduct experiments on the Atari game environ-
ments [14] and show that fine-tuning the model with a mixed
batch containing examples from the original and target tasks
only slightly decreases performance on the original tasks,
making it easier to add tasks from another domain.
An important part of our research is transferring the ob-

tained model from the simulator to a real robot. It is im-
portant to note that in the simulator, a UR51 robotic manip-

1https://www.universal-robots.com/products/ur5-robot/

VOLUME 11, 2023 1

https://www.universal-robots.com/products/ur5-robot/


Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ulator arm was used, while in the experiments on the real
robot, a ROZUM PULSE 752 robotic arm was used. Despite
the kinematic similarities between these robotic manipula-
tor arms, they have different dimensional characteristics and
workspace sizes, indicating the multi-embodiment nature of
the model. To facilitate the model transfer, the cameras on
the robot stand were positioned to match their locations in
the simulator. Due to a reality gap (lack of photorealism) be-
tween the simulator data and the actual robot data, additional
datasets were collected and annotated to fine-tune the model.

The main contributions of the paper are:
1) We proposed the approach of adapting a pre-trained

large multimodal model called RozumFormer to a new
application domain – robotics tasks in virtual and real
environments.

2) In addition to the classical Sim-to-real transfer, we
proposed an original approach to transfer a model from
a simulator environment to a real robotic stand, whose
main feature is the ability to transfer the representation
of images and actions of a real robotic system into a
format suitable for working with models pre-trained on
simulator data.

3) We collected and annotated datasets called Sweep-Seg
and Sweep-Plan, which are used to train and evaluate
the control model of a real robotic manipulator arm.

The model weights, source code, and collected datasets
are available at the following link: https://github.com/cog-isa/
rozumarm-vima.

II. RELATED WORKS
Recently, transformers have been actively applied in
robotics [7], [10]–[12], [15]–[17], both for tasks related to
Embodied Artificial Intelligence [7], [10], [11], [13] and for
more specific tasks involving the control of robotic manipu-
lator arms [12], [13], [15]–[17]. Typically, such models are
highly specialized [7], [15], [17] and not designed to perform
other tasks. Transformers have also gained wide popularity
in reinforcement learning, both for controlling intelligent
agents [6], [18]–[23] and for modeling the environment in
which the agent operates [24].

The research results of large language models on tasks for
which they were not originally trained [25]–[27], on the one
hand, and recent work on adding a visual modality to LLMs
for solving robotics tasks (e.g. PALM-E [10], RT-2 [12]), on
the other hand, demonstrate the potential for leveraging and
transferring knowledge from one domain to another, thereby
expanding the list of tasks that the model can address.

There are many methods for solving the problem of trans-
ferring the skills of models trained in simulators to control
real robots (the so-called sim-to-real problem) [28], [29].
This topic is still actively developing, since there is a huge
variety of simulators, types of robots and their applications,
teaching methods, and knowledge transfer. In our work, we
focus on robotic manipulator arms. Research into the transfer

2https://rozum.com/robotic-arm/#about

of reinforcement learning methods to agents solving object
grasping problems is very popular in this context [30]. There
are approaches to real-sim-real transfer [31], which, despite
their simplicity, are seen as convenient tools for the practical
deployment of agents trained in simulators. The formulation
of the zero-shot sim-to-real transfer problem based on human
demonstrations [32], [33] is actively being investigated. The
work by Brohan et al. [12] demonstrates that the use of a
vast number of demonstrations available on the web enables
a robotic agent to learn high-level actions that can then be
applied to the control of a real robot.
In general, a universal model or approach to sim-to-real

transfer has not yet been created. Therefore, in this work, we
study it in relation to a specific group of manipulation tasks
that a considered real robot must solve.

III. FORMAL PROBLEM STATEMENT
In this paper, we consider the case where the intelligent agent
policy is learned by a large transformer model LT M, which
is capable of producing a solution outi for task i ∈ TA from
the set of available tasks TA, taking various multimodal inputs
in1, . . . inj, where j is the number of multimodal inputs:

outi = LT M(in1, . . . inj). (1)

We explore the possibility of training such transformer
models on new tasks without degrading the quality of solving
the original tasks.We propose an approach to add newmodal-
ities to the model, both in the input and output data sequences.
To work with an intelligent agent control task, we include

the modality of the agent’s actions in the output. Additionally,
we include the modality of the actions (i.e., the history of the
agent’s actions) and an optional reward in the input sequence,
if it is being addressed using reinforcement learning. Thus,
the input at timestep t is represented as int = (int1, . . . in

t
j) =

(D, I t ,At , [r t ]), where I t is an image,D is a textual description
of the task, At is the previous action (or the history of actions)
of the intelligent agent, and r t is an optional input – the im-
mediate reward the agent received in the previous step during
task execution. It is optional and is used for reinforcement
learning.
The model should produce the next action:

At+1 = out t+1 = LT M(D, I t ,At , [r t ]). (2)

One type of intelligent agent considered in this work is a
robotic manipulator arm, which should be able to solve the
intellectual task of object manipulation both in a simulator
and in a real-world environment. Using a simulator allows
the collection of many manipulator trajectories, varying the
position and appearance of the manipulated objects. These
data are then used to fine-tune the LT M model, which
should be able to operate both in the simulator and on a real
robotic stand.
In this work, a trajectory is considered as a sequence

(I t1, I
t
2,P,A

t), where t is the index of the sequence element
(timestep), I1 and I2 are images from the top and front robotic
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FIGURE 1. The overview of the proposed RozumFormer approach. We propose two approaches for transferring a multimodal transformer model LT M
from a simulator to a real robot – Simulated Observation (SO) and Real Observation (RO). SO uses an intermediate step of generating synthetic images
using a simulator and does not require fine-tuning of the LT M model on real data. RO uses direct preprocessing of images from the robotic stand
camera but requires fine-tuning of the LT M model using previously collected data from the real robot.

stand cameras, P is a multimodal prompt for the entire se-
quence that does not depend on the timestep t . It includes both
a textual task description and images of the target objects for
manipulation, as well as any constraints that need to be taken
into account. A represents the robotic arm’s action, which
consists of the (x, y) coordinates of the robotic arm’s end
effector that are sent to the robot’s controller as the movement
target.

To address the problem of transferring the behavior of
a model trained in a simulator to control a real robot, we
propose a new approach called RozumFormer, whose scheme
is shown in Fig. 1. It enables the functionality of a large
transformer model LT M trained on VIMA-Bench simulator
data [13] to control the Rozum Pulse 75 robotic manipulator
arm that is part of the real robotic stand.

As the LT M model is fine-tuned on the simulator data,
it is worth noting the need to preprocess the images from
the robotic stand cameras, I1 and I2, before inputting them
into the neural network model. We consider two approaches,
which we refer to as Simulated Observation (SO) and Real
Observation (RO).

SO is based on the generation of synthetic images I∗1 and
I∗2 , which allows for the use of pre-trained action generation
models on simulator data. Using the initial images I1 and I2
from the robotic stand cameras, the target objects are seg-
mented and their 3D poses in the workspace are determined.
Then, according to the defined 3D poses, the corresponding
target objects are placed in the simulator, and synthetic im-
ages I∗1 and I∗2 corresponding to the original images I1 and I2
are generated. The synthetic images I∗1 and I∗2 are inputted to
the LT M model to generate the next action. This approach
does not require fine-tuning of the LT M model on data
collected from a real robot.

RO is based on the direct preprocessing of the original
image from the top camera I1 without a synthetic image
generation step. This approach requires the fine-tuning of the
LT M model on images from the real robotic stand camera,
which leads to the necessity to collect data from the real
robotic stand.
These approaches differ only in the way they process the

images from the robotic stand cameras, the pipeline for gen-
erating robot actions remains the same.
Since theLT Mmodel predicts actions A∗ in simulator co-

ordinates, to use it on a real robot, it is necessary to transform
the predicted actions A∗ into actions for a real robot’s end
effector A using the transformation Rmodel→robot :

A = Rmodel→robot(A∗). (3)

The transformation Rmodel→robot is determined through
manual calibration.

IV. METHODOLOGY
A. ADAPTATION OF A LARGE BIMODAL TRANSFORMER
MODEL TO CONTROL TASKS OF AN INTELLIGENT AGENT
To test the proposed RozumFormer approach, a pre-trained
large bimodal transformer model with a specialized archi-
tecture was used. This bimodal transformer operates on both
text and image modalities. It was initially pre-trained on tasks
involving image captioning, image generation from text, and
language modeling. It was then fine-tuned for six additional
tasks: text question answering, mathematical problem solv-
ing, image generation from text, image captioning, visual
question answering, and text recognition in unconstrained
environments. As a result, the bimodal transformer with this
specialized architecture initially solves a diverse range of
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text-visual tasks and has not been trained on the tasks of
controlling an intelligent agent.

A feature of the architecture of the used bimodal trans-
former is the special organization of the input sequence of
tokens used in training and inference. The input sequence
is divided into three parts: left context, center context, and
right context. In this case, the types of tokens used in each
context are strictly fixed: only text tokens are transferred to
the left context, only image tokens to the central context, and
text tokens to the right context. They are filled differently
depending on the current task. If the task is to answer a text
question, then the question is placed in the left context, and
the answer is generated in the right context. When generating
an image based on a text description, the description is passed
to the left context, and the central context is responsible for
generating the image. When solving the image caption prob-
lem, the image is passed to the center context, and the right
context is responsible for the caption. Thus, the combination
of context usage depends on the type of problem to be solved.

In the process of adapting a bimodal transformer with a
specialized architecture for tasks involving intelligent agent
control, we encountered the challenge of preserving the orig-
inal structure of the input sequence without altering the
model’s architecture. This was crucial for maintaining the
ability to solve the initial tasks.

The feature of VIMA-Bench data [13] is that it uses a
multimodal prompt to describe the problem to be solved. This
prompt comprises a description of actions on target objects
and images of the objects themselves. Additionally, in order
to address the challenge of controlling an intelligent agent, it
is necessary to provide the current state of the environment.
Therefore, to adapt the bimodal transformer architecture with
its specialized structure, we implemented the following steps.
Initially, we partitioned the multimodal prompt into textual
and visual components. The textual description of the task
was inserted into the left context. For describing the state
of the environment, we used an image from the top camera,
combined it with images of the target objects from the prompt,
and fed it into the central context. We allocated the right
context for a new modality – agent actions.

The scheme of the proposed large transformer action gen-
eration model for the intelligent agent is shown in Fig. 2.

B. IMAGE SEGMENTATION FROM THE ROBOTIC STAND
CAMERAS
In our work, we study two basic types of object segmentation
in camera images: 1) object recognition by color features
based on classical computer vision methods, and 2) deep
neural network segmentation models that learn the object
features automatically.

1) Image segmentation by color
First, we proposed an approach for color-based image seg-
mentation using the HSV color space representation. It is
illustrated in Fig. 3. HSV encodes color using three channels:
Hue, Saturation, and Value. Hue corresponds to the color’s

MLP VIMA Decoder

Action Embedding 

Action

Text Prompt

Observation
with Prompt TokensText Tokens

"Sweep any {swept_obj} into
{bounds} without exeeding
{constraint}"

Right Context

Image Encoder

Image Prompt:
swept_obj

Image Prompt:
bounds

and constraint

Observation

(x, y, rotation)

FIGURE 2. Scheme of an adapted architecture of a large bimodal
transformer model RozumFormer for generating actions of an intelligent
agent. We use the left context to provide a textual description of the task.
The central context is provided with images of target objects from the
multimodal prompt and the current state of the environment in the form
of an image. The right context is used to predict the agent’s action.

shade, Saturation to its intensity, and Value to its brightness.
To segment an object j of known color, it is necessary to set
thresholds for each channel (hjmin, h

j
max , s

j
min, s

j
max , v

j
min, v

j
max)

in such a way that the color of the pixels in the object falls
within the range defined by these thresholds.
To set the thresholds for the HSV channels, we first find the

thresholds (scmin, v
c
min), c ∈ [black, gray,white] for Saturation

and Value that will remove black, gray, and white colors from
the image. These colors have undefined Hue values. This
means that Hue can take any value for these colors, so these
colors need to be removed before setting the thresholds for
Hue. The result of applying thresholds to the Saturation and
Value channels is shown in Fig. 3. Note that when adjust-
ing these thresholds, it is sufficient to adjust only the lower
boundary and set the upper boundary to the maximum value
(equal to one), since black, gray, and white colors have low
Saturation or Value.
Before setting the Hue threshold, a region of interest is

selected on the image, where all objects to be segmented will
be located, as shown in Fig. 3. This simplifies setting the Hue
threshold and avoids false positive detections during segmen-
tation. Next, the Hue channel thresholds (hjmin, h

j
max), j ∈ O

are adjusted. This adjustment must be done for each color j of
the objects O that need to be segmented.

A Hue histogram is constructed to find the thresholds for
the Hue channel, which shows the number of pixels in the
image for each Hue value. The Hue thresholds for each color
of objects should be set so that the corresponding peak falls
within the range defined by the thresholds.

After segmentation, there is often a lot of noise – small,
unnecessary segments that are false positives. This noise can
be filtered out by applying a threshold to the contour length of
the segment, denoted as lcontourmin . The contour length lcontour of
noise segments is much smaller than that of the target objects.
Additionally, the contour length threshold can help to separate
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FIGURE 3. Scheme of the approach to segment objects in an image by color using the HSV (Hue, Saturation, Value) representation.

different objects of the same color if they have different sizes,
as is the case with the green boundary line and the green
calibration markers (see Fig. 3).

This approach has limitations. For example, it may segment
unwanted objects with colors similar to the target objects. To
address this issue, one can remove all unnecessary objects
from the scene, set a region on the image where segmentation
will be performed, and filter the detected objects based on
their area or contour length. In addition, if objects of the same
color are placed closely together, they may be segmented as
a single object.

2) Neural network-based object segmentation
To overcome the limitations of color-based object segmenta-
tion, we also explore segmentation methods based on deep
neural networks. The most useful for solving the given task
are convolutional methods capable of real-time operation.
Examples of such neural networks are the classic Mask
R-CNN model [34], the fast YOLACT-EDGE model [35],
which takes into account a sequence of images, and the most
recent YOLOv8 model [36]. Existing transformer models for
object segmentation with a fixed number of objects, such as
OneFormer [37], or models with an open vocabulary, such
as OpenSeed [38], are not considered due to their limited
computational efficiency. Semantic segmentation methods
are also not considered, as they do not separate closely located
objects of the same class.

C. ESTIMATING 3D COORDINATES OF OBJECTS ON THE
TABLE
The task of determining the 3D coordinates of objects (col-
ored cubes) on the table involves first determining their 2D
coordinates observed in the image I1 from the top camera and
then adding a third coordinate that considers the table’s fixed
height. The obtained coordinates are used to place the objects
in the simulator further so that the scene in the simulator repli-
cates the real scene. This is necessary to generate observations

from the simulator (see Fig. 1).
The idea of the approach to determine the coordinates of

the cubes on the table is to find a transformation TI→sim

that maps the pixel coordinates (uI , vI ) in the camera image
to the coordinates on the table (xsim, ysim) in the simulator.
To find this transformation, a set of four points with known
coordinates is chosen in both the camera image p1I ...p

4
I and in

the simulator p1sim...p
4
sim. This transformation is represented

by a 3×3 perspective transformation matrix and is computed
in such a way that it maps a point from one set to the
corresponding point in the other set:

TI→sim = PerspTr(Undist(p1I ...p
4
I , dpar), p

1
sim...p

4
sim). (4)

The computation and application of such a perspective
transformation is performed using the OpenCV library [39].
The four-point set is defined by green calibration markers

placed at the corners of the working area, which can be seen
in Fig. 3. The coordinates of the markers on the image are
determined by the centers of the marker segments, which
can be obtained by color-based segmentation. To order the
markers, the marker with black color at its center (lower right
marker) is identified first. This is achieved by exploiting the
noise-filtering property of color-based segmentation, which
results in filled spaces within the segments. By comparing the
areas of the marker segments before and after noise filtering,
the marker labeled with black color at its center can be
determined, as its area after filtering is significantly larger
than before filtering. This labeled marker is placed first in
the set. The remaining markers are ordered in a clockwise
manner. This ensures that the order of the markers remains
consistent and independent of the camera orientation.
Before computing the perspective transformation based on

two ordered sets ofmarker coordinates in the image and on the
table in the simulator, correcting the distortion of the marker
coordinates in the image is necessary. This is achieved by
calibrating the camera parameters using the Kalibr tool3 to

3https://github.com/ethz-asl/kalibr
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determine the distortion parameters dpar , and then correcting
for it.

The coordinates of the markers on the table of the robotic
stand (p1robot ...p

4
robot) are determined using the robotic arm.

The robotic arm is brought to each marker on the table in
the order they are arranged in the image. The coordinates
of the robotic arm’s end-effector (xrobot , yrobot) determine the
coordinates of the marker it is positioned over. The coordi-
nates of the markers on the table in the simulator are taken to
be equal to the coordinates of the markers on the real table.
In cases where the robotic arm cannot reach the markers,
temporary markers can be used. These temporary markers
should be placed closer to the robotic arm’s workspace, and
their positions can be used to find the positions of the outer-
most markers in the same way as the object positions will be
determined.

To determine the position of objects on the table in the
simulator, it is necessary to segment the object (e.g., a colored
cube) in the image I1, find the segment’s center (x jI , y

j
I ), j ∈ O,

and transform the coordinates of the center using the found
perspective transformation after distortion correction:

(x jsim, y
j
sim) = TI→sim(Undist(x jI , y

j
I )). (5)

D. GENERATING IMAGES AND MASKS OF OBJECTS USING
THE SIMULATOR
Using the obtained coordinates (x jsim, y

j
sim), j ∈ O of N ob-

jects O, they are added to the environment of the VIMA-
Bench simulator. Subsequently, synthetic images I∗1 of the
top camera and masks of the detected objects M1∗

1 ...M1∗
N are

generated by the simulator. Similarly, images I∗2 and object
masks M2∗

1 ...M2∗
N can be generated for the front camera.

This approach makes a transition to the domain of simulator
images on which the large transformer model was trained.
It ensures consistent performance regardless of the camera
placement, textures, and colors in the robot stand scene.

E. TRANSFORMATION OF THE ORIGINAL IMAGES
This paper also explores an alternative approach to preparing
input images for the large bimodal transformermodel Rozum-
Former directly from the color images of the top camera
(option RO in the scheme in Fig. 1).

This approach does not require calibration and segmenta-
tion procedures, which significantly simplifies the data prepa-
ration process for the model and does not necessitate using
a simulator. However, it does require collecting a natural
dataset from a real robot stand, for which it is challenging
to collect many training trajectories compared to a simulator.

The transformation of the original top camera image I1
involves applying an affine transformation to it with manually
chosen parameters paffine to obtain an image I∗1 that is close
in the domain (geometric characteristics) to the top camera
images from the VIMA dataset:

I∗1 = Affine(I1, paffine). (6)

F. COLLECTION OF DATASETS FOR TRANSFERRING THE
MODEL TO A REAL ROBOT
1) Data collection on the robot
Since the RO approach requires data from a real robot to
fine-tune the model, it is necessary to collect trajectories on
a robot stand. Therefore, the Sweep-Plan dataset consisted
of 100 trajectories where the agent successfully solved the
‘‘sweep_without_exceeding’’ task from VIMA-Bench [13]
was collected. Each trajectory was a sequence of alternating
observations and actions. The length of each trajectory was
limited to 5 steps, consistent with the simulator.
The oracle agent provided by VIMA-Bench was used for

this purpose. The oracle agent selected actions based on the
positions of the cubes in the simulator, which were synchro-
nized with their real positions on the table at each step. The
positions of the cubes on the table were determined by the
detector from images captured by the installed cameras. At
the beginning of each episode, the cubes were arbitrarily
placed on the table by a human expert.

2) Semi-automatic data labeling for scene recognition
Automated annotation was used to create the dataset for
object segmentation in images from the top and front cam-
eras of the robot stand. The first step involved the color-
based segmentation procedure described earlier in the corre-
sponding section, followed by the conversion of the obtained
annotations into the CVAT 1.1 format 4. In the second step,
manual corrections were made to the object masks using the
CVAT tool5. The following annotation errors were addressed:
uneven or incomplete masks, merging of masks of adjacent
objects (cubes) of the same color, absence of annotated ob-
jects, and incorrectly marked objects. The final annotations
of the dataset were exported in the COCO format [40], which
is suitable for further training neural network models.
The collected Sweep-Seg dataset for scene recognition

includes 232 images with dimensions of 1280×1024 pix-
els. The original annotations consist of 232 grayscale uint16
images, where the higher byte encodes the object class, the
lower byte encodes its number, and a 0-byte indicates the
background. The data contains four categories of objects
(red cube, blue cube, yellow Π-shaped boundary line, and
straight boundary line). The dataset is divided into two parts:
a training set of 187 images and a test set of 45 images. The
test images were chosen equally for the top and front cameras
and for different colors of the boundary line.

V. TOOLS AND DATA USED
A. BASELINE
As a baseline, we use the VIMA model [13] proposed to-
gether with the VIMA-Bench benchmark [13]. VIMA is a
transformer that takes as input the sequence of cropped object
images presented on the scene and the agent’s actions. Cross-
attention layers are used to consider the multimodal prompt,

4https://opencv.github.io/cvat/docs/manual/advanced/xml_format/
#annotation

5https://opencv.github.io/cvat/docs/
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which alternates with causal self-attention layers. The mul-
timodal prompt processes the frozen T5 model [41], after
which the resulting embedding is fed into the input of the
cross-attention layers. VIMA is trained on all tasks from the
VIMA-Bench benchmark. The model options differ in the
parameters: 2 m, 20 m, and 200 m, designated VIMA 2M,
VIMA 20M, and VIMA 200M, respectively.

B. DATASETS
1) VIMA-Bench simulation data
Themain experiments on fine-tuning the bimodal transformer
were conducted using data from the VIMA-Bench simula-
tor6. VIMA-Bench includes 17 types of manipulation tasks
of varying complexity, ranging from simple object transfer
(visual_manipulation) to restoring the original arrangement
of objects relative to each other (rearrange_then_restore).
A distinctive feature of VIMA data is the presence of a
multimodal prompt (text and image) that specifies the type
of task, the objects that need to be manipulated, and the
short length of the trajectories. An action is defined by the
initial and final position of the robotic arm’s gripper. This
paper conducted experiments for object movement without
crossing a boundary (‘‘sweep_ without_exceeding’’), with
training performed on 50,000 trajectories.

2) RozumCube dataset
As an enhancement to the VIMA-Bench simulation data, we
have compiled a unique dataset, the episodes requiring more
precise actions from the model to fulfill the task. The VIMA-
Bench dataset primarily consists of episodes where distractor
cubes are all positioned on one side and swept objects on the
opposite side of the table. In contrast, the RozumCube dataset
episodes invariably contain four cubes that can be dispersed
across the table in any arrangement. We generated 30,000
episodes using a script that uniformly distributes cubes across
the table surface.

3) Real robot data
To transfer the model from the simulator to the real robot,
fine-tuning was performed using a dataset called Sweep-
Plan collected by the Oracle agent on the robot stand. The
dataset consists of 100 trajectories. To address the object
segmentation task in the images from the cameras on the robot
stand, the Sweep-Seg dataset was developed, consisting of
232 annotated images. Its detailed description is given in the
previous section.

4) The Atari environments for controlling intelligent agents
The proposed approach was validated on the game Breakout
from the Atari 2600 environment [14]. The task was formu-
lated as an Offline Reinforcement Learning (RL) problem,
where the agent’s goal is to achieve the most efficient be-
havior based on fixed, limited experience. The training data
consisted of trajectories (replay dataset) generated by the

6https://github.com/vimalabs/VimaBench

DQNmodel [42], trained on 200 million frames in each of the
60 Atari environments. In this paper, we conduct experiments
on the Atari Breakout environment since this is the most
popular Atari environment used. We use rewards to measure
the quality of the learned policy.

5) Textual and visual-linguistic data
The bimodal transformer was trained to solve textual and
visual-linguistic (VL) tasks. To test the hypothesis that train-
ing with a mixed batch has only a slight impact on the quality
of solving the original tasks, we mixed in data from the
original tasks: Text Question Answering (TextQA) – 45,328
examples from SQuAD [43], Mathematic QA (MathQA) –
100,000 examples from [44], image generation and image
captioning (ImageGen, ImageCap) – 82,783 examples from
the COCO dataset [45], visual question answering – 85,759
examples from the Visual Genome dataset [46], text recogni-
tion (TextRec) – 40,312 examples from COCO [45].
For TextQA and MatQA tasks, the F1 score is used. The

METEOR [47] score measures the quality of the generated
answers and captions for VQA and image-captioning tasks.
The Fréchet inception distance (FID) [48] is used to evaluate
the generated images. For text recognition in the wild, the
Normalized edit distance (NED) is used.

C. ROBOTIC STAND
The experimental robotic stand comprises a table, a Rozum
PULSE 75 robotic manipulator arm, and two SVEN IC-545
cameras. The robotic arm has six degrees of freedom and a
working radius of 750 mm. It can move the gripper to a spec-
ified point with a specified orientation, with a repeatability
of 0.1 mm. A spatula is attached to the gripper of the robotic
arm and is used to move objects on the table surface. The
cameras have a focal length of 4.3 mm and capture images
of the table from above and from the side with a 1280×1024
pixels resolution. The manipulation objects are red and blue
cubes in a rectangular area of 100 × 50 cm (Fig. 4). The
dimensions and structure of the testbed replicate the scene
in the VIMA-Bench simulator (the placement of the cameras
and the dimensions of the working area coincide with an
accuracy of 0.5 cm). Still, the textures and colors of the
surfaces differ significantly.
The ‘‘sweep_without_exceeding’’ task was run in the ex-

perimental setup in two configurations: with real observations
(RO) and with observations obtained by a simulator (SO). In
both configurations, the model selected an action as a pair
of points on the table based on the observation p1, p2 ∈ R2.
Then the robotic arm moved the end of the spatula from p1 to
p2 at a fixed height.
In the SO configuration, the observation consisted of im-

ages generated by rendering the scene in the simulator. The
state of the scene in the simulator, defined by the positions of
the cubes, was mapped to the state of the real scene on the
standing table through cube detection and determination of
their positions relative to the camera. In the RO configuration,
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TABLE 1. Quality of object segmentation methods on the Sweep-Seg test sample.

Method mAP50-95-B mAP50-B mAP50-9-M mAP50-M InfTime, s
ColorSeg 0.7890 0.8970 0.7780 0.8770 0.0271
Mask R-CNN 0.7610 0.9150 0.6670 0.9180 0.0745
YOLOv8n 0.8543 0.9536 0.6606 0.9391 0.0260
YOLOv8s 0.8852 0.9632 0.6829 0.9576 0.0280
YOLOv8m 0.8890 0.9626 0.6833 0.9539 0.0383

Front Camera

Top Camera

Manipulator

FIGURE 4. The experimental robot stands with the Rozum PULSE 75
robotic manipulator arm and two SVEN IC-545 cameras for the task
‘‘sweep_without_exceeding’’ from VIMA-Bench.

images from the cameras were used directly to make the
observation.

VI. EXPERIMENTAL RESULTS
A. RESULTS OF SEGMENTATION AND DETECTION OF
SCENE OBJECTS
The training of object segmentation models on the images
from the robotic stand cameras was performed on a worksta-
tion with a CPU Intel i5 6 core 2.90 GHz and an Nvidia GPU
GeForce RTX3060 with 12GB of memory.

The following high-performance segmentation mod-
els were selected for training: Mask R-CNN [34] with
ResNet50_FPN backbone, YOLOv8n (nano), YOLOv8s
(small), YOLOv8m (medium) [49]. All versions of YOLOv8
were trained for 200 epochs with a learning rate of 0.01.
The Mask R-CNN model was also trained for 200 epochs
with a learning rate 0.02. Table 1 shows the metrics for the
best weights of each model, the results of the color-based
segmentation (ColorSeg), and the inference time (InfTime).
After training, the YOLOv8s model showed the best metrics

on the developed dataset, Sweep-Seg test set. In addition, the
average time to process an image differs slightly from the
best-performing YOLOv8n in this parameter.
Examples of the final annotations and masks obtained by

color-based segmentation, Mask R-CNN, and YOLOv8s for
images from the test set are shown in Fig. 5. It can be observed
that the color-based segmentation masks and those obtained
using the YOLOv8s neural network model are almost identi-
cal and are close to the ground truth masks, except in cases
where objects of the same color are located nearby. Here, the
color-based segmentation method erroneously merges them
into one object. Additionally, the figure shows that YOLOv8s
most accurately determines the masks of annotated objects,
while the Mask R-CNN model can hardly detect the red
cubes.

B. PERFORMANCE RESULTS OF THE LARGE BIMODAL
TRANSFORMER MODEL ON THE ROBOTIC MANIPULATOR
ARM
Given that the RozumFormer model necessitates input uni-
fication with only the prompt text and a single image, we
have preprocessed the task-defining data in the following
manner. The left text context incorporates the text prompt,
which provides information about the number and color of
cubes that need to be swept. The right text context is uti-
lized for outputting actions. An action is characterized by
two coordinates: the starting point and the endpoint of the
spatula movement. To discretize the grid, we divided it into
intervals of 2 cm, assigning a unique token in the dictionary
for each value. As only one image can be input into the
middle part, and a minimum of three images are required for
a comprehensive task description (scene view, texture of the
target cube, and texture of the area where the cube should end
up), we amalgamated this essential information into a single
image (refer to Fig. 7) and tokenized it using the frozen VQ-
GAN model.

1) Simulated Observation approach
An illustration of the task execution in an SOmode is depicted
in Fig. 6. Initially, we assess our approach in a simulator
on 500 randomly sampled episodes from the VIMA-Bench
and RozumCube dataset. The comparative results between
the proposed RozumFormer model and VIMA are presented
in Table 2. Following the adaptation of the model to the
conditions of the actual robotic arm, we evaluated the success
rate of 15 random episodes on the real robot, the results are
shown in Table 3.
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RGB GT Mask Yolov8sColor Segmentation Mask-RCNN

FIGURE 5. Examples of object segmentation on images from Sweep-Seg dataset for various methods.

FIGURE 6. Example of the execution of the ‘‘sweep_without_exceeding’’
task in SO mode. On the left is the initial scene configuration in the
format that is fed to RozumFormer. On the right is the result of the
episode, with each arrow indicating the action taken.

TABLE 2. Success Rate of models trained on simulated data in a
simulation environment on the different datasets.

Model VIMA-Bench test RozumCube
VIMA 2M 0.79 0.40
VIMA 20M 0.91 0.87
VIMA 200M 0.96 0.90
RozumFormer 0.92 0.94

2) Real Observation approach
We also test RozumFormer in Real Observation mode. To
do this, we additionally fine-tuned the model used in the
Simulated Observation approach on the Sweep-Plan dataset
collected on a real robot. After that, we tested RozumFormer

FIGURE 7. An example of adapting the "sweep_without_exceeding" task
to the conditions of the real robot using the RozumFormer-SO approach.
On the left is the original image from the top camera, and on the right is
how the reconstructed scene looks. The arrow shows the action
suggested by the model.

TABLE 3. Success Rate when using the Simulated Observation approach.
To assess the model’s quality, cube configurations similar to those in the
VIMA-Bench dataset were placed in the workspace of the robotic arm.
Models are trained on simulation data only.

Model VIMA-like real poses
VIMA 200M 0.80
RozumFormer 0.93

on 15 episodes on a real robot. For this purpose, cube config-
urations corresponding to the configuration from the Rozum-
Cube dataset were manually set in the robot’s workspace.
An episode was successful if the robot moved cubes of the
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TABLE 4. Results on text-visual tasks and Atari Breakout with different
batch generation methods during training.

Task Metric Atari only Equal mixed VL-tasks
TextQA F1 0.003 0.259 0.272
VQA METEOR 0.006 0.356 0.364
MathQA F1 0.005 0.301 0.315
ImageCap METEOR 0.008 0.240 0.237
ImageGen FID 0.006 0.273 0.281
TextRec NED 0.004 0.368 0.363
Breakout Reward 173.4 171.8 —

target color in the desired area without exceeding boundaries
and did not move cubes of a different color. The model fine-
tuned on the Sweep-Plan dataset shows a Success Rate of
0.73, which demonstrates a good generalization to a real robot
given the small size of the collected on the real robot dataset.

C. RESULTS OF TESTING ON THE ATARI GAME
ENVIRONMENT DURING TRAINING WITH A MIXED BATCH
Table 4 shows the results of training the bimodal transformer
only on the Atari Breakout game (Atari only), with a mixed
batch (Equal mixed), and only on the original tasks (VL-
tasks).

Regardless of the training mode, RozumFormer demon-
strates impressive performance in the game Breakout, scoring
173.4 when trained only on Atari data and 171.8 when using
an equally mixed batch. This is significantly superior to the
results obtained by Decision Transformer [6], an approach to
Offline Reinforcement Learning, which shows a score of 76.9
± 27.3 on Breakout.
However, As can be seen from the results, using only Atari

data for training significantly degrades the quality of the orig-
inal tasks. This degradation can be mitigated by mixing the
data of the original tasks in equal proportions during training.
Thus, training the model on a new task and incorporating data
from the original tasks into the batch allows us to broaden the
range of tasks themodel can solvewith only aminor reduction
in performance on the original tasks.

VII. CONCLUSION
The paper proposes an approach to adapt a large pre-trained
bimodal (text-image) transformer architecture, trained on tex-
tual and visual-linguistic tasks, to control an intelligent agent,
which we call RozumFormer. RozumFormer involves the
formation of a specially designed input token sequence con-
sisting of a multimodal description of the task, the agent’s ob-
servations, and its actions while preserving the input structure
dictated by the architectural characteristics of the transformer
used. This approach is demonstrated in solving the object
manipulation task using a robotic manipulator arm in both
virtual and real environments.

To transfer amodel trained on simulator data to a real robot,
we propose Simulated Observation and Real Observation.
The Simulated Observation approach does not require addi-
tional fine-tuning of the model on real robot data but includes
an additional step of generating synthetic images based on

the real state of the environment. In the Real Observation
approach, there is no step in generating synthetic images.
Still, it is necessary to fine-tune the model on real data,
which requires collecting trajectories on a robot stand. Using
the Real Observation approach, RozumFormer demonstrates
a Success Rate of 0.73 with additional fine-tuning on the
Sweep-Plan dataset collected on a real robot. This demon-
strates the successful transfer of the model from the simulator
to a real robot stand, considering the size of the collected
dataset.
We also present results for controlling an intelligent agent

in the Atari game environment. RozumFormer shows results
superior to such a reinforcement learning approach as Deci-
sion Transformer. We also show that when training with an
equally mixed batch containing not only Atari data but also
the data from the original tasks, we obtain comparable results
on the target task onlywith a slight degradation on the original
tasks. This demonstrates that using a mixed batch helps to
efficiently expand the set of solvable tasks.
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