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Abstract. The paper considers the task of simultaneous learning and
planning actions for moving a cognitive agent in two-dimensional space.
Planning is carried out by an agent who uses an anthropic way of knowl-
edge representation that allows him to build transparent and understood
planes, which is especially important in case of human-machine interac-
tion. Learning actions to manipulate objects is carried out through re-
inforcement learning and demonstrates the possibilities of replenishing
the agent’s procedural knowledge. The presented approach was demon-
strated in an experiment in the Gazebo simulation environment.

Keywords: cognitive agent· sign· sign-based world model· human-like
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1 Introduction

One of the main tasks researchers are facing with in the field of robotics and
artificial intelligence is the task of ensuring the effective interaction of robots
and people in collaborative scenarios, i.e. when a person and a machine perform
joint actions in a shared environment. To solve this problem the questions arise
of arranging the operation the robotic system in such a way that its actions are
transparent, predictable and quickly interpretable by a person, in other words, it
is necessary that the robot’s behavior be human-like in cases of human-machine
interaction becomes especially urgent. One of the directions of scientific research
aimed at solving this issue is the direction for the development of cognitive

? The results concerning models of sign components and planning algorithms (Sections
4.1 and 4.2) were obtained under the support of the Russian Science Foundation
(project No. 16-11-00048), and the results on reinforcement learning for manipulator
(Sections 4.3 and 5) were obtained under the support of the Russian Foundation for
Basic Research (project No. 17-29-07079).
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agents, i.e. such intelligent agents who would learn and plan their actions using
approaches based on cognitive models of human behavior [1, 2].

In this paper, we consider the task of developing a cognitive agent that plans
to move in space and actions to manipulate objects using the so-called sign-based
world model [4–6]. This way of knowledge representation about the environment,
the agent himself and other participants in joint activities is based on the psy-
chological theories of Leontyev’s activity [9] and Vygotsky’s cultural-historical
approach [10], which ensures his simple interpretation by human. In this paper,
the agents world model is spatial procedural and declarative knowledge that
use pseudo-physical logic [3], created with the use of psychological data on the
human-like spatial reasoning. Spatial knowledge constructed by analyzing the
map using egocentric coordinates allows maintaining the agent’s autonomy re-
gardless of the state of the “center”, and various levels of map representation
reduce the requirements for its computing resources.

The agent’s actions planning, carried out within the world model, is also psy-
chologically plausible. We leave out the details of the reactive functions [7, 8] and
the algorithms for recognizing the objects of the surrounding space significant
for the agent [11]. The presented in the paper algorithm of spatialMAP plan-
ning is hierarchical and abstracts from the details of the implementation of an
action, solving the task of creating a sequence of abstract agent actions (moving,
rotating, picking up an object), which will lead to the set goal. At each iteration
of the plan execution, the planner can be restarted, which makes it possible to
make a more detailed plan for implementing the abstract action.

The world model of a cognitive agent can be replenished through learning.
In this paper, complex actions to move objects are constructed through rein-
forcement learning through the TRPO algorithm [12], which allows to optimize
the strategies of choosing smaller actions with guaranteed monotonous improve-
ment. The constructed functions, the control over which is transmitted every
time after obtaining the appropriate prescription from the planning algorithm,
allow to interact with different kinds of objects without classifying the methods
of interactions and having only an abstract description of the required state at
the end of the action. After the successful completion of the learning algorithm
and the performance of the action, the action is saved as an experience and
re-learning is no longer required.

The cognitive agent described in this paper is able to function in real environ-
ments, which is experimentally confirmed in simulations in Gazebo. Also, work
is underway to implement experiments in real conditions with a robotic system
that includes a platform allowing the movement of the agent, an arm similar to
the one for the Turtlebot 2, as well as the camera, lidar and other sensors.

The paper is organized as follows. Part 2 presents the formulation of the
problem of planning the movements of a cognitive agent, and briefly describes the
algorithm for the operation of the cognitive agent. Part 3 provides an overview
of modern methods of planning movements using pseudo-physical logics, as well
as a comparison of reinforcement learning algorithms. Part 4 provides a detailed
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implementation of the planning and reinforcement learning algorithm. Part 5
contains a description of the experiments performed.

2 Problem Statement

The goal driven behavior of the cognitive agent is realized through an iterative
procedure, which consists of 3 basic steps:

1. Agents learning.
2. Planning actions to achieve the target situation.
3. Plan implementation in the environment.

Agents learning is based on the reinforcement learning approach, for the
implementation of which the algorithm TRPO is used. Learning takes place
in a synthetic environment, which is a minimalistic model of the environment,
containing only the information necessary for learning. Reinforcement learning
is a machine learning tool that allows an agent to develop the desired behavior
strategy based on the environmental response. This method uses a system of
penalties and rewards for the actions of the agent, which allows you to take into
account the experience of previous interactions. To describe the activity of a
cognitive agent, a probability distribution π(o|s) is used that characterizes the
probability of an agent choosing an action o in a state s. Probability distribution
π is called a strategy: π(o|s) = P (ot = o|st = s).

The agent, following the strategy, applies the actions and passes from the
state to the state, receiving for it a reward r, which can be either positive or
negative.

As an evaluation of the strategy, a value η(π) is considered that is the
mathematical expectation of the discounted remuneration for the whole session:

η(π) = Eπ[
∞∑
t=0

γtr(st)].

The TRPO algorithm described in this paper uses a surrogate function, the
maximization of which, with the right choice of step, entails optimizing the
value η(π). Combining with the algorithm Natural policy gradient [13] greatly
improves the work of the algorithm.

In the case of using as a goal situation for reinforcement learning some sub-
goal in the overall task of planning, the result is a sequence of actions (strategy)
to achieve this sub-goal. After the formation of such meta-actions for the sub-
goals follows the process of planning actions. The plan P to achieve a set of facts
G (the target state of a cognitive agent) is a sequence of pairs , where a0...aN is
the set of actions of the agent, and

∑
0, ...,

∑
N a set of states such that G ⊆

∑
N .

The plan P describes the process of solving the planning problem.
The planning problem consists of a description of the initial situation S, the

final situation F , and the planning domain D = 〈T,R,Pr, A〉. The description of
the situation S in the spatial planning case we are considering contains the initial
coordinates of the objects on the agent map, the boundaries of the map, as well as
a description of the agent’s state (its direction and the state of the manipulator).
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The situation description F contains the final coordinates of the objects, the
agent and the map constraints. Planning domain includes description of object
types, description of roles R (abstract classes, for example “block?x”, “direction-
start”, “region?y”), description of predicates and actions. Predicates express
relationships between objects (predicate “ontable”), agent status (“manipulator
empty”, “agent direction”) and spatial logic of the problem (predicates “close”,
“close”, “far”). The predicates of spatial logic are interrelated in such a way
that the predicate description for any distance, except for the “close” distance,
consists of predicates of smaller distances to intermediate objects. Actions ∀a ∈
A, a = 〈n,Cnd,Eff〉 have the form, where n- the name of the action, Cnd- the
facts describing the condition for the applicability of the action, but Eff - the
facts that are actualized as a result of the application of the action.

The implementation of the plan is carried out in the Gazebo simulation
environment, where a step-by-step execution of the plan takes place and the
knowledge about the agent’s capabilities obtained using the TRPO algorithm is
used.

3 Related Works

The spatial representation of the planning task requires the cognitive agent to
know the function of estimating distances, the possibility of representing and
manipulating spatial quantities in its own world model. Most of the approaches
that have been developed in this area can be divided into three areas: spatial-
network approaches, approaches based on biologically plausible representation
of the environment and approaches based on the psychological representation of
knowledge.

Spatial-network approaches [14, 15] do not require knowledge of the environ-
ment used by cognitive agents, but are among the most common approaches
in robotics when using mobile non-intelligent systems. The description of their
activities is reduced to the partition of the map of the area into cells and the
transitions of agents through these cells. The advantage of these approaches over
the others is the speed of building an action plan, as inadequacies can be distin-
guished inapplicability in real conditions with a previously unknown or partially
known map of the environment.

The biological approach is typical for tasks that do not require the agent’s
conceptual general knowledge of the environment. In most cases, the agent is
not intelligent, but is able to make simple deductive assumptions about changes
in the environment. In [16], a model based on studies of rat’s brain activity is
described [17–19]. The model describes a hierarchical environment represented
by maps of different scales. Planning of movement takes into account all possi-
ble goals of achieving the goal, which requires a large amount of resources for
calculating possible changes in activity, taking into account the dynamics of en-
vironmental changes. This problem was partially addressed in [20, 21], which led
to the creation of the RatSLAM system, which allowed the agent to travel long
distances in real terrain.
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Within the framework of a psychologically plausible approach to the issue of
agent action planning, problems associated with the incompleteness and inac-
curacy of the description of the environment are considered. To solve the tasks
set, a wide range of ways of representing the agent’s knowledge is used, many
of which allow approximating knowledge of the environment up to the level re-
quired for action planning. In [22, 23], an approach is considered in which the
spatial model is perceived by an artificial agent as a set of the most likely actions
in the current position of the agent, which approximates the representation of
the spatial relationships of the artificial agent to the representation that is used
by human.

In this paper we describe an approach that takes into account the merits
of the hierarchical representation of the map by the agent, the possible incom-
pleteness of knowledge about the objects of the map and the dynamics of its
change. Sign-based knowledge representation formalism allows an agent to co-
operate with other cognitive agents [24] and create a plan consisting of actions
based on the pseudo-physical logic of the spatial relationships of the location of
objects on the map. The approach uses not only actions to move the agent, but
also actions that manipulate the surrounding objects. For this, the capabilities
of the reinforcement learning algorithm were used. The reinforcement learning
algorithms can be conditionally divided into two groups: based on the choice
of strategy by maximizing the value function and based on the search for an
optimal strategy in the strategy space [29]. Examples of reinforcement learning
algorithms based on utility maximization are the algorithms described in [25,
26]. The algorithm of Q-learning [27] for the robotic system manipulator was
applied, the reward depended on the distance from the part of the manipulator
responsible for capture the target. The space of actions was discrete. An example
of the application of the first approach in the continuum of action is the work
[28]. To make a decision the agent trained according to the method from the
first group compares the value of the utility function of each action, and in spite
of the fact that this approach makes the algorithms flexible in application to
various tasks, in some problems it is inefficient. Algorithms of the second group
change the strategy directly without spending time on evaluating all actions.
TRPO [12], used in this work, which allows to work in the continuum of action
space, belongs to the second group and in the search for strategy changes pa-
rameters only in a certain neighborhood, therefore it converges along a smoother
trajectory.

4 Synthesis of Behavior of Cognitive Agent

4.1 Human-like Knowledge Representation

A sign representation of the agent’s knowledge was proposed in [4, 30]. The sign
is a tuple of four components s = 〈n, p,m, a〉, where n - is the component of the
name, p - the component of the image,m - the component of the significance, a-
the component of the personal meaning. Signs can mediate both elementary ob-
jects and complex actions. The same semantic networks describe the components
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of the sign, whose nodes are special structures called causal matrices [6]. Causal
matrices are structured sets of references to other signs and elementary features.
Each of the sign components corresponds to a certain type of information, for
example, the sign image component describes the process of object recognition
and categorization. The significance component represents the agent’s knowledge
of the environment, and the component of the personal meaning describes the
agent’s preferences and the nature of his activity. The name component allows
you to make a naming process, i.e. link the remaining components into a single
logical structure.

The main task of the spatialMAP algorithm described in this paper is the
synthesis of the plan for moving the agent with the sign-based world model on
the map and the agent’s implementation of the interaction with the objects that
are located on it. In the agent’s world model, the map is displayed using the
signs of cells and regions [24], which are assigned to the agent in advance based
on pseudo-physical logic. At the recognition stage, the agent divides it into 9
regions, the size of which depends only on the characteristics of the card itself,
and associates them with the signs “Region-0” - “Region-8”. Next, the agent
looks at the region in which it is located. If no objects are present in the region,
the agent connects the “Cell” and “Cell-4” signs with this area and builds around
it a focus of attention that describes the current situation consisting of 9 cells. If
there are any objects in the region, the agent recursively divides the region into
9 parts until a segment of the map containing only agent is formed. After this,
the focus formation procedure described above is followed. Next, causal matrices
are formed on a network of values for the “Location” and “Contain” signs (see
1), which describe the location of all regions and cells relative to the cell with
the agent, as well as the objects that are in them.

Fig. 1. Causal matrices of the the “Location” and “Contain” signs.

After this follows the process of formation of causal matrices of the initial
and final situations and map that are required for the synthesis of the action
plan (the process is shown in Algorithm 1). Matrices of situations consist of
references to signs describing the relationship at the focus of attention of the
agent, consisting of cells and the agent itself (its direction and the state of the
manipulator). The map matrices describe the status of the task map on a more
abstract level and contain references to the regions signs.
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4.2 SpatialMAP algorithm

The process of plan synthesis is implemented using the spatialMAP algorithm
and allows you to build an action plan from the initial to the finish situations
of the planning task. The input to the algorithm is given a description of the
situations and the planning domain that is required to refine the predicates and
actions applicable in the present task.

1 Tagent := GROUND(map, struct)
2 Plan := MAP SEARCH(Tagent)
3 Function MAP SEARCH(zsit−cur,zsit−goal,zmap−cur,zmap−goal,plan,i):
4 if i > imax then
5 return ∅
6 end
7 zsit−cur, zmap−cur = Za

sit−start, Z
a
map−start

8 zsit−goal, zmap−goal = Za
sit−goal, Z

a
map−goal

9 Actchains = getsitsigns (zsit−cur)
10 for chain in Actchains do
11 Asignif | = abstract actions (chain)
12 end
13 for zsignif in Asignif do
14 Ch| = generate actions (zsignif )
15 Aapl = activity(Ch, zsit−cur)

16 end
17 Achecked = metacheck(Aapl, zsit−cur, zsit−goal, zmap−cur, zmap−goal)
18 for A in Achecked do
19 zsit−cur+1, zmap−cur+1 = Sit (zsit−cur, zmap−cur, A)
20 plan.append(A, zsit−cur)
21 if zsit−goal ∈ zsit−cur+1 and zmap−goal ∈ zmap−cur+1 then
22 Fplans.append (plan)
23 end
24 else
25 Plans := MAP SEARCH

(zsit−cur+1, zsit−goal, zmap−cur+1, zmap−goal, plan, i + 1)
26 end

27 end
Algorithm 1: Process of plan synthesis by cognitive agent

The process of plan synthesis consists of two main stages: the stage of re-
plenishing the agent’s world model with new signs based on the planning and
learning task (step 1) and the recursive search phase (steps 2-27). The recursive
search phase begins with the comparison of the current recursion step with the
maximum possible (steps 4-6), if the step is less than the maximum, then the
matrices of the present and target situations and the map should be obtained
(steps 7-8). Next, in step 9 chains of causal matrices of signs are formed, which
enter the present planning situation (in the first step of the recursion, the matrix
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of the initial situation). In steps 10-12, a process is underway to search for matri-
ces of abstract (not specified within the framework of the present task) actions.
For each matrix of actions found, a process of its refinement takes place on the
set of matrices of signs activated in this task (steps 13 - 14). At step 15, a pro-
cess of selecting the appropriate actions in the present situation occurs. Then, at
step 17, among all the remaining actions, those whose application will create the
situation most similar to the target one are selected. After this, in steps 19-20
the plan is replenished with the selected action and a new situation is created
from the effects of the action and the signs entering the present situation. In
steps 21-23, the activation of the matrices of the target situation and the map
by the agent is checked, if the matrices of the target situation and the cards were
activated, then the algorithm ends, if not, then in step 25 a recursive call of the
plan search function takes place with an increase in the number of iterations by
1. After the planning process is over, the shortest one is selected from all the
plans that have been planned and the process of its execution begins. A plan is
a list of tuples that consist of actions and states. Each state include coordinates,
and direction of the agent after the action is performed.

Plan := [(a1, S1), (a2, S2), (a3, S3)]

The plan is sent to the agent in the Gazebo environment sequentially, the
agent after the execution of each of the actions returns the result of execution. If
the result is positive, the next step is sent, otherwise there is replanning process.

The next step describes the process of generating personal meanings (ac-
tions), obtained with the reinforcement learning algorithm.

4.3 Learning of sub-plans

To describe the agent’s interaction with the environment, the Markov decision-
making process (S,O, P, r, γ) is used, where S a set of states, O set of actions,
P : S×O×S → [0, 1] transition probability distribution, reward function and γ
discounting factor. In this paper, the action space is continual, so a multidimen-
sional normal distribution N(µ,

∑
) is used to determine the strategy π, where µ

and
∑

are specified by the neural network. Thus, the strategy π is parametrized
by the weights of the θ neural network, and all functions of π are functions of θ.

The function η(θ), which is the evaluation of the strategy πθ, is replaced by
the following surrogate function, which links the two strategies:

Lθ(θ̃) = η(θ) + Eπθ
π
θ̃
(o|s)

πθ(o|s)
(Qθ(s, o)− Vθ(s))

where Qθ and Vθ are the value functions of an action and a state and are defined
as follows:

Qθ(s̃t, õt) = Eπθ (

∞∑
l=0

γlr(st+l)|st = s̃t, ot = õt)
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Vθ(s̃t) = Eπθ (

∞∑
l=0

γlr(st+l)|st = s̃t)

Optimization Lθ with θ̃ by restriction to the average Kullback-Leibler dis-
tance entails an increase in the initial function η(θ). To search the optimal direc-
tion problem, the natural policy gradient method is used, which uses linear ap-
proximation L and quadratic approximationDKL: for 1

2 (θold − θ)TK(θold)(θold−
θ) ≤ δ, where K(θold) = ∆θD

θold
KL . Update rule:

θnew = θold + αK(θold)
−1∇θL(θ)|θ=θold

The value K(θold)
−1∇θL(θ)|θ=θold is the solution of the equation K(θold)x =

∇θL(θ)|θ=θoldwith respect to x, the value α is selected by linear search for a

maximum L with constraints D
θold
KL (θold, θ) ≤ δ.

5 Experiments in simulator

As part of the demonstration of the procedure for synthesizing the behavior
of a cognitive agent, an experiment was conducted to move the robotic agent
Turtlebot 2 in Gazebo to the table where a small block was placed and the
block was picked up by the agent’s manipulator. The plan consisted of a list
of actions, including “move”, “rotate” and “pick-up” actions. The process was
organized using a client-server architecture, where the client was a spatialMAP
planner on a remote machine that sent a message using the services of the ROS
operating system to the server. Messages are about the goal move point in case
the “move” action was activated, about changing the direction of the agent
when activating the action “rotate” and the activation of the “pick-up” action.
When the “pick-up” action was activated, the script obtained using the TRPO
algorithm started working. Agent’s scheme of the environment is presented in 2.

To implement the TRPO algorithm, two environments were created: a syn-
thetic learning environment and a framework for applying the algorithm to
Gazebo. Two environments have the same space of states and actions. To de-
scribe the agent’s interaction with them, an example of the manipulator’s grip
of an object on the table is given below.

3 shows the model of a manipulator in a synthetic environment in the two-
dimensional case. Points 1-4 are joints of manipulators. The action is to change
the angle in one of them (in 3D, rotation around the vertical axis is added).
Point B- the target point at which the agent should move point 4.

The remuneration system works as follows: if, as a result of the action, the
length of the vector

−→
4B has decreased, then the agent receives a reward in the

amount
∣∣∣−→4B∣∣∣, if not changed, then it is fined 5, and if increased, is fined 2

∣∣∣−→4B∣∣∣.
The state of the agent is a sequence (β1, β2, β3, α1, α2, α3,

−→
4B,
−→
3B,
−→
2B) (in 3D it

is added α4), where βi are the angles in joints and αi are the angles between the

following vectors: α1 = (
−̂→
14,
−→
1B), α2 = (

−̂→
24,
−→
2B), α3 = (

−̂→
34,
−→
3B). In such a state
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Fig. 2. Scheme of cognitive agent’s spatial representations.

Fig. 3. Model manipulator in a synthetic environment.

space, the inequality α1 ≤ 0 means that the goal point B is below the vector−→
14 and it is necessary to make a turn in the joint 1 by the corresponding angle.
This representation of the position of the manipulator relative to the goal point
makes the strategy πless dependent on position B. Because the space of states
and actions for the two media are identical, the neural network trained in a
synthetic environment can be used in an environment interacting with Gazebo.

6 Conclusion

The paper presents an original approach to the synthesis of cognitive agent
behavior, which is realized through the interaction of a reinforcement learning
approach and a planning algorithm based on a psychologically plausible way of
representing knowledge. A scheme of such interaction is proposed for robotic
platforms with a manipulator, and an example of the work of this approach in
the task of moving a platform in space and manipulating it with external ob-
jects is demonstrated. In future works, it is planned to disclose the interaction
of centralized planning algorithms for agent coalitions and reinforcement learn-
ing methods, allowing the interaction of agents with the environment in real
conditions.
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