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Abstract. In this paper, we consider the problem of multi-agent nav-
igation in partially observable grid environments. This problem is chal-
lenging for centralized planning approaches as they typically rely on full
knowledge of the environment. To this end, we suggest utilizing the re-
inforcement learning approach when the agents first learn the policies
that map observations to actions and then follow these policies to reach
their goals. To tackle the challenge associated with learning cooperative
behavior, i.e. in many cases agents need to yield to each other to accom-
plish a mission. We use a mixing Q-network that complements learning
individual policies. In the experimental evaluation, we show that such
approach leads to plausible results and scales well to a large number of
agents.
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1 Introduction

Planning the coordinated movement for a group of intelligent agents is usually
considered as a separate direction of behavior planning. Two classes of meth-
ods for solving this problem can be distinguished: centralized and decentralized.
The methods of the first group are based on the assumption of the existence
of a control center, which has access to complete information about the states
and movements of agents at any time. In most cases, such methods are based ei-
ther on reducing the multi-agent planning to other well-known problems, e.g. the
boolean satisfiability (SAT-problems) [17], or on heuristic search. Among the lat-
ter, algorithms of the conflict-based search (CBS) family are actively developing
nowadays. Original CBS algorithm [14] guarantees completeness and optimal-
ity. Many enhancements of CBS exist that significantly improve its performance
while preserving the theoretical guarantees – ICBS [2], CBSH [5] etc. Other vari-
ants of CBS, such as the ones that take the kinematic constraints into account,
target bounded-suboptimal solutions [1] are also known. Another widespread
approach to centralized multi-agent navigation is prioritized planning [19]. Pri-
oritized planners are extremely fast in practice, but they are incomplete in gen-
eral. However, when certain conditions have been met the guarantee that any
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problem will be solved by a prioritized planning method can be provided [3].
In practice these conditions are often met in the warehouse robotics domains,
therefore, prioritized methods are actively used for logistics applications.

Methods of the second class, decentralized, assume that agents are controlled
internally and their observations and/or communication capabilities are limited,
e.g. they do not have direct access to the information regarding other agent’s
plans. These approaches are naturally better suited to the settings when only
partial knowledge of the environment is available. In this work we focus on one
such setting, i.e. we assume that each agent has a limited field of view and can
observe only a limited myopic fragment of the environment.

Among the methods for decentralized navigation, one of the most widely
used is the ORCA algorithm [18] and its numerous variants. These algorithms
at each time step compute the current speed via the construction of the so-called
velocity obstacle space. When certain conditions are met, ORCA guarantees that
the collision between the agents is avoided, however, there is no guarantee that
each agent will reach its goal. In practice, when navigating in a confined space
(e.g. indoor environments with narrow corridors, passages, etc.), agents often
find themselves in a dead-lock, when they reduce their speed to zero to avoid
collisions and stop moving towards goals. It is also important to note that the
algorithms of the ORCA family assume that velocity profiles of the neighboring
agents are known. In the presented work, such an assumption is not made and
it is proposed to use learning methods, in particular – reinforcement learning
methods, to solve the considered problem.

The use of reinforcement learning algorithms for path planning in partially
observable environments is not new [15,7]. In [9] the authors consider the single-
agent case of a partially observable environment and apply the deep Q-network [8]
(DQN) algorithm to solve it.

In [11] the multi-agent setting is considered. The authors suggest using the
neural network approximator that fits parameters using one of the classic deep
reinforcement learning algorithms. However, the full-fledged operation of the
algorithm is possible only when the agent’s experience is replenished with expert
data selected based on the optimal path that is built by the classical scheduler.
The approach does not use maximization of the general Q function but tries to
solve the problem of multi-agent interaction by introducing various heuristics:
an additional loss function for blocking other agents; a reward function that
takes into account the collision of agents; other agents’ goals encoding in the
observation.

We propose to solve the problem using reinforcement learning methods. As a
methodological base, we propose to use a mixing Q-network, which implements
the principle of monotonic improvement of the overall assessment of the value
of the current state based on the current assessments of the value of the state of
individual agents. Learning the mixing mechanism based on a parameterized ap-
proximator allows to automatically generate rules for resolving conflict patterns
when two or more agents pass intersecting path sections. We also propose the
implementation of a flexible and efficient experimental environment with trajec-
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tory planning for a group of agents with limited observations. The configurability
and the possibility of implementing various behavioral scenarios by changing the
reward function allow us to compare the proposed method with both classical
methods of multi-agent path planning and with reinforcement learning methods
designed for training one agent.

2 Problem statement

We model multi-agent pathfinding problem in partially observable environment
as single-agent task with dynamic obstacles. The process of interaction between
the agent and the environment will be modeled by the partially observable
Markov decision process (POMDP). The result of the training will be a policy
that maps the agent’s observation into the action. This function will generate
agent behavior and will take into account possible conflict situations.

Markov decision process is described as the set < S,A, P, r, γ >. s ∈ S
describes a state of the environment. Every step in the environment an agent
executes action a ∈ A and recieves reward with the following reward function
r(s, a) : S × A → R. This action initiates a state-transition in the environment
P (s′|s, a) : S × A × S → [0, 1]. The agent uses the information received from
the environment to automatically generate the policy function π(a|s) : A×S →
[0, 1]. In many cases, it is more efficient to form the value function Q(at, st) =
r(st, at) + E(

∑∞
i=1 γ

ir(st+i, at+i)), where γ is a discount factor.
The POMDP differs from the standard setting in that a separate set of

possible observations of the agent O is introduced, which in the general case
is not the same as the set of states S: < S,O,A, P, r, γ >. In this case, the agent
receives from the environment not its state, but some observation o. Accordingly,
the strategy and the value function are formed from the observation: π(a|o) :
A×O → [0, 1], Q(at, ot) = r(st, at) + E(

∑∞
i=1 γ

ir(st+i, at+i)).
In the problem of path-finding for a set of agents, the environment is a graph

of a regular structure (cellular field), in which a subset of nodes is responsible
for obstacles, another subset - positions available to agents, including goals for
agents. The task of the agents is to build the optimal (shortest) path to their
goal. In this problem, the state s ∈ S describes the location of obstacles, agents,
and goals of agents. Observation o ∈ O describes information about the location
of obstacles, agents, and goals in a radius around a specific agent. Agents can
perform actions to move along the X and Y axes along the cell field.

3 Method

In this paper, we propose an original architecture for decision-making and agent
training based on a mixing Q-network that uses deep neural network to param-
eterize the value function by analogy with deep Q-learning (DQN).

In deep Q-learning, the parameters of the neural network are optimized
Q(a, s|θ). Parameters are updated for mini-batches of the agent’s experience
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data, consisting of sets < s, a, r, s′ >, where s′ is the state in which the agent
moved after executing action a in the state s.

The loss function for the approximator is:

L =

b∑
i=1

[((ri + γmaxai+1Q(si+1, ai+1|θ))−Q(si, ai|θ))2],

b is a batch size.
In the transition to multi-agent reinforcement learning, one of the options for

implementing the learning process is independent execution. In this approach,
agents optimize their own Q-functions for the actions of a single agent. This
approach differs from DQN in the process of updating the parameters of the
approximator when agents use the information received from other agents. In
fact, agents decompose the value function (VDN) [16] and aim to maximize the
total Q-functionQtot(τ, u), which is the sum of the Q-functions of each individual
agent Qi(ai, si|θi).

The Mixing Q-Network (QMIX) [10] algorithm works similarly to VDN. How-
ever, in this case, to calculate Qtot, a new parameterized function of all Q-values
of agents is used. More precisely, Qtot is calculated to satisfy the condition that
Qtot increases monotonically with increasing Qi:

δQtot

δQi
≥ 0 ∀i 1 ≤ i ≤ numagents,

Qtot is parameterized using a so-called mixing neural Q-network. The weights
for this network are generated using the hyper networks [4]. Each of the hyper
networks consists of a single fully connected layer with an absolute activation
function that guarantees non-negative values in the weights of the mixing net-
work. Biases for the mixing network are generated similarly, however they can
be negative. The final bias of the mixing network is generated using a two-layer
hyper network with ReLU activation.

The peculiarities of the mixing network operation also include the fact that
the agent’s state or observation is not fed into the network, since Qtot is not
obliged to increase monotonically when changing the state parameters s. Indi-
vidual functions Qi receive only observation as input, which can only partially
reflect the general state of the environment. Since the state can contain useful
information for training, it must be used when calculating Qtot, so the state s is
fed as the input of the hyper network. Thus, Qtot indirectly depends on the state
of the environment and combines all Q-functions of agents. The mixing network
architecture is shown in Figure 1.

The mixing network loss function looks similar to the loss function for DQN:

b∑
i=1

[(yitot −Qtot(τ
i, ui, si|θ))2]

ytot = r + γmaxt′Qtot(τ
′, u′, s′|θ−).
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Here b is the batch size, τ ′ is the action to be performed at the next step after
receiving the reward r, u′ is the observation obtained at the next step, s′ is the
state obtained in the next step. θ− are the parameters of the copy of the mixing
Q-network created to stabilize the target variable.

Fig. 1. a) Mixing network architecture. W1, W2, B1, B2 are the weights of the mixing
network; Q1, Q2 ... Qn are the agents’ Q values; s is the environment state; Qtot is
a common Q Value; b) Hyper network architecture for generating the weights matrix
of the mixing Q-network. The hyper network consists of a single fully connected layer
and an absolute activation function. c) Hyper network architecture for generating the
biases of the mixing Q-network. The hyper network consists of a single fully connected
layer.

4 Experimental environment for multi-agent path finding

The environment is a grid field with agents, their goals, and obstacles located
on it. Each agent needs to get to his goal, avoiding obstacles and other agents.
An example of an environment showing partial observability for a single agent
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is shown in Figure 2. This figure also shows an example of a multi-agent envi-
ronment.

Fig. 2. The left figure shows an example of partial observability for a single agent
environment: gray vertices are free cells along the edges of which the agent can move; a
filled red circle indicates the position of the agent; the vertex with a red outline is the
target of this agent, vertex with red border - projection of the agent’s goal. The area
that the agent cannot see is shown as transparent. The right figure shows an example
of an environment for 8 agents, projections of agents’ goals and partial observability
are not shown for visibility purposes.

The input parameters for generating the environment are:

– field size Esize ≥ 2,
– obstacle density Edensity ∈ [0, 1),
– number of agents in the environment Eagents ≥ 1,
– observation radius: agents get 1 ≤ R ≤ Esize cells in each direction,
– the maximum number of steps in the environment before ending Ehorizon ≥

1,
– the distance to the goal for each agent Edist (is an optional parameter, if it

is not set, the distance to the goal for each agent is generated randomly).

Obstacle matrix is filled randomly by parameters Esize and Edensity. The
positions of agents and their goals are also generated randomly, but with a
guarantee of reachability.

The observation space O of each agent is a multidimensional matrix: O :
4×

(
2×R+1

)
×
(
2×R+1

)
, which includes the following 4 matrices. Obstacle

matrix : 1 encodes an obstacle, and 0 encodes its absence. If any cell of the agent’s
field of view is outside the environment, then it is encoded 1. Agents’ positions
matrix : 1 encodes other agent in the cell, and 0 encodes his absence. The value
in the center is inversely proportional to the distance to the agent’s goal. Other
agents’ goals matrix : 1 if there is a goal of any agent in the cell, 0 – otherwise.
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Self agent’s goal matrix if the goal is inside the observation field, then there is
1 in the cell, where it is located, and 0 in other cells. If the target does not fall
into the field of view, then it is projected onto the nearest cell of the observation
field. As a cell for projection, a cell is selected on the border of the visibility area,
which either has the same coordinate along with one of the axes as the target
cell or if there are no such cells, then the nearest corner cell of the visibility area
is selected. An example of an agent observation space is shown in Figure 3.

Fig. 3. An example of an observation matrix for a purple agent. In all observation cells,
1 means that there is an object (obstacle, agent, or goal) in this cell and 0 otherwise.
a) Environment state. The agent for which the observation is shown is highlighted; b)
Obstacle map. The central cell corresponds to the position of the agent, in this map
the objects are obstacles; c) Agents map. In this map, the objects are agents; d) Other
agents’ goals map. In this map, the objects are the goals of other agents; e) Goal map.
In this map, the object is the self-goal of the agent.

Each agent has 5 actions available: stay in place and move vertically (up or
down) or horizontally (right or left). An agent can move to any free cell that is
not occupied by an obstacle or other agent. If an agent moves to a cell with his
own goal, then he is removed from the map and the episode is over for him.

Agents receive a reward of 0.5 if he follows one of the optimal routes to his
goal, −1 if the agent has increased his distance to the target and −0.5 if the
agent stays in place.

5 Experiments

This section compares QMIX with the Proximal Policy Optimization (PPO),
single-agent reinforcement learning algorithm [13]. We chose PPO because it
showed better results in a multi-agent setting compared to other modern rein-
forcement learning algorithms. Also, this algorithm significantly outperformed
other algorithms, including QMIX, in the single-agent case.

The algorithms were trained on environments with the following parameters:
Esize = 15×15, Edensity = 0.3, Eagents = 2, R = 5, Ehorizon = 30, Edist = 8. As
the main network architecture of each of the algorithms, we used architecture
with two hidden layers of 64 neurons, with ReLU activation function for QMIX
and Tanh for PPO. We trained each of the algorithms using 1.5M steps in the
environment.
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QMIX on Random Set
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QMIX on Hard Set
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Fig. 4. The graphs show separate curves for different environment sizes. For environ-
ment sizes 8× 8; 16× 16; 32× 32, we used 2, 6, 16 agents, respectively. The left graph
shows the success rate for the QMIX algorithm in random environments. The right
graph shows the success rate for the QMIX algorithm in complex environments.

The results of training of the QMIX algorithm are shown in Figure 4. We
evaluated the algorithm for every 105 step on a set of unseen environments.
The evaluation set was fixed throughout the training. This figure also shows
evaluation curves for complex environments. We generated a set of complex
environments so that agents needed to choose actions cooperatively, avoiding
deadlocks. An example of complex environments for a environment size of 8× 8
is shown in Figure 5. This series of experiments aimed to test the ability of QMIX
agents to act sub-optimally for a greedy policy, but optimal for a cooperative
policy.

Fig. 5. Examples of complex 8×8 environments where agents need to use a cooperative
policy to reach their goals. In all examples, the optimal paths of agents to their goals
intersect, and one of them must give way to the other. Vertices that are not visible to
agents are shown as transparent.
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The results of the evaluation are shown in Table 1 for random environments
and in Table 2 for complex environments. As a result of training, the QMIX sig-
nificantly outperforms the PPO algorithm on both series of experiments, which
shows the importance of using the mixing network for training.

Table 1. Comparison of the algorithms on a set of 200 environments (for each param-
eter set) with randomly generated obstacles. The last two columns show the success
rate for PPO and QMIX, respectively. The results are averaged over three runs of each
algorithm in each environment. QMIX out-performs PPO due to the use of the mixing
Q-function Qtot.

Esize Eagents R Ehorizon Edist Edensity PPO QMIX

8× 8 2 5 16 5 0.3 0.539 0.738
16× 16 6 5 32 6 0.3 0.614 0.762
32× 32 16 5 64 8 0.5 0.562 0.659

Table 2. Comparison on a set of 70 environments (for each parameter set) with complex
obstacles. The last two columns show the success rate for PPO and QMIX, respectively.
The results are averaged over ten runs of each algorithm in each environment. QMIX,
as in the previous experiment, out-performs PPO.

Esize Eagents R Ehorizon Edist Edensity PPO QMIX

8× 8 2 5 16 5 0.3 0.454 0.614
16× 16 6 5 32 6 0.3 0.541 0.66
32× 32 16 5 64 8 0.5 0.459 0.529

6 Conclusion

In this work, we considered the problem of multi-agent pathfinding in the par-
tially observable environment. This formulation with incomplete information
makes it impossible to apply the classical methods of multi-agent pathfinding,
but it allows the use of reinforcement learning algorithms. It was proposed to
apply a mixing Q-network with a neural network approximation to solve this
problem, which selects the parameters of a unifying Q-function that combines
the Q-functions of individual agents. An experimental environment was devel-
oped for launching experiments with learning algorithms. In this environment,
the efficiency of the proposed method was demonstrated and its effectiveness
outperforms the on-policy reinforcement learning algorithm design only for the
single-agent case. It should be noted that the comparison was carried out un-
der conditions of limiting the number of episodes of interaction between the
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agent and the environment. If such a sample efficiency constraint is removed,
the on-policy method can outperform the proposed off-policy Q-mixing network
algorithm. In future work, we plan to combine the advantages of better-targeted
behavior generated by the on-policy method and the ability to take into account
the actions of another agent when resolving local conflicts using QMIX. The
model-based reinforcement learning approach seems promising, in which it is
possible to plan and predict the behavior of other agents and objects in the en-
vironment [12,6]. We also assume that using adaptive task composition for agent
training (curriculum learning) will also give a significant performance boost for
tasks with a large number of agents
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