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 A B S T R A C T

Model Predictive Control (MPC) is a powerful tool for planning the local trajectory of autonomous mobile 
robots. The paper considers a new algorithm for trajectory planning and obstacle avoidance based on the 
MPC technique known in Artificial Intelligence (AI) planning and robotics. We have proposed an original 
method for decomposing obstacles to form a potential field, which in turn is used as an additional component 
in MPC. Thus, we propose a new intelligent trajectory planning method that takes into account the special 
shape of obstacles, which in turn significantly improves the metrics of intelligent agent movement on the 
well-known Moving AI benchmark. The challenging aspect of MPC planning is collision avoidance on large 
and complicated grid maps. We propose the Polygon Segmentation for obtaining Artificial Potential Field 
(PolySAP). This local planner approximates the obstacles on the map with a set of polygons. We address the 
question of how to partition a map with polygons to make it fast and effective for a practical MPC planner. 
We propose a decomposition algorithm based on Straight Skeleton. Our algorithm returns a set of polygons, 
which are then convexified. Numerical experiments show that our method outperforms basic algorithms in 
performance and provides sufficient partition quality for effective planning. We propose an artificial potential 
function calculated for polygonal obstacles and added to the MPC objective for collision avoidance. We 
evaluate our approach on city map dataset and on a real robotic platform. Numerical experiments show that 
PolySAP allows for polygon decomposition that is five times faster than Interior Extensions. Our MPC solver 
provides a fast solution for the MPC task compared to the state-of-the-art MPC planners. Our planner ensured 
the safe motion of the real mobile robot through a narrow indoor environment. Our code is available at 
https://github.com/alhaddad-m/PolySAP.
1. Introduction

Autonomous robots can effectively act and solve various tasks in 
different environments: offices (BrainCorp, 2023b), homes (Szot et al., 
2021), shops (BrainCorp, 2023a), medical facilities (MOXI, 2023; Vogel 
et al., 2021; Parikh et al., 2023), outdoor landscapes (Kayacan and 
Chowdhary, 2019), and even other planets (Daftry et al., 2022). The 
planning methods depend on the surroundings of the robots (Panov, 
2019). When dealing with complex paths with multiple obstacles, a 
two-stage planning process is typically used (Jian et al., 2021; Bo-
jadžić et al., 2021). In the initial stage, known as global planning, 
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a rough path is generated from the starting point to the target des-
tination. Subsequently, in the second stage, termed local planning, 
this preliminary path is refined into an executable trajectory through 
smoothing or optimization. This local planning phase can be performed 
in real time using receding horizon planning, incorporating sensor data 
to dynamically adapt the trajectory (Tong, 2020; Li, 2020). In this 
case, local planning is often formulated as a Model Predictive Control 
(MPC) problem (Bojadžić et al., 2021; Schoels et al., 2020a; Thirug-
nanam et al., 2022; Zuo et al., 2020; Li et al., 2021). This problem 
may be solved using direct numerical solvers based on interior point 
method (Waechter and Biegler, 2005–2022) or sequential quadratic 
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data mining, AI training, and similar technologies. 
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Fig. 1. Common scheme of the PolySAP planning stack. The state-of-the-art rough global planner generates a polyline path based on the occupancy grid. Our decomposition 
algorithm extracts a set of convex obstacle polygons from the occupancy grid. By projecting the global path onto the polygon map, we can identify the polygons that pose a 
danger to the robot. The parameters of these polygons are then passed to the obstacle-aware MPC local planner, which generates the robot’s trajectory.
programming (Verschueren et al., 2022). Obstacle avoidance may be 
inserted into MPC formulation as a set of constraints, e.g. Schoels et al. 
(2020a), or as a set of obstacle-related cost terms, e.g. Thirugnanam 
et al. (2022). The first approach is sensitive to the quality of the initial 
guess, which is better to be collision-free for the correct convergence 
of the numerical solution (Schoels et al., 2020a). Alternatively the 
stochastic techniques like MPPI (Williams et al., 2016) may be utilized 
instead of numerical solver; however such techniques may produce un-
stable or oscillating solutions. Contrary, the second approach allows the 
numerical optimizer to converge from the initial path, which contains 
collisions. In this case, a repulsive Artificial Potential Function (APF) 
may be introduced, which take lower values far from obstacles, very 
high values inside them, and descend with receding from them (Al-
haddad et al., 2024). In our work, we address MPC for local planning, 
incorporating collision avoidance based on an APF.

Such an APF should be differentiable, as its gradient indicates the 
direction in which the trajectory should be adjusted to enhance safety. 
The challenge to be addressed is how to design it for large, arbitrary 
cell maps, such as Occupancy Grids (OG), which are commonly used in 
practical applications. Computational heaviness of the numerical MPC 
may be decreased by integrating neural networks (Song et al., 2023), 
fuzzy logic (You et al., 2024) or linearizing techniques (Morato et al., 
2021). Many existing works consider the obstacles as a known set of 
simple-shaped figures, e.g Blackmore et al. (2011), Szmuk et al. (2017) 
and Thirugnanam et al. (2022). Other works aim to find an approxi-
mation of the collision danger (Schoels et al., 2020a,b; Kurenkov et al., 
2022; Adamkiewicz et al., 2022) or to replace numerical MPC solution 
with the sampling-based technique that does not require analytical 
obstacle models (Williams et al., 2016, 2017; Mohamed et al., 2020).

Our work is motivated by the fact that many real environments con-
sist of objects with flat surfaces. These environments can be represented 
as a maze constructed of polygons. Examples of such cases are corridors 
and rooms in office buildings, shops, warehouses, or living spaces. It 
seems useful to develop a planner, which exploits such a structure of 
the environments. One can decompose mazes into convex polygons 
and set the simple APF formulation for these polygons. The convex 
nature of polygons is important for two reasons. First, moving away 
from the center of such a polygon guarantees a greater distance from 
the obstacle it represents, based on its geometry. Second, in complex 
mazes, convexification allows for the generation of polygons with 
fewer parameters. During the local planning process, small polygons 
near obstacles are selected, which significantly reduces the number of 
parameters in the problem. The formulation of APF could be rather sim-
ple, without the need to apply a complicated techniques like in Schoels 
et al. (2020a,b), Kurenkov et al. (2022), Adamkiewicz et al. (2022), 
Williams et al. (2016, 2017) and Mohamed et al. (2020) This approach 
is challenging due to two factors. Firstly, polygon decomposition can 
be computationally intensive. Secondly, the straight lines of the maze 
may appear non-straight on the occupancy grid due to sensor and 
quantization errors.

We propose an obstacle avoidance approach based on the fast 
decomposition of the 2D OG into a set of simple polygons. We call 
our local planner PolySAP, which means Polygon Segmentation for 
obtaining Artificial Potential Field. A common scheme of our approach 
is presented in Fig.  1. A local plan is obtained in two operations. First, 
2 
polygon decomposition algorithm transforms the occupancy grid into 
a set of convex polygons. Second, MPC solver optimizes the trajectory 
regarding the polygons nearest to the global path.

1.1. Contribution

In this paper, we develop both a decomposition algorithm and an 
MPC local planner. The significance of our contribution lies in the novel 
decomposition algorithm we propose for transforming an obstacle map 
into a set of convex polygons. The main purpose of this method is to 
reduce the initial set of partitions using information from the spatial 
skeleton. Existing decomposition methods often generate many small 
polygons and then merge them according to an optimization prob-
lem. In a noisy environment, this initial decomposition can result in 
numerous polygons, which slows down the optimization process. Our 
method addresses this issue by ignoring small details of polygons that 
do not impact the robot’s ability to navigate the environment. After 
decomposition, the polygons are convexified to eliminate the possibility 
of the robot colliding with these minor details. Our algorithm has 
demonstrated a decomposition process that is five times faster than the 
baseline Interior Extensions method.

Our contribution also includes a novel APF formulation, which 
introduces trajectory repulsion from convex obstacle polygons within 
the MPC optimization loop. We define a sigmoid APF term that depends 
on the distance between the robot and the nearest line of the obstacle 
polygon. Experiments showed that our formulation provides signifi-
cantly faster trajectory optimization than the CIAO (Schoels et al., 
2020a) MPC local planner.

1.2. Structure

The rest of the paper is structured as follows. The next section an-
alyzes the existing works on motion planning, collision avoidance, and 
polygon decomposition. The following two sections introduce our poly-
gon decomposition algorithm and the MPC approach. Then, we describe 
the implementation and experimental results of our local planner. Last 
sections discuss the results and provide concluding remarks.

2. Related works

2.1. Motion planning for mobile robots

Robotic planning is a broad research area; see, e.g., the review 
by González et al. (2016). Global planners are mostly based on random 
sampling and/or systematic search. Also there are some approaches 
based on artificial potential field (Khatib, 1985) or bio-inspired discrete 
optimization (Ding, 2020). Most search-based planners emanate from 
A* (Hart et al., 1968), a heuristic extension of the graph search algo-
rithm by Dijkstra (1959). Sampling methods are chiefly based either on 
Rapidly-exploring Random Trees (RRT) by LaValle and Kuffner (2001) 
or on Probabilistic RoadMaps (PRM) by Kavraki et al. (1996). Note that 
the concept of APF was initially introduced for global planning (Khatib, 
1985; Erdmann and Lozano-Perez, 1986). In APF global planners, 
moving toward the destination point is considered as a gradient descent 
of robot coordinates in the artificial potential field. This approach was 
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further developed in some novel works (Kim and Shin, 2006; Ren et al., 
2006; Szczepanski et al., 2022). Its main disadvantage is that it can get 
stuck in a dead-end, while search-based and sampling-based planners 
cope with this challenge as they are multi-hypothesis. Optimization 
seems more effective for local planning where the global plan lies near 
the global minimum.

There are several works where search-based and sampling-based 
global planners are modified or extended with specific post-processing 
to provide an executable local path (e.g., reviews by Heiden et al. 
(2020) and Gammell and Strub (2021)). Alternative approach is to 
perform the search not on a grid map, but on a set of motion prim-
itives (Butzke et al., 2014). This approach has high computational 
capacity due to the large branching factor when searching for prim-
itives. We consider another concept where a rough and fast global 
planner provides the path as a simple polyline and then turns into an 
executable trajectory with fast and powerful optimization. Significant 
examples of such rough planners are Theta* (Nash et al., 2007) and 
visibility graph (Lozano-Pérez and Wesley, 1979; Yang et al., 2022). 
The first is an A* extension, which supports any-angle paths on 2D 
grids. The second search method is done on the graph of obstacle 
polygon vertices instead of the cell structure of OG. It is fast and 
provides a short path. However, these paths are dangerous as they 
touch obstacle borders.

2.2. Trajectory optimization and collision avoidance

Trajectory optimization can be done in two modes. In the first 
one, the trajectory is considered holistically. There are specific al-
gorithms for this statement, such as CHOMP (Ratliff et al., 2009), 
STOMP (Kalakrishnan et al., 2011), TrajOpt (Schulman et al., 2014), 
or GuSTO (Bonalli et al., 2019). This mode does not cover the pos-
sibility of meeting previously unknown obstacles while moving along 
the path. The second mode (MPC) assumes that the optimization is 
done for a certain part of the future path (prediction horizon), and 
re-optimization is done after a certain period (control horizon). Some 
approaches, e.g. CIAO (Schoels et al., 2020a), allow the planning 
problem to be solved in both modes. MPC has to be strictly real-
time with a specified re-planning rate. There are specific tools that 
provide real-time solutions to correctly stated MPC problems (includ-
ing nonlinear cases). IPOPT (Waechter and Biegler, 2005–2022) and 
ForcesPro (Zanelli et al., 2017) utilize the interior point method, while 
ACADO (Houska et al., 2011a,b) and Acados (Verschueren et al., 2022) 
apply sequential quadratic programming to obtain the solution. In this 
work, we use Acados, a fast and novel tool for MPC.

There is a number of works on common collision avoidance (Gilbert 
et al., 1988; Stoican et al., 2019; Zhang et al., 2022; Zimmermann et al., 
2022), when the task is recognize the fact of collision for the given 
robote pose. Contrary, the MPC statement requires collision avoidance 
to be expressed analytically as a cost term or a set of constraints. In the 
first case, the obstacle-related cost term (APF) needs to be differentiable 
to allow gradient repulsion from the obstacles. If the obstacles are rep-
resented with a known set of simple geometric shapes (points, circles, 
ellipses, or polygons), defining analytical APF is not a very difficult 
job. This statement is considered, e.g. by Szmuk et al. (2017), Luis 
et al. (2020) and Wu et al. (2021). The task is more challenging for the 
arbitrary cell map with unstructured obstacles. Analytical solutions to 
MPC problems can be replaced with sampling-based Model Predictive 
Path Integral approach for local planning (Williams et al., 2016, 2017; 
Mohamed et al., 2020).

Another approach is to train a neural model of collision dan-
ger (Adamkiewicz et al., 2022; Kurenkov et al., 2022; Salzmann et al., 
2024; Katerishich et al., 2023; Alhaddad et al., 2024). Solver by Al-
haddad et al. (2024) work in real time however, it require high 
computation power, which is obtained from remote server. Other 
mentioned neural models are non-realtime.
3 
We are considering another approach where an arbitrary obstacle 
map is approximated with simpler geometric figures to minimize the 
computations. In CIAO (Schoels et al., 2020a,b), free space around the 
robot is approximated with a simple convex figure (circle or square). 
The use of convex free space models guarantees the absence of col-
lisions, provided there is reachable initial guess. However, it signif-
icantly limits the ability to modify the trajectory during local plan-
ning. Point-wise and circular obstacles are handled by Ji et al. (2016) 
and Zeng et al. (2021) respectively. In Ziegler et al. (2014), the tra-
jectory of the autonomous cars is constrained with two polylines for 
the lane-following task. Papaioannou et al. (2023) represent obsta-
cles with cuboids; obstacle detection probability is assigned to each 
cuboid. Blackmore et al. (2011) introduces an approach for avoiding 
polytopic obstacles; the question of how to obtain polygons from the 
map is not considered. Thirugnanam et al. (2022) puts forth a collision 
model for the case when both the robot and the obstacles are polytopic. 
This approach requires discrete-time dynamics.

2.3. Polygon decomposition

Area decomposition methods include:

1. Cell decomposition: An area is represented as a polygon. The 
polygon is divided into a set of smaller polygons. For most cell 
decomposition methods, two stages are distinguished: the initial 
decomposition and the stage of combining areas.

2. Area segmentation: An area is represented as a polygon or 
an occupancy grid. It is used for areas that are rooms inside 
buildings. Despite this, some algorithms may be used in street 
spaces.

Area segmentation includes methods such as watershed algorithm, 
morphological segmentation, and distance-based segmentation (Bor-
mann et al., 2016). They use the morphological erosion and dilation 
operators to solve the segmentation problems. This approach is un-
suitable for solving our task, as it does not consider the context and 
cannot guarantee the convexity of the partition. Trapezoidal Decom-
position (Latombe, 1991) and Boustophedon Decomposition (Choset 
and Pignon, 1998) are classical algorithms for the space decomposition 
problem, but they do not take into account any kinematic constraints 
of the robot. Their generalization (Morse Decomposition by Acar et al. 
(2002)) is too hard to implement.

Many papers present methods (e.g. Huang (2001), Nielsen et al. 
(2019), Li et al. (2020, 2011) and Tang et al. (2021)) that include the 
following steps:

1. Build a polygon’s vertices that satisfy the chosen heuristics (all 
vertex or only concave vertex).

2. Draw split lines in some directions (e.g., an extension of edges) 
that form the primary decomposition.

3. Solve certain optimization problems and merge cells from pri-
mary decomposition.

This approach has the following drawbacks: primary decomposition 
can include a lot of cells, and the selection of the optimal combination 
of cells can be very long. Li et al. (2011) tried to fix the first challenge 
by drawing dividing lines only from the concave vertices. Tang et al. 
(2021) proposes using a depth-first search to solve the second problem. 
Notably, in Li et al. (2020), the authors decide to move away from solv-
ing the optimization problem and draw split lines between the polygon 
vertices according to certain heuristics. However, this approach does 
not draw split lines between the polygon edge’s vertices, which can 
lead to drawing too long split lines.

An alternative way to reduce the area search space is offered 
by Tang et al. (2021). The authors present the R-DFS method based on 
a depth-first search. Voronoi graph-based (Thrun, 1998; Preparata and 
Shamos, 1989) segmentation uses space skeleton to solve segmentation 
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problem. This approach extracts information from the space skeleton 
and utilizes unique heuristics for each task. The use of heuristics along 
with the space skeleton makes it possible to construct various segmen-
tation and decomposition methods that solve a large class of applied 
problems. Such methods include CDM (Construction Decomposition 
Method) (Brown, 2017), which uses a Straight skeleton as a space 
skeleton (Aichholzer and Aurenhammer, 1995).

2.4. Discussion

Analysis of the related works lead to the following outcomes:

• The state of the art approach to trajectory planning for mobile 
robots include global path planning for generating the rough ge-
ometric path and local motion planning for turning this path into 
smooth trajectory, which avoid obstacles and satisfy kinodynamic 
constraints. Global planning is effectively solved via search-based 
algorithms such as Theta* (Nash et al., 2007), which output the 
geometric path as a polyline. Local planning may be solved via 
model predictive control (MPC).

• Collision avoidance within MPC planning is challenging, as it re-
quire analytic representation of obstacles. This challenge is over-
come by use of gradient-free randomized MPPI planners (Williams 
et al., 2016, 2017), by use of learnable collision model
(Adamkiewicz et al., 2022; Kurenkov et al., 2022), or by approxi-
mating obstacle map with simple geometric shapes (Schoels et al., 
2020a; Thirugnanam et al., 2022; Schoels et al., 2020b). The last 
approach provide stable and fast results. MPPI and neural fields 
provide a solution for arbitrary maps by using computationally 
redundant techniques (random sampling and approximation with 
the complex neural model).

• Approaches, which rely on geometric approximation, often con-
sider this approximation to be given (e.g. polytopic obstacles 
in Blackmore et al. (2011), Thirugnanam et al. (2022)). The task 
of obtaining this representation from obstacle map is consid-
ered in Schoels et al. (2020a,b) however, resulting representation 
mark a lot of free space as obstacles. We cannot specify existing 
approach, which provide realtime approximation of collision dan-
ger, and mark obstacles and free space accurately. In this work 
we aim to provide MPC local planner, which include fast and 
accurate geometric obstacle representation.

• Obstacle approximation with a set of convex polygons seems 
promising as it, first, may be effectively handled within MPC
(Blackmore et al., 2011; Thirugnanam et al., 2022) and, second, 
allow for high accuracy. Space decomposition with polygons is a 
well-know task in computational geometry. There is a number of 
works on this task (Bormann et al., 2016; Nielsen et al., 2019; 
Li et al., 2020, 2011; Tang et al., 2021). However, there is no 
method, specifically desgned for MPC obstacle avoidance. The 
task of local planning provide a specific requirements for polygon 
decomposition. Its performance is critical, while the accuracy has 
to be tuned according to the resolution of the common obstacle 
map and linear size of the robot.

In general, this work aim to develop a novel MPC local planner, which 
utilize polygon decomposition of the obstacle map. The issues, that we 
try to overcome, is computational complexity of polygon decomposition 
and low accuracy of obstacle modeling with geometric approximation 
(which lead to lower quality of the planned trajectories). In Section 5 
we show that our algorithm provide fast obstacle decomposition and 
high-quality real-time planning in the cluttered environments.
4 
3. Polygon decomposition

3.1. Background

Consider a robot navigating an environment populated with obsta-
cles (of non-trivial shapes). The surrounding map is available
(e.g. through the simultaneous localization and mapping system) in 
the form of the occupancy grid. The latter can be considered a binary 
image, i.e. the image that contains only two types of pixels: black 
(corresponding to obstacles) and white (corresponding to free space). 
Denote the set of all blocked pixels on the image as 𝑋. We aim to 
decompose it into the 𝑁 regions {𝑆𝑖}𝑁𝑖=1 so that the following conditions 
are met:

1. 𝑋 =
⋃𝑁
𝑖=1 𝑆𝑖,

2. 𝑆𝑖 ∩ 𝑆𝑗 = ∅, 𝑖 ≠ 𝑗,
3. IsConvex(𝑆𝑖 ∪ 𝑆𝑗 ) = 𝐹𝑎𝑙𝑠𝑒 𝑖 ≠ 𝑗.

Here IsConvex is a predicate that returns true if the region is 
convex. Informally, we want to split the arbitrary-shaped obstacles that 
surround the robot into the convex sub-obstacles.

The following two criteria will be employed to measure the effec-
tiveness of the decomposition. The first is the number of sub-regions, 
𝑁 (the lower, the better). The second is 𝛥 (also, the lower, the better), 
which is computed as: 

𝛥 =
𝑁
∑

𝑖=1
𝐴(𝐶(𝑆𝑖))∕

𝑁
∑

𝑖=1
𝐴(𝑆𝑖) − 1. (1)

Here 𝐴(⋅) denotes the region’s area, and 𝐶(⋅) denotes the convex 
hull of the region. The introduced criterion is minimal, i.e., it equals 0, 
when all the regions 𝑆𝑖 are convex (as in this case, the areas of their 
convex hulls equal the areas of the regions themselves). If some 𝑆𝑖 is 
not convex, 𝛥 is positive. Following this formulation, the two existing 
methods can be mentioned.

The first method is Interior Extension of Edges (Nielsen et al., 
2019). Interestingly, it represents an approach with the initial parti-
tioning of space and subsequent solution of the optimization problem to 
unite the regions. This method works with a polygon representation of 
the workspace. The polygon vertices are selected whose forming faces 
make an angle greater than 180 degrees. Further, separating lines are 
drawn from these faces, extending them already outside the polygon. 
The intersections of the separating lines divide the workspace into a set 
of convex polygons 𝑆. The second stage of the algorithm is the union 
of convex polygons. A set of possibilities for merging two polygons 𝛺
is created, and its elements are denoted as 𝑗. The following integer 
programming problem is solved for minimizing the total width of the 
combined polygons: 

min
∑

𝑗∈𝛺
𝑤𝑗𝜆𝑗 ,

s.t.
∑

𝑗∈𝛺
𝑎𝑖𝑗𝜆𝑗 = 1,∀𝑖 ∈ 𝑆,

𝜆𝑗 ∈ {0, 1},∀𝑗 ∈ 𝛺,

(2)

where 𝑤𝑗 is polygon width; 𝑎𝑖𝑗 is the possibility of polygon 𝑖 merging 
with its neighbors, defined in the set 𝛺, and equals 0 or 1; 𝜆𝑗 is the 
decision variable, which determines the choice of the possibility of 
polygon merging. An example of how the algorithm works is shown 
in Fig.  2. We can think of an obstacle as a polygon with a hole. Thus, 
on Fig.  2, the initial partition of a polygon consists of ten polygons, and 
the final partition has five.

Interior Extension of Edges solves an optimization problem for 
merging polygons. In the case of heavily noisy maps, the initial par-
titioning may be excessive, which can negatively affect the speed of 
solving the optimization problem 3. An example of a noisy map is 
shown in Fig.  3. By noise, we mean various artifacts caused by the 
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Fig. 2. An example of how the interior extension of edges works (Nielsen et al., 2019). 
(a) Initial partition after extension of edges. Partition consists ten convex polygons. 
(b) The final partition after solving the optimization problem. Partition consists five 
polygons.

Fig. 3. Excessive initial partitioning example. Inaccuracy of the sensors lead to 
artifacts, which enlarge the number of small polygons.

inaccuracy of the sensors. Indeed, there exists a (limited) number of 
the algorithms that can be used to remove this type of noise, like 
the Douglas-Pecker algorithm (Douglas and Peucker, 1973). However, 
such methods require extensive parameter tuning for each problem 
instance, which significantly limits their applicability. To this end, we 
suggest our own method of decomposition based on the ideas of another 
decomposition method that is relevant to us, i.e. CDM (Construction 
Decomposition Method) (Brown, 2017).

Noteworthy feature of CDM is that it represents the space skeleton 
approach. The latter extracts information from the skeleton to solve a 
decomposition problem. The main task of the method is to divide the 
office space map into rooms. This is achieved by searching for places 
where space begins to narrow.

CDM works with the polygon representation of the map. Based on 
the vertices of 𝑃  polygons, a Straight Skeleton 𝑆(𝑃 ) is constructed. The 
Straight Skeleton (Aichholzer and Aurenhammer, 1995) is a structure 
generated through continuous uniform compression of the original 
polygon. The skeleton is a set of 𝑁 vertices. Each of these vertices has 
a ‘‘creation time’’ 𝑡𝑖; event type 𝜏 ∈ {𝜏𝑠, 𝜏𝑒}, where 𝑠 and 𝑒 means which 
event formed the vertex: area break or edge removal, respectively, as 
well as a set of neighboring vertices connected by skeleton faces. An 
example straight skeleton is shown in Fig.  4.

CDM performs a complete traversal of the 𝑆(𝑃 ) skeleton vertices in 
search of split points. Split points are the skeleton vertex that formed 
the event when area break 𝜏𝑠. When the dividing point 𝑠 is found, 
a new face 𝑒𝑖𝑗 is added, connecting the vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉  (𝑉 , a set 
of polygons vertices), called the dividing line. The vertices 𝑣𝑖, 𝑣𝑗 are 
located on different faces and closest to the skeleton 𝑠 vertex. Creating 
a dividing line is denoted by the function 𝜈(𝑒𝑘,𝑙 , 𝑣𝑖) → 𝑣∗. Vertex 𝑣∗ is 
added as follows: the face 𝑒𝑘,𝑙, between whose vertices 𝑣𝑘, 𝑣𝑙 the vertex 
𝑣∗ is located, is divided into two faces: 𝑒𝑘,∗ and 𝑒∗,𝑙. The separating 
points are those vertices of the 𝑠𝑖 skeleton that meet the condition 
𝑡𝑖𝑚𝑒(𝑖) < 𝑡𝑖𝑚𝑒(𝑖 + 1) ∩ 𝑡𝑖𝑚𝑒(𝑖) < 𝑡𝑖𝑚𝑒(𝑖 + 1). An example of how the 
CDM algorithm works is shown in Fig.  4(b). In this image, the skeleton 
is marked in blue, the split lines are in red (thus, the initial polygon 
is split into three sub-areas). In this work, we will not use CDM for 
the decomposition of obstacles straightforwardly but rather use its by-
product, i.e. the straight skeleton, to create our own decomposition 
algorithm.
5 
3.2. Our algorithm

Recall that our main goal is to decompose the obstacles on the 
input map into a set of convex polygons. The latter representation is 
beneficial for local planning as a typical local planner can only handle 
convex obstacles with primitive shapes (e.g. rectangles, ovals, etc.). 
The input of the decomposing algorithm is the binary occupancy grid 
obtained through the robot’s sensors, which are subject to noise. First, 
we vectorize the map, i.e. convert each obstacle on a map from a 
set of occupied cells to a (possibly non-convex) polygon. This can be 
done by one of the several edge extraction algorithms like (Douglas 
and Peucker, 1973). Next, we iterate over the obstacles and split each 
obstacle into a set of primitive shapes (this work uses rectangles).

Indeed, one can use the previously described Interior Extension of 
Edges algorithm for splitting a polygonal obstacle of a complex shape 
into a set of sub-polygons, but in practice, it does not perform well. The 
reason is the following. In the real world, faces of numerous obstacles 
like sofas, boxes, etc. are straight but, due to the inaccurate mapping, 
they are transferred to the occupancy grid and later to the polygonal 
representation of this grid map as broken lines. Consider Fig.  5 as an 
example. On the left, one can see the original obstacle of a rectangular 
shape. On the right, we show how this obstacle is actually mapped. 
Clearly, numerous ‘‘noisy’’ vertices of the polygon are introduced. It 
is these vertices that cause trouble when you straightforwardly apply 
Interior Extension of Edges method for decomposition, as each vertex 
that forms a concave angle is the source of the split line. Consequently, 
there are many split lines, and the initial split of the polygon is com-
posed of numerous sub-polygons. Merging them becomes a bottleneck, 
especially for the prolonged obstacles.

To this end, we suggest filtering out certain vertices (i.e. not con-
sider them as the sources of the split lines), and we use the previously 
mentioned Straight Skeletons (or simply skeletons) for that.

We assume that most obstacles can be approximated by a rectangle. 
Other robots, cars, walls, furniture, and other objects on top can be 
represented as a rectangle. If the obstacle has a non-convex shape, it can 
be represented as a set of rectangles. Let us now consider the straight 
skeleton of a rectangle. The straight skeleton of rectangles has a face 
parallel to and equidistant from the two largest edges of the rectangle. 
However, if the obstacle’s contour contains a lot of noise, the skeleton’s 
face will appear as a broken line (Fig.  6(b)). The essence of the our 
method is to select a sequence of vertices on the skeleton in the vicinity 
of a certain line. We assume that the vertices of the skeleton connected 
into a broken line approximate a skeleton face of the original polygon. 
By the definition of the edge of the skeleton, this line will lie between 
the two parallel edges of the rectangle that make up the obstacle. This 
approach, as will be shown below, will work well if the polygon consists 
of several rectangles rather than one.

We will represent the Straight Skeleton as an undirected graph. The 
vertices of the graph contain information about the metric coordinates 
of the skeleton point, time 𝑡, and all vertices connected with it. We take 
a random vertex of the skeleton and add connected vertices to it until 
they no longer approach a certain straight line with a given error. Since 
we collect the vertices of the skeleton around a certain line, there can 
be several such sets of vertices. Each of the resulting sets of vertices can 
correspond to individual rectangles, which can form complex polygons.

We have formed sets of vertices that are located along some lines. 
Now there is no need to work with every corner of the original polygon, 
but only with those that are within a certain radius around the extreme 
points (the two points farthest from each other). We can say that 
these two extreme points approximate this line. The radius information 
can be taken from the Straight Skeleton, since its vertices contain a 
parameter called ‘‘creation time’’ (hereinafter referred to as ‘‘time’’), 
which can be used to measure the distance between this point and 
the nearest vertices of the polygon. This reveals one of the significant 
practical advantages of using a direct skeleton: the information about 
the radius of the desired neighborhood is calculated along with the 
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Fig. 4. An example of how the CDM works. The skeleton is marked in blue, the split lines are in red (thus, the initial polygon is split into three sub-areas).
Fig. 5. An example of origin polygon and noisy polygon.
Fig. 6. An example of straight skeletons of origin polygon and noisy polygon.
creation of the skeleton. Next, we extend the faces that form the 
concave corner into the polygon until the extended edges intersect 
another face of the polygon 2. Of the two resulting ‘‘split lines’’, we 
select the shorter one.

This approach makes it possible to significantly reduce the number 
of dividing lines and, consequently, the number of cells during the 
initial partitioning; see Fig.  7(h). Also, grouping the vertices of the 
skeleton around a certain straight line can reduce the contribution of 
noise to the final partition, since the straight line in this case represents 
an estimate of the original face of the skeleton, which would be if there 
was no noise. Finally, we combine these segments according to the 
optimization problem (2).

So our method works as follows. First, we form the Straight Skele-
ton, then group its vertices around some lines. In each set of vertices, 
we select the two extreme ones. Next, we expand only those faces that 
form concave corners and are located near the extreme points. This way 
we get the initial partition. And in the end, we combine the resulting 
segments.

Let us now describe it in detail. Our method includes next stages:

1. Build Straight Skeleton (Fig.  7(a)).
2. Skeleton vertices 𝑆 = {𝑠𝑖}𝑁𝑖=1 are combined into clusters {𝐾𝑗}𝑚𝑖=1

∈ 𝑆,𝑚 ≤ 𝑁 : 
|𝑓 (𝑠𝑘𝑥 , 𝑠𝑘𝑦 )| < max

𝑘
(𝑡𝑠𝑘 ),∀𝑠𝑘 ∈ 𝐾𝑗 , 𝑘 = 1,… , 𝑛 (3)

𝑓 (𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐 is the normal equation of the line. The 
introduction of this heuristic is motivated by the fact that we 
can select the vertices of the skeleton that lie on the same line. 
It is assumed that the obstacles consist of a set of rectangles that 
must be selected. The width of such rectangles is assumed to be 
max𝑘(𝑡𝑠𝑘 ). The clustering goes like this:

(a) Give a random skeleton vertex 𝑣0 and their neighbor 𝑣1. 
If there are several neighbors, choose the closest one. 
6 
Fig. 7. An example of various stages of the decomposition method.
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𝐶 = {𝑣0, 𝑣1} and is taken as the beginning 𝑠𝑏 and the end 
𝑠𝑒 of the chain. Hereinafter, the two most distant vertices 
from each other will be called the start and end vertices.

(b) In a loop. In turn, the predominantly starting vertex of 
the chain or the end vertex of the chain are connected 
to the neighboring vertex, and a check is made whether 
in this case the entire chain forms a straight line. If so, 
a new vertex is added to the chain; if not, it is dis-
carded. If the initial or final vertex does not have such 
neighbors, the search for points associated with internal 
vertices is performed. The cycle ends when the chain stops 
expanding.

(c) Condition for checking that the vertices lie approximately 
on the same line: using two extreme points of the chain, 
one of which is a candidate for joining, the general for-
mula of the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is formed (Fig.  7(b)). 
Further, intermediate points of the chain are substituted 
into this formula, and deviations are obtained at the 
output: the distances from these points to the straight 
line. Everything is in order if it is less than the specified 
parameter. They lie almost on the same line.

(d) We save the resulting chain, and if there are still unused 
vertices, we return to step (a); otherwise, we stop.

3. We use the vertices of the end and the beginning of the chains 
(𝑠𝑒 and 𝑠𝑏, respectively) and search for the nearest vertices of 
the obstacle boundary in circles of radius 𝑡(𝑠𝑒) and 𝑡(𝑠𝑏). If these 
vertices are concave, the faces that form them expand to the first 
intersection with the face of the original polygon.

4. Of the obtained pairs of separating lines, we leave the lines that 
are the smallest in length (Fig.  7(c)).

5. If not all vertices are connected, we return to step 2. Otherwise, 
go for item 5.

6. Adjacent segments that form a convex figure are merged. Solving 
the optimization problem (2)

The work of the method is shown in Fig.  7. Image (a) shows 
the Straight Skeleton of the obstacle, and image (b) shows the graph 
representation of the skeleton. We start at vertex 7 and select 9 as the 
most distant vertex to the selected (c). Next, we choose 8 as the closest 
vertex to 7 (d). Vertices 9 and 8 determine the line based on which the 
condition (3) is checked. Continuing the chain in figure (e), we cannot 
expand further to the right. Then vertex 6 is chosen. In this case, the 
start and end vertices are 6 and 14, as the farthest from each other (f). 
Continuing the chain to the left (g), we are looking for other vertices 
connected to the inner vertices of the chain. Since the vertices 4 and 
13 are at a distance less than max𝑖 𝑡𝑖 from the line 1-14, they are also 
members of the cluster (h). Next, the nearest concave vertices of the 
polygon to the skeleton vertices 1 and 14 are searched for. Separating 
lines are drawn from them, and the shortest (i) is selected from a pair 
of lines.

Method pseudo-code is provided in algorithm 1. 𝑉  are skeleton 
vertices (which are not contours); 𝐸 is a set of polygon faces; 𝐶 is 
a current chain of skeletal vertices located around the straight line 𝐿
defined by its extreme points; 𝑓 (𝐶) is a function that returns the normal 
formula of the straight line, constructed from two extreme points of 
the chain 𝐶 - 𝑣𝑏, and 𝑣𝑒; 𝜓(𝑣𝑖, 𝐿) is the membership function of the 
vertex 𝑣𝑖 in the neighborhood of the line 𝐿 containing elements from 𝐶. 
𝜔(𝑠, 𝐸) are the function searches for concave polygon vertices in some 
neighborhood around the skeleton vertex 𝑣, returns true if such a vertex 
exists, and false if it does not. 𝜈(𝑣, 𝐸) is a function that takes a skeleton 
vertex 𝑣 and a set of polygon faces 𝐸 as input. It searches for the nearest 
concave vertex and expands the faces that form that vertex, returns two 
segments corresponding to the expanded faces.

Following this algorithm, we calculate the convex hulls for the 
resulting polygons. Our goal is to include the minimum free space in the 
convex hulls. As shown in the experiments section, this goal is achieved, 
and the free space included in the convex hull does not affect the final 
local trajectory.
7 
Algorithm 1 Decomposition method based on Straight Skeleton.
Require: Skeleton vertex 𝑁 ; initialization 𝐸: 𝐸′ = 𝐸; initialization 𝑉
Ensure: Set of polygon faces with split lines 𝐸′.
1: while |𝑉 | ≠ 0 do
2:  𝐶 = {𝑣0, 𝑣1}
3:  𝑉 = 𝑉 ⧵ 𝐶
4:  𝐿 = 𝑓 (𝐶)
5:  for all 𝑣𝑖 ∈ 𝑉  do
6:  if 𝜓(𝑣𝑖) then
7:  𝐶 = 𝐶 ∪ 𝑣𝑖
8:  𝑉 = 𝑉 ⧵ 𝑣𝑖
9:  𝐿 = 𝑓 (𝐶)
10:  end if
11:  end for
12:  if 𝜔(𝑣𝑏, 𝐸) then
13:  𝑒𝑏1, 𝑒

𝑏
2 = 𝜈(𝑣𝑏, 𝐸)

14:  𝐸′ = 𝐸′ ∪ min(|𝑒𝑏1|, |𝑒
𝑏
2|)

15:  end if
16:  if 𝜔(𝑣𝑒, 𝐸) then
17:  𝑒𝑒1, 𝑒

𝑒
2 = 𝜈(𝑣𝑒, 𝐸)

18:  𝐸′ = 𝐸′ ∪ min(|𝑒𝑒1|, |𝑒
𝑒
2|)

19:  end if
20: end while

4. Trajectory optimization regarding obstacle polygons

4.1. Common MPC formulation for local trajectory planning

Model Predictive Control (MPC) is a feedback control approach that 
uses a model to predict the future output of a process and determines 
the next immediate control action by solving an optimal control prob-
lem over a receding horizon. We apply the following common nonlinear 
MPC formulation with continuous-time state dynamics and discrete 
time control: 

{𝐱𝑜𝑝𝑡[𝑖],𝐮𝑜𝑝𝑡[𝑖]}𝑘+𝑚𝑖=𝑘 = 𝑎𝑟𝑔min
𝑥,𝑢,𝑝

𝑘+𝑚
∑

𝑖=𝑘
𝐽 (𝐪[𝑖],𝐮[𝑖],𝐩[𝑖]), (4a)

s.t. 

�̇�[𝑖] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])
𝑓2(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])

…
𝑓𝜇(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])

⎤

⎥

⎥

⎥

⎥

⎦

(4b)

ℎ1(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0,

ℎ2(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0,

…

ℎ𝜒 (𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0.

(4c)

Here 𝑚 denotes the prediction horizon, 𝐪[𝑖] is a 𝜇-size state vector, 
𝐮[𝑖] is a 𝜈-size vector of control inputs (considered as constant within 
the timestep 𝑖), and 𝐩[𝑖] is a 𝜅-size parameter vector. (4a) defines the 
cost 𝐽 . (4b) defines the continuous dynamics of the process. (4c) is a 
set of inequality constraints that must be satisfied within the whole 
process. The reference of {𝐪𝑜𝑝𝑡[𝑖],𝐮𝑜𝑝𝑡[𝑖]}𝑘+𝑚𝑖=𝑘  provides minimum value 
of 𝐽 . This reference is a result of the optimization procedure.

For the kinematic model of the differential-drive mobile robot, let 
the state vector be 𝐱 = [𝑥, 𝑦, 𝑣, 𝜃]𝑇 , where 𝑥, 𝑦 is a coordinate of the 
robot in the global frame, 𝜃 is a heading angle, and 𝑣 is a linear velocity. 
Model (4b) looks as follows: 

�̇� =

⎡

⎢

⎢

⎢

⎢

𝑣 cos 𝜃
𝑣 sin 𝜃
𝑎

⎤

⎥

⎥

⎥

⎥

(5)
⎣

𝜔
⎦
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Fig. 8. Polygon (a) and its potential field (b).
where 𝑎, 𝜔 are the linear acceleration and angular velocity.
The cost function 𝐽 is a sum of two terms: path-related 𝐽1 and 

obstacle-related 𝐽2. Obstacle-related term is similar to repulsive poten-
tial term in the classic APF algorithm (Khatib, 1985). It is defined in 
the next subsection, while the path-related term is given as follows: 

𝐽1(𝐱,𝐮) = ‖𝐱[𝑚] − 𝐱𝑟[𝑚]‖𝑤𝑒 +
𝑚−1
∑

𝑖=0
𝑙(𝐱[𝑖],𝐮[𝑖]), (6)

where 𝑙(𝐱(𝑘),𝐮(𝑘)) = ‖𝐱(𝑘) − 𝐱𝑟(𝑘)‖𝑤𝑥 + ‖𝐮(𝑘)‖𝑤𝑢 , 𝑤𝑥 ∈ R𝑛, 𝑤𝑒 ∈
R𝑛, 𝑤𝑢 ∈ R𝑚 are weights for states and control variables. While the 
position coordinates (𝑥𝑟, 𝑦𝑟, 𝜃𝑟) of the reference path 𝐱𝑟 can be obtained 
with the global planner, the reference value 𝑣𝑟 is suggested based on 
the target speed.

Constraint-based methods such as Schoels et al. (2020a) and Schoels 
et al. (2020b) use (4c) to express collision avoidance conditions. We do 
not follow this approach and use (4c) only for the box constraints of the 
variables.

4.2. Obtaining the obstacle-related cost (APF)

In the proposed problem, we assume that the obstacles are rep-
resented as a set of convex polygons, obtained as a result of the 
decomposition algorithm from the previous section. In this subsection, 
we define 𝐽2 based on this set. It should be noted that the distance 
between neighboring points of the trajectory in practice is several times 
smaller than the considered size of the robot. Since the robot is convex, 
a slight increase in its considered dimensions allows for accounting for 
potential collisions between sampling instants.

Assume that a set of polygons includes 𝑁𝑠 sides totally. A local 
coordinate system is attached to the starting point of each side 𝑠 passed 
on to the MPC problem and counterclockwise with respect to each 
polygon. To optimize a collision-free trajectory 𝐱𝐭 [𝑘] = {𝑥𝑘, 𝑦𝑘}, 𝑖 =
0,… , 𝑚 over prediction horizon 𝑚, the position of every point of this 
trajectory is re-obtained in the local-coordinate system attached to the 
side 𝑠. Suppose (𝑥0, 𝑦0) is the position of the trajectory point 𝐱𝐭 [𝑖] in the 
local system attached to the side 𝑠. Then, the cost function describing 
the potential of collision between the polygon’s side 𝑠 and the robot at 
the position 𝐱𝐭 [𝑘] is given as follows: 

𝐽2(𝐱𝐭[𝐤], 𝑠) =
⎧

⎪

⎨

⎪

⎩

1
𝜎
√

2𝜋
exp(−

𝑦20
2𝜎2 ) if 𝑦0 + 𝑑3 > 0

𝑑4 < 𝑥0 < 𝑙𝑠 + 𝑑4
0 otherwise 

(7)

where 𝜎 > 0, 𝑙𝑠 is the length of segment 𝑠, and 𝑑3, 𝑑4 determine the 
boundaries of the area in a local coordinate system in which the motion 
of the robot is penalized. Fig.  8 shows an example of a map image 
with one polygon and its potential field obtained with (7). Finally, the 
cost function for the proposed optimization trajectory problem is the 
following: 

𝐽 = 𝐽1(𝐱,𝐮) +
𝑚
∑

𝑁𝑠
∑

𝐽2(𝐱𝐭[𝐤], 𝑠(𝑖)). (8)

𝑖=1 𝑗=1

8 
Fig. 9. Choosing important polygons. A six-order ellipse is generated around the global 
path. Polygons whose parts lie inside this ellipse are passed on to the MPC solver.

4.3. Choice of the surrounding polygons

While the robot can move in the area with an undefined number 
of obstacles, the number of polygon sides that the proposed algorithm 
can handle is defined by 𝑁𝑠. Since the reference path in the optimizing 
trajectory problem is known (𝐱𝑟), we propose an approach to choose 
polygons surrounding the path and affecting the trajectory is suggested. 
Further, the cost function is obtained with the knowledge of these 
obstacles and the initial path of the robot.

The proposed obstacle classifying algorithm depends on the initial 
path of the robot in the moving area. Suppose an initial path (Fig.  9) 
whose length 𝑙 ∈ R+ consists of 𝑆𝑝 ∈ N segments with 𝑃𝑠 = [𝑥𝑠, 𝑦𝑠, 𝜃𝑠]
defines the position of the center (𝑥𝑠, 𝑦𝑠), and orientation 𝜃𝑠 for every 
segment of the path in a global coordinate system. Assuming that the 
moving area shown in Fig.  9 has 𝑁𝑜 ∈ N obstacles, every one of which 
has 𝑣 ∈ N vertices with 𝑃𝑜 = [𝑥𝑜, 𝑦𝑜] defines the positions of every vertex 
in the same coordinate system. Let us introduce the variable 𝑑𝑜 defined 
with the following equation:

𝑑𝑜 =
((𝑥𝑜 − 𝑥𝑠)𝑐𝑜𝑠(𝜃𝑠) + (𝑦𝑜 − 𝑦𝑠)𝑠𝑖𝑛(𝜃𝑠))6

𝑑61

+
(−(𝑥𝑜 − 𝑥𝑠)𝑠𝑖𝑛(𝜃𝑠) + (𝑦𝑜 − 𝑦)𝑐𝑜𝑠(𝜃𝑠))6

𝑑62
, (9)

Here 𝑑1, 𝑑2 define the boundaries of a scanning ellipse, where the 
polygons are classified as obstacles affecting the trajectory of the robot. 
The value of 𝑑𝑜 is obtained for every segment vertex pair. If 𝑑𝑜 ≤ 1, 
then the polygon corresponding to the current vertex is located inside 
the scanning area and classified as an important obstacle and included 
in the optimization problem. Otherwise, the polygon is classified as an 
obstacle far from the trajectory and is not included in the optimization 
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problem. As a result of this procedure, 𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡 significant obstacles with 
𝑁𝑠 sides are passed on to the MPC problem.

5. Results

This section discuss an experimental evaluation of our approach. 
The first subsection provide the technical details and parameters of 
the experimental implementation. We have made a set of diverse ex-
periments, which evaluate, first, our polygon decomposition algorithm 
(Section 5.2), second, our MPC solver (Section 5.3), and, third, both al-
gorithms working together (Section 5.4). Numerical evaluation is made 
both on virtual and real data (Section 5.3), furthermore, we provide a 
real robot experiments (Section 5.4). In these experiments Husky UGV 
mobile robot was moving under our approach in the office environment 
(twisty corridors of the campus building) and in the artificial cluttered 
environment with a narrow passage.

5.1. Implementation and parameters

Our general approach executes local planning as a sequence of the 
following operations:

• Apply the decomposition algorithm to obtain the set of non-
convex polygons from the occupancy grid;

• Get the convex hulls for obtained polygons;
• Choose the convex polygons nearest to the global path;
• Solve the MPC problem defined by the process model (5) and cost 
(8) with respect to the nearest polygons.

To demonstrate the reliability of the proposed trajectory optimization 
problem, we implement its using Acados (Verschueren et al., 2022). 
The studied optimization problem is described using a Python in-
terface; then a generated self-contained C code for this problem is 
deployed on an embedded platform. It utilizes the Sequential Quadratic 
programming to solve the specified problem. For the QP problem in 
Acados framework, we have used partial condensing high-performance 
interior-point (HPIPM) solver since Acados relies on HPIPM for refor-
mulating QP problems via (partial) condensing and expansion routines. 
Prediction horizon for MPC was set to 30 as higher number lead to 
meaningful enlarging of the SQP optimization time. Weighting coeffi-
cients were tuned to 𝐰𝑥 = [5, 5, 5 ∗ 10−5, 10−3]𝑇  and 𝐰𝑢 = [10−2, 10−6]𝑇 . 
This is our common setting for MPC-based local planning. The maxi-
mum number of polygon edges, considered by MPC, was set to 100. The 
reason for this limitation is that Acados solver process up to 400 prob-
lem parameters without delays, while one polygon edge correspond to 
4 parameters.

Fig.  10 shows an example of the obtained trajectory with two 
obstacles represented with polygons. The global path of the motion 
consists of two segments between the point (2.6, 0.6) and (5.5, 6.5) where 
the initial orientation of the model is zero. The dashed line represents 
the initial path while the continuous is the optimized trajectory. Fig.  11 
shows obtained trajectory with the proposed optimization problem for a 
part of the map from MovingAI 2D Pathfinding Benchmark (Sturtevant, 
2012). These results show that the proposed optimization problem can 
provide a collision-free trajectory.

The decomposition method has been implemented using the
OpenCV and CGAL libraries. OpenCV1 is applied to find and approxi-
mate contours, while CGAL2 is applied to create and work with Straight 
Skeleton.

The following issues are also worth highlighting. To decompose 
the polygons, you need to select contours on the grid. We have used 
the representation of the grid as an image and selected the contours 

1 https://opencv.org/.
2 https://www.cgal.org/.
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Fig. 10. Example trajectory obtained from the MPC local planner considering two 
simple polygonal obstacles and a polyline global plan.

using methods from the OpenCV library. To eliminate the excessive 
number of polygon vertices, the Douglas-Pecker algorithm (Douglas 
and Peucker, 1973) has been used. Employing it requires manual se-
lection of the approximation parameter 𝜀. Also, sometimes the resulting 
polygons can be self-intersecting, which make it impossible to create a 
Straight skeleton. Besides, due to noise, the selected polygons have had 
to be filtered, and in some cases, those have not selected at all.

To solve these problems, it has been decided to allocate an area 
around the robot 10 × 7 meters. This decision has significantly acceler-
ated the decomposition algorithm so that the described problems have 
not affected the work of the local planner. This size of the submap 
allows for safe re-planning of the trajectory while moving through the 
environment.

5.2. Comparative numerical experiment on polygon decomposition

PolySAP initial decomposition is compared with the initial decom-
position of the Interior Extension of Edges method (Nielsen et al., 
2019). The reason of choice is that Interior Extension of Edges is 
relatively modern algorithm, which rely on numerical optimization for 
merging the initial set of polygons. The comparison was made on a 
MovingAI dataset (Sturtevant, 2012) for the planning tasks. Moving AI 
consist of various maze-like environments, including the environments 
based on real city maps.

Consider the simplest case from Fig.  7 for illustration. In this ex-
ample, a rectangular area is shown with some protrusions that act as 
noise on a lidar map. The task is to divide the given polygon into the 
smallest number of polygons. The ideal option is that the figure should 
not break at all. Using the Interior Extension of Edges, this obstacle is 
broken by 12 dividing lines, and the primary decomposition includes a 
set of 18 polygons, which, following the merger step, form 7 polygons. 
At the same time, using our method, only 2 dividing lines are drawn, 

https://opencv.org/
https://www.cgal.org/
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Fig. 11. Results of the MPC local planner for the two maps from the MovingAI 2D Pathfinding Benchmark.
Fig. 12. Comparison of decomposition methods. (a) Decomposition by the interior 
extension of edges. (b) Decomposition method based on the straight skeleton.

Table 1
Comparison of the convex decomposition using Interior Extension of Edges and
PolySAP.
 Interior extension of edges PolySAP  
 𝛥 0% 11%  
 Runtime 5673 ± 471 ms 1062 ± 341 ms 

forming 3 cells, which are not combined, as a result. Since the Interior 
Extension of Edges splits the workspace into convex polygons, their 
convex hulls will not increase the total area of the obstacles. Under 
the proposed method, convex hulls will increase the total area for this 
example by only 6%. An example of how these methods work is shown 
in Fig.  12. Examples of decomposition before and after the selection of 
convex hulls for the city maps are shown in Fig.  13. The last two figures 
are enlarged fragments of the same map.

In a set of experiments we have compared our method, PolySAP, to 
Interior Extensions of Edges according to the criterion 𝛥 (see (1)) and 
we also compared the runtime (experiments have been executed on an 
Intel Core i3-7020U (2.30 GHz × 4) running Ubuntu). We provide the 
average 𝛥 and the average running time for the entire MovingAI dataset 
in Table  1. Clearly PolySAP is 5 times faster (on average) than Interior 
Extensions of Edges. Its overhead in 𝛥 is 11%. Indeed it higher than 
0% (that corresponds to absolutely accurate decomposition), however 
this does not globally affect the path planning pipeline as the further 
experiments demonstrate.

Fig.  14 shows one example of how the decomposition provided by 
method differs from the one obtained by Interior Extensions of Edges. 
As can bee seen, our method splits the scene into much lower number 
of polygons. E.g. the top-row map in Fig.  14 contain 67 polygons for 
our method and 168 polygons for the competitor (the similar ratio was 
observed on the other maps).

5.3. Comparative numerical experiment on collision avoidance

We primarily compare our approach with two approximation-based 
MPC planners: CIAO by (Schoels et al., 2020a,b) and a simple compu-
tation of the distance to the nearest boundary point. These baselines 
are chosen, as they are intended for the MPC trajectory optimization 
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with an arbitrary obstacle map. A newer approach by Thirugnanam 
et al. (2022) is less relevant: although it considers obstacle polygons, 
it requires a discrete-time process model, whereas our approach and 
CIAO-star allow for continuous-time models. In addition, the approach 
adopted by Thirugnanam et al. (2022) is relatively slow and does 
not consider the procedure of obtaining the polygon data. Some other 
works (Blackmore et al., 2011; Szmuk et al., 2017) also consider a 
given set of simple-shaped obstacles. CIAO can work with an arbitrary 
obstacle map. Among the versions of this algorithm, we choose orig-
inal CIAO by Schoels et al. (2020a) as it aims to follow the global 
plan (further versions by Schoels et al. (2020b), contributes to rapid 
movement toward the goal configuration), and shows the best success 
rate (Schoels et al., 2020b). The original paper also provides results that 
outperform the GuSTO algorithm (Bonalli et al., 2019). Using Bench-mr 
framework, we also compare our method with different sampling and 
searching-based path planners, including Theta∗(Daniel et al., 2010), 
RRT (LaValle and Kuffner, 2001), RRT∗(Karaman and Frazzoli, 2010) 
and BFMT (Starek et al., 2014): this comparison seeks to highlight 
the difference between optimization-based and sampling- or searching-
based path planners. We have made a comparison for ten planning 
cases from the MovingAI 2D Pathfinding Benchmark (Sturtevant, 2012) 
and for one case from the real environment (an artificial environment 
with two rooms and a small passage between them; the task is to 
move from one room to another; the polygons are shown in Fig.  9). 
Comparison results are given in Table  2. We use standard metrics 
calculated via the Bench-mr framework (Heiden et al., 2021): angle-
over-length (AOL), maximum and normalized curvature, path length, 
planning time, success rate, and number of collisions. The first three 
metrics are designed to represent the smoothness of the generated 
trajectories (normalized curvature is measured along the path segments 
between instant turns, while AOL is measured along the entire path). 
AOL is calculated via dividing the total heading change by the path 
length (Heiden et al., 2021)

𝐴𝑂𝐿 = 1
𝑙

𝑛−1
∑

𝑖=1
(|𝜃𝑖+1 − 𝜃𝑖|)

where 𝜃𝑖 is the orientation of the 𝑖th path segment, 𝑙 is path length. Note 
that CIAO has not been able to plan a collision-free trajectory in two 
cases out of ten. This is due to the fact that the CIAO uses inequality 
constraints to provide collision avoidance and requires a collision-
free initial guess (Schoels et al., 2020a). PolySAP and Nearest Point 
approximator were both able to converge to collision-free trajectories 
in all cases. It can be seen that PolySAP significantly outperforms CIAO 
and nearest point approximations in computation time, slightly outper-
forms them in path length, and edge them in curvature metrics. RRT, 
RRT∗, BFMT and Theta∗ show much longer length due to non-optimal 
planning. Besides, Theta∗ demonstrates better AOL, while PolySAP 
shows better normalized curvature. The PolySAP planner provides a 
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Fig. 13. Decomposition example for a BenchMR map: results of decomposition (left column) and convexification (right column). The lower row shows an enlarged fragment of 
the same map.
Table 2
Metrics comparison for PolySAP, CIAO, Nearest Point, Theta∗, BFMT, RRT and RRT∗ on 10 testcase scenarios.
 Metric Theta∗ BFMT RRT RRT∗ CIAO Nearest Point PolySAP (ours)— 
 AOL 0.313 0.656 0.423 0.316 0.379 0.624 0.368  
 Maximum curvature 0.938 1.0 0.956 0.852 0.757 1.28 0.865  
 Normalized curvature 3.095 12.01 4.068 2.39 2.11 2.6 1.634  
 Path length (m) 10.79 23.81 12.15 9.99 7.012 7.07 6.95  
 Planning time (s) 0.11 1.855 0.0127 0.0157 0.049 0.017 0.0034  
 Success rate 10/10 8/10 10/10 10/10 8/10 10/10 10/10  
 Collisions 5/10 6/10 0/10 2/10 2/10 0/10 0/10  
instant turn toward the destination point early into the motion, which 
is considered within AOL and ignored within the normalized curvature.

The visualizations of examples of optimized trajectories is given in 
Fig.  15 on the left. Significant difference of our approach comparing 
to CIAO is the capacity to handle some cases, when the global path is 
intersected by obstacles. Such case is shown in Fig.  15 on the right. 
CIAO has not been able to provide the path as it requires a collision-
free initial guess. Fig.  16 shows the comparison of generated path 
between PolySAP, CIAO and other planners implemented in Bench-
mr framework. The planned paths with the last three planners avoid 
the turns, while taking an unwarranted roundabout to reach the goal 
position.

5.4. Real robot experiment

As a proof of concept, we made a planning experiment on a real 
robot. We implement our planner as a Robotic Operation System pack-
age3 and deploy it on the Husky UGV4 mobile platform equipped with 
Velodyne VLP 16 LIDAR. RTAB-MAP SLAM by Labbé and Michaud 
(2019) is used for creating and updating the Occupancy Grid. The set 
of experiments were made within an experimental area in the office 

3 https://wiki.ros.org/.
4 https://opencv.org/.
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building at Moscow Institute of Physics and Technology. The entire map 
of the environment has a size of 114 by 17 m. A central part of the 
map is shown in Fig.  17. This is the most cluttered part of the map, 
while other parts include twisty wide corridors. In the experiments our 
platform was able to successfully navigate between various points of 
this environment. We use 𝜃 ∗ algorithm by Nash et al. (2007) to obtain 
the global plan. Local planning is executed on a laptop with Intel Core 
i3-7020U CPU running Ubuntu. The laptop is connected to the robot 
via Ethernet. Replanning rate was set to 10 Hz, i.e. 100 ms for one 
planning operation. Sequential quadratic programming is an iterative 
optimization technique, therefore one can set the iteration limit in or-
der to guarantee the required planning time. This was not necessary in 
our experiment: real order of the planning time is several milliseconds. 
CIAO* (Schoels et al., 2020a) and MPPI (Williams et al., 2016) applied 
for the similar environment requires hundreds of miliseconds to obtain 
the trajectory.

Fig.  18 and the supplementary video5 show the most challenging 
task, when the robot is to move through the narrow passage between 
two rooms in an artificial indoor environment. This environment can be 
considered a simple maze. Its polygon decomposition is shown in Fig. 
9. The robot passing through this environment can be seen in the and 
in Fig.  18. The top left cell shows the projection of the global path and 

5 https://youtu.be/bb6M6Sgaqq8.

https://wiki.ros.org/
https://opencv.org/
https://youtu.be/bb6M6Sgaqq8
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Fig. 14. Comparison of decomposition results for the interior extension of edges and 
PolySAP.

the local trajectory onto the occupancy grid. As is seen, a dangerous 
linear global path (it collides with the passage due to the robot size) is 
transformed into a smooth curve, which allows the robot to safely pass 
through the second room.

6. Discussion

In general, our approach is intended for local MPC trajectory plan-
ning for a mobile robot in a known 2D environment. Specifically, we 
consider scenarios where the exact obstacle map (occupancy grid) is 
provided by the sensor system and the SLAM algorithm. Our approach 
has been tested in environments where polygon decomposition is rele-
vant, such as city maps and artificial indoor environments. We believe 
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that polygon decomposition can be applied to many types of envi-
ronments, including offices, storage facilities, mazes, and more. Most 
indoor environments, as well as many outdoor environments, consist 
of flat surfaces and can be effectively represented using polygons. Our 
approach may be less effective in environments with complex, ‘‘non-
polygonal’’ features, such as those with numerous small obstacles. In 
such cases, polygon decomposition might be redundant and computa-
tionally expensive. Nonetheless, it still has the capability to produce 
accurate results.

We consider local planning as a model predictive control task. 
However, it is worth noting that generally, we use MPC as a framework 
for planning, not for direct control of the robotic system. We obtain 
an optimized trajectory and reference control inputs as a solution of 
the MPC task. These data are then submitted to the robot’s low-level 
controller for execution. The direct use of generated control inputs is 
also an option, but it would be wise to combine it with a feedback 
control strategy. We use the standard view of the MPC statement (4) 
and propose a novel method for calculating one specific term of the cost 
function (4a). The system dynamics(4b) is out of scope here. We use a 
standard differential drive model as it corresponds to the dynamics of 
our real robot. However, it can be replaced with other suitable models 
of the mobile platforms, which meet the kinodynamic constraints.

6.1. Limitations

It is worth pointing out the following limitations of our approach:

• The proposed approach considers the robot with a circular foot-
print. We inflate the polygons with the radius of the robot and, 
therefore, can consider it pointwise. If the robot is oblong, one can 
resort to the approach explored in Ziegler et al. (2014). Under this 
approach, the robot footprint is covered with a set of circles, and 
the distance to obstacles is calculated separately for each circle.

• Measured computation times of the MPC solver suggest that re-
planning with precomputed polygons is feasible at a rate of 
100 Hz. The runtime of the polygon decomposition algorithm 
depends on the size and complexity of the map. It takes less 
than two seconds to process relatively large city maps from the 
MovingAI dataset. If the map is continuously updated, polygons 
can be recalculated while the robot is moving through a large 
environment. One set of polygons can be used for several dozen 
MPC re-plannings. In such cases, a sliding window around the 
robot can be employed to focus on a relatively small area for fast 
polygon decomposition. Our experiments use a 7 m × 10 m area 
around the robot.

• Under our method, obstacle avoidance is ‘‘localized’’ within the 
specific term of the cost function. Therefore, our approach can 
potentially be combined with other penalty-based approaches 
within the single MPC solver. E.g., PolySAP can be applied for 
avoiding obstacles from the static map together with additional 
terms for avoiding dynamic or previously unknown obstacles.
Fig. 15. Visualization of CIAO (blue) and PolySAP (green) trajectories on two scenarios. Orange dash correspond to the global path.
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Fig. 16. One scenario for comparison of PolySAP, CIAO and different path planners in Bench-mr framework.
Fig. 17. Occupancy Grid map of the environment for real robot experiments. Artificial narrow passages may be seen in the top left area.
Fig. 18. Real robot moving through the narrow passage with PolySAP local planner.
• Our current algorithm considers an obstacle map to be static 
within the trajectory prediction horizon. For the general case of 
the dynamic environment, the procedure of obstacle decomposi-
tion has to be repeated for each instantaneous map at timesteps 
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𝑘...𝑘 + 𝑚. The setting of the dynamic environment is often more 
specific. We have a given static map and a given set of dynamic 
obstacles with predicted trajectories. One specific case of this set-
ting is when dynamic obstacles may relate to other autonomous 
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agents in the room (Franze and Lucia, 2015). With such a setting, 
we can use our approach to avoid static obstacles with an addition 
of specific 𝐽 term to dodge dynamic obstacles.

• Our approach is intended for local planning and requires an initial 
guess provided by the global planner. This initial guess can be 
a rough estimate. In some cases, it may even intersect some 
polygons, and the PolySAP will provide a safe trajectory (see Fig. 
15, right part). The optimizer will push the trajectory toward the
nearest border of the polygon, which may lead to an incorrect or 
a non-optimal solution when the initial guess goes through the 
polygon center.

7. Conclusion

In this paper, we propose PolySAP, a novel approach for incor-
porating obstacle avoidance into the Model Predictive Control (MPC) 
task statement. This approach is based on representing obstacles as 
a set of convex polygons. We introduce a new algorithm for obstacle 
segmentation and a novel artificial potential function that repels the 
trajectory from the obstacles. Our polygon decomposition algorithm 
operates five times faster than the baseline method of Interior Extension 
of Edges. Experiments using planning datasets and a real mobile robot 
demonstrate that PolySAP can generate smooth and safe trajectories 
from rough global paths. Compared to the baseline CIAO MPC local 
planner, our approach delivers a significantly faster solution with only 
a minor increase in path length. Unlike CIAO, PolySAP can provide 
correct trajectories even when the global plan touches or slightly 
intersects obstacles. Overall, our approach offers fast, collision-aware 
trajectory optimization by representing environments as a set of convex 
polygons. It is a promising technique for improving rough and unsafe 
trajectories of indoor mobile robots.

We believe that a promising direction of future work is to combine 
PolySAP local planner with the global planner based on route decom-
position. A relevant example of such method is the Visibility Graph 
(VG) global planner (Lozano-Pérez and Wesley, 1979). Here the map is 
represented as a set of polygons. A visibility graph connects mutually 
visible vertices of these polygons, and the shortest path can be found via 
routing within this graph. A VG planner provides fast but unsafe global 
plans, which touch the polygons’ borders. Another specific downside 
of VG is high complexity of its formation for large terrains. Indoor 
environments are typically relatively compact. The combination of 
PolySAP and VG looks promising for the following reasons. First, VG 
exploits the polygon decomposition of the space. Second, our MPC 
solver can turn unsafe VG plans into a safe and executable trajectories. 
Therefore, we can compensate for the drawbacks of the two approaches 
(the unsafety of VG and local convergence of MPC) by combining
them.
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