
Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690

A
0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Polygon decomposition for obstacle representation in motion planning with

Model Predictive ControlI

Aleksey Logunov a, Muhammad Alhaddad b , Konstantin Mironov a,c,d, Konstantin Yakovlev e,
Aleksandr Panov a,c,e ,∗

aMoscow Institute of Physics and Technology, Moscow, Russia
b University of Aleppo, Aleppo, Syria
c AIRI, Moscow, Russia
d Ufa University of Science and Technology, Ufa, Russia
e Federal Research Center ‘‘Computer Science and Control’’ of Russian Academy of Sciences, Moscow, Russia

A R T I C L E I N F O

Keywords:
Model predictive control
Polygon decomposition
Artificial potential function
Trajectory planning
Mobile robots

 A B S T R A C T

Model Predictive Control (MPC) is a powerful tool for planning the local trajectory of autonomous mobile
robots. The paper considers a new algorithm for trajectory planning and obstacle avoidance based on the
MPC technique known in Artificial Intelligence (AI) planning and robotics. We have proposed an original
method for decomposing obstacles to form a potential field, which in turn is used as an additional component
in MPC. Thus, we propose a new intelligent trajectory planning method that takes into account the special
shape of obstacles, which in turn significantly improves the metrics of intelligent agent movement on the
well-known Moving AI benchmark. The challenging aspect of MPC planning is collision avoidance on large
and complicated grid maps. We propose the Polygon Segmentation for obtaining Artificial Potential Field
(PolySAP). This local planner approximates the obstacles on the map with a set of polygons. We address the
question of how to partition a map with polygons to make it fast and effective for a practical MPC planner.
We propose a decomposition algorithm based on Straight Skeleton. Our algorithm returns a set of polygons,
which are then convexified. Numerical experiments show that our method outperforms basic algorithms in
performance and provides sufficient partition quality for effective planning. We propose an artificial potential
function calculated for polygonal obstacles and added to the MPC objective for collision avoidance. We
evaluate our approach on city map dataset and on a real robotic platform. Numerical experiments show that
PolySAP allows for polygon decomposition that is five times faster than Interior Extensions. Our MPC solver
provides a fast solution for the MPC task compared to the state-of-the-art MPC planners. Our planner ensured
the safe motion of the real mobile robot through a narrow indoor environment. Our code is available at
https://github.com/alhaddad-m/PolySAP.
1. Introduction

Autonomous robots can effectively act and solve various tasks in
different environments: offices (BrainCorp, 2023b), homes (Szot et al.,
2021), shops (BrainCorp, 2023a), medical facilities (MOXI, 2023; Vogel
et al., 2021; Parikh et al., 2023), outdoor landscapes (Kayacan and
Chowdhary, 2019), and even other planets (Daftry et al., 2022). The
planning methods depend on the surroundings of the robots (Panov,
2019). When dealing with complex paths with multiple obstacles, a
two-stage planning process is typically used (Jian et al., 2021; Bo-
jadžić et al., 2021). In the initial stage, known as global planning,

I This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2024-544.
∗ Corresponding author at: Moscow Institute of Physics and Technology, Moscow, Russia.
E-mail address: panov.ai@mipt.ru (A. Panov).

a rough path is generated from the starting point to the target des-
tination. Subsequently, in the second stage, termed local planning,
this preliminary path is refined into an executable trajectory through
smoothing or optimization. This local planning phase can be performed
in real time using receding horizon planning, incorporating sensor data
to dynamically adapt the trajectory (Tong, 2020; Li, 2020). In this
case, local planning is often formulated as a Model Predictive Control
(MPC) problem (Bojadžić et al., 2021; Schoels et al., 2020a; Thirug-
nanam et al., 2022; Zuo et al., 2020; Li et al., 2021). This problem
may be solved using direct numerical solvers based on interior point
method (Waechter and Biegler, 2005–2022) or sequential quadratic
https://doi.org/10.1016/j.engappai.2025.110690
Received 10 November 2024; Received in revised form 19 March 2025; Accepted 2
vailable online 22 April 2025
952-1976/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
4 March 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
https://orcid.org/0000-0002-6801-5503
https://orcid.org/0000-0002-9747-3837
https://github.com/alhaddad-m/PolySAP
mailto:panov.ai@mipt.ru
https://doi.org/10.1016/j.engappai.2025.110690
https://doi.org/10.1016/j.engappai.2025.110690
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2025.110690&domain=pdf

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 1. Common scheme of the PolySAP planning stack. The state-of-the-art rough global planner generates a polyline path based on the occupancy grid. Our decomposition
algorithm extracts a set of convex obstacle polygons from the occupancy grid. By projecting the global path onto the polygon map, we can identify the polygons that pose a
danger to the robot. The parameters of these polygons are then passed to the obstacle-aware MPC local planner, which generates the robot’s trajectory.
programming (Verschueren et al., 2022). Obstacle avoidance may be
inserted into MPC formulation as a set of constraints, e.g. Schoels et al.
(2020a), or as a set of obstacle-related cost terms, e.g. Thirugnanam
et al. (2022). The first approach is sensitive to the quality of the initial
guess, which is better to be collision-free for the correct convergence
of the numerical solution (Schoels et al., 2020a). Alternatively the
stochastic techniques like MPPI (Williams et al., 2016) may be utilized
instead of numerical solver; however such techniques may produce un-
stable or oscillating solutions. Contrary, the second approach allows the
numerical optimizer to converge from the initial path, which contains
collisions. In this case, a repulsive Artificial Potential Function (APF)
may be introduced, which take lower values far from obstacles, very
high values inside them, and descend with receding from them (Al-
haddad et al., 2024). In our work, we address MPC for local planning,
incorporating collision avoidance based on an APF.

Such an APF should be differentiable, as its gradient indicates the
direction in which the trajectory should be adjusted to enhance safety.
The challenge to be addressed is how to design it for large, arbitrary
cell maps, such as Occupancy Grids (OG), which are commonly used in
practical applications. Computational heaviness of the numerical MPC
may be decreased by integrating neural networks (Song et al., 2023),
fuzzy logic (You et al., 2024) or linearizing techniques (Morato et al.,
2021). Many existing works consider the obstacles as a known set of
simple-shaped figures, e.g Blackmore et al. (2011), Szmuk et al. (2017)
and Thirugnanam et al. (2022). Other works aim to find an approxi-
mation of the collision danger (Schoels et al., 2020a,b; Kurenkov et al.,
2022; Adamkiewicz et al., 2022) or to replace numerical MPC solution
with the sampling-based technique that does not require analytical
obstacle models (Williams et al., 2016, 2017; Mohamed et al., 2020).

Our work is motivated by the fact that many real environments con-
sist of objects with flat surfaces. These environments can be represented
as a maze constructed of polygons. Examples of such cases are corridors
and rooms in office buildings, shops, warehouses, or living spaces. It
seems useful to develop a planner, which exploits such a structure of
the environments. One can decompose mazes into convex polygons
and set the simple APF formulation for these polygons. The convex
nature of polygons is important for two reasons. First, moving away
from the center of such a polygon guarantees a greater distance from
the obstacle it represents, based on its geometry. Second, in complex
mazes, convexification allows for the generation of polygons with
fewer parameters. During the local planning process, small polygons
near obstacles are selected, which significantly reduces the number of
parameters in the problem. The formulation of APF could be rather sim-
ple, without the need to apply a complicated techniques like in Schoels
et al. (2020a,b), Kurenkov et al. (2022), Adamkiewicz et al. (2022),
Williams et al. (2016, 2017) and Mohamed et al. (2020) This approach
is challenging due to two factors. Firstly, polygon decomposition can
be computationally intensive. Secondly, the straight lines of the maze
may appear non-straight on the occupancy grid due to sensor and
quantization errors.

We propose an obstacle avoidance approach based on the fast
decomposition of the 2D OG into a set of simple polygons. We call
our local planner PolySAP, which means Polygon Segmentation for
obtaining Artificial Potential Field. A common scheme of our approach
is presented in Fig. 1. A local plan is obtained in two operations. First,
2
polygon decomposition algorithm transforms the occupancy grid into
a set of convex polygons. Second, MPC solver optimizes the trajectory
regarding the polygons nearest to the global path.

1.1. Contribution

In this paper, we develop both a decomposition algorithm and an
MPC local planner. The significance of our contribution lies in the novel
decomposition algorithm we propose for transforming an obstacle map
into a set of convex polygons. The main purpose of this method is to
reduce the initial set of partitions using information from the spatial
skeleton. Existing decomposition methods often generate many small
polygons and then merge them according to an optimization prob-
lem. In a noisy environment, this initial decomposition can result in
numerous polygons, which slows down the optimization process. Our
method addresses this issue by ignoring small details of polygons that
do not impact the robot’s ability to navigate the environment. After
decomposition, the polygons are convexified to eliminate the possibility
of the robot colliding with these minor details. Our algorithm has
demonstrated a decomposition process that is five times faster than the
baseline Interior Extensions method.

Our contribution also includes a novel APF formulation, which
introduces trajectory repulsion from convex obstacle polygons within
the MPC optimization loop. We define a sigmoid APF term that depends
on the distance between the robot and the nearest line of the obstacle
polygon. Experiments showed that our formulation provides signifi-
cantly faster trajectory optimization than the CIAO (Schoels et al.,
2020a) MPC local planner.

1.2. Structure

The rest of the paper is structured as follows. The next section an-
alyzes the existing works on motion planning, collision avoidance, and
polygon decomposition. The following two sections introduce our poly-
gon decomposition algorithm and the MPC approach. Then, we describe
the implementation and experimental results of our local planner. Last
sections discuss the results and provide concluding remarks.

2. Related works

2.1. Motion planning for mobile robots

Robotic planning is a broad research area; see, e.g., the review
by González et al. (2016). Global planners are mostly based on random
sampling and/or systematic search. Also there are some approaches
based on artificial potential field (Khatib, 1985) or bio-inspired discrete
optimization (Ding, 2020). Most search-based planners emanate from
A* (Hart et al., 1968), a heuristic extension of the graph search algo-
rithm by Dijkstra (1959). Sampling methods are chiefly based either on
Rapidly-exploring Random Trees (RRT) by LaValle and Kuffner (2001)
or on Probabilistic RoadMaps (PRM) by Kavraki et al. (1996). Note that
the concept of APF was initially introduced for global planning (Khatib,
1985; Erdmann and Lozano-Perez, 1986). In APF global planners,
moving toward the destination point is considered as a gradient descent
of robot coordinates in the artificial potential field. This approach was

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
further developed in some novel works (Kim and Shin, 2006; Ren et al.,
2006; Szczepanski et al., 2022). Its main disadvantage is that it can get
stuck in a dead-end, while search-based and sampling-based planners
cope with this challenge as they are multi-hypothesis. Optimization
seems more effective for local planning where the global plan lies near
the global minimum.

There are several works where search-based and sampling-based
global planners are modified or extended with specific post-processing
to provide an executable local path (e.g., reviews by Heiden et al.
(2020) and Gammell and Strub (2021)). Alternative approach is to
perform the search not on a grid map, but on a set of motion prim-
itives (Butzke et al., 2014). This approach has high computational
capacity due to the large branching factor when searching for prim-
itives. We consider another concept where a rough and fast global
planner provides the path as a simple polyline and then turns into an
executable trajectory with fast and powerful optimization. Significant
examples of such rough planners are Theta* (Nash et al., 2007) and
visibility graph (Lozano-Pérez and Wesley, 1979; Yang et al., 2022).
The first is an A* extension, which supports any-angle paths on 2D
grids. The second search method is done on the graph of obstacle
polygon vertices instead of the cell structure of OG. It is fast and
provides a short path. However, these paths are dangerous as they
touch obstacle borders.

2.2. Trajectory optimization and collision avoidance

Trajectory optimization can be done in two modes. In the first
one, the trajectory is considered holistically. There are specific al-
gorithms for this statement, such as CHOMP (Ratliff et al., 2009),
STOMP (Kalakrishnan et al., 2011), TrajOpt (Schulman et al., 2014),
or GuSTO (Bonalli et al., 2019). This mode does not cover the pos-
sibility of meeting previously unknown obstacles while moving along
the path. The second mode (MPC) assumes that the optimization is
done for a certain part of the future path (prediction horizon), and
re-optimization is done after a certain period (control horizon). Some
approaches, e.g. CIAO (Schoels et al., 2020a), allow the planning
problem to be solved in both modes. MPC has to be strictly real-
time with a specified re-planning rate. There are specific tools that
provide real-time solutions to correctly stated MPC problems (includ-
ing nonlinear cases). IPOPT (Waechter and Biegler, 2005–2022) and
ForcesPro (Zanelli et al., 2017) utilize the interior point method, while
ACADO (Houska et al., 2011a,b) and Acados (Verschueren et al., 2022)
apply sequential quadratic programming to obtain the solution. In this
work, we use Acados, a fast and novel tool for MPC.

There is a number of works on common collision avoidance (Gilbert
et al., 1988; Stoican et al., 2019; Zhang et al., 2022; Zimmermann et al.,
2022), when the task is recognize the fact of collision for the given
robote pose. Contrary, the MPC statement requires collision avoidance
to be expressed analytically as a cost term or a set of constraints. In the
first case, the obstacle-related cost term (APF) needs to be differentiable
to allow gradient repulsion from the obstacles. If the obstacles are rep-
resented with a known set of simple geometric shapes (points, circles,
ellipses, or polygons), defining analytical APF is not a very difficult
job. This statement is considered, e.g. by Szmuk et al. (2017), Luis
et al. (2020) and Wu et al. (2021). The task is more challenging for the
arbitrary cell map with unstructured obstacles. Analytical solutions to
MPC problems can be replaced with sampling-based Model Predictive
Path Integral approach for local planning (Williams et al., 2016, 2017;
Mohamed et al., 2020).

Another approach is to train a neural model of collision dan-
ger (Adamkiewicz et al., 2022; Kurenkov et al., 2022; Salzmann et al.,
2024; Katerishich et al., 2023; Alhaddad et al., 2024). Solver by Al-
haddad et al. (2024) work in real time however, it require high
computation power, which is obtained from remote server. Other
mentioned neural models are non-realtime.
3
We are considering another approach where an arbitrary obstacle
map is approximated with simpler geometric figures to minimize the
computations. In CIAO (Schoels et al., 2020a,b), free space around the
robot is approximated with a simple convex figure (circle or square).
The use of convex free space models guarantees the absence of col-
lisions, provided there is reachable initial guess. However, it signif-
icantly limits the ability to modify the trajectory during local plan-
ning. Point-wise and circular obstacles are handled by Ji et al. (2016)
and Zeng et al. (2021) respectively. In Ziegler et al. (2014), the tra-
jectory of the autonomous cars is constrained with two polylines for
the lane-following task. Papaioannou et al. (2023) represent obsta-
cles with cuboids; obstacle detection probability is assigned to each
cuboid. Blackmore et al. (2011) introduces an approach for avoiding
polytopic obstacles; the question of how to obtain polygons from the
map is not considered. Thirugnanam et al. (2022) puts forth a collision
model for the case when both the robot and the obstacles are polytopic.
This approach requires discrete-time dynamics.

2.3. Polygon decomposition

Area decomposition methods include:

1. Cell decomposition: An area is represented as a polygon. The
polygon is divided into a set of smaller polygons. For most cell
decomposition methods, two stages are distinguished: the initial
decomposition and the stage of combining areas.

2. Area segmentation: An area is represented as a polygon or
an occupancy grid. It is used for areas that are rooms inside
buildings. Despite this, some algorithms may be used in street
spaces.

Area segmentation includes methods such as watershed algorithm,
morphological segmentation, and distance-based segmentation (Bor-
mann et al., 2016). They use the morphological erosion and dilation
operators to solve the segmentation problems. This approach is un-
suitable for solving our task, as it does not consider the context and
cannot guarantee the convexity of the partition. Trapezoidal Decom-
position (Latombe, 1991) and Boustophedon Decomposition (Choset
and Pignon, 1998) are classical algorithms for the space decomposition
problem, but they do not take into account any kinematic constraints
of the robot. Their generalization (Morse Decomposition by Acar et al.
(2002)) is too hard to implement.

Many papers present methods (e.g. Huang (2001), Nielsen et al.
(2019), Li et al. (2020, 2011) and Tang et al. (2021)) that include the
following steps:

1. Build a polygon’s vertices that satisfy the chosen heuristics (all
vertex or only concave vertex).

2. Draw split lines in some directions (e.g., an extension of edges)
that form the primary decomposition.

3. Solve certain optimization problems and merge cells from pri-
mary decomposition.

This approach has the following drawbacks: primary decomposition
can include a lot of cells, and the selection of the optimal combination
of cells can be very long. Li et al. (2011) tried to fix the first challenge
by drawing dividing lines only from the concave vertices. Tang et al.
(2021) proposes using a depth-first search to solve the second problem.
Notably, in Li et al. (2020), the authors decide to move away from solv-
ing the optimization problem and draw split lines between the polygon
vertices according to certain heuristics. However, this approach does
not draw split lines between the polygon edge’s vertices, which can
lead to drawing too long split lines.

An alternative way to reduce the area search space is offered
by Tang et al. (2021). The authors present the R-DFS method based on
a depth-first search. Voronoi graph-based (Thrun, 1998; Preparata and
Shamos, 1989) segmentation uses space skeleton to solve segmentation

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
problem. This approach extracts information from the space skeleton
and utilizes unique heuristics for each task. The use of heuristics along
with the space skeleton makes it possible to construct various segmen-
tation and decomposition methods that solve a large class of applied
problems. Such methods include CDM (Construction Decomposition
Method) (Brown, 2017), which uses a Straight skeleton as a space
skeleton (Aichholzer and Aurenhammer, 1995).

2.4. Discussion

Analysis of the related works lead to the following outcomes:

• The state of the art approach to trajectory planning for mobile
robots include global path planning for generating the rough ge-
ometric path and local motion planning for turning this path into
smooth trajectory, which avoid obstacles and satisfy kinodynamic
constraints. Global planning is effectively solved via search-based
algorithms such as Theta* (Nash et al., 2007), which output the
geometric path as a polyline. Local planning may be solved via
model predictive control (MPC).

• Collision avoidance within MPC planning is challenging, as it re-
quire analytic representation of obstacles. This challenge is over-
come by use of gradient-free randomized MPPI planners (Williams
et al., 2016, 2017), by use of learnable collision model
(Adamkiewicz et al., 2022; Kurenkov et al., 2022), or by approxi-
mating obstacle map with simple geometric shapes (Schoels et al.,
2020a; Thirugnanam et al., 2022; Schoels et al., 2020b). The last
approach provide stable and fast results. MPPI and neural fields
provide a solution for arbitrary maps by using computationally
redundant techniques (random sampling and approximation with
the complex neural model).

• Approaches, which rely on geometric approximation, often con-
sider this approximation to be given (e.g. polytopic obstacles
in Blackmore et al. (2011), Thirugnanam et al. (2022)). The task
of obtaining this representation from obstacle map is consid-
ered in Schoels et al. (2020a,b) however, resulting representation
mark a lot of free space as obstacles. We cannot specify existing
approach, which provide realtime approximation of collision dan-
ger, and mark obstacles and free space accurately. In this work
we aim to provide MPC local planner, which include fast and
accurate geometric obstacle representation.

• Obstacle approximation with a set of convex polygons seems
promising as it, first, may be effectively handled within MPC
(Blackmore et al., 2011; Thirugnanam et al., 2022) and, second,
allow for high accuracy. Space decomposition with polygons is a
well-know task in computational geometry. There is a number of
works on this task (Bormann et al., 2016; Nielsen et al., 2019;
Li et al., 2020, 2011; Tang et al., 2021). However, there is no
method, specifically desgned for MPC obstacle avoidance. The
task of local planning provide a specific requirements for polygon
decomposition. Its performance is critical, while the accuracy has
to be tuned according to the resolution of the common obstacle
map and linear size of the robot.

In general, this work aim to develop a novel MPC local planner, which
utilize polygon decomposition of the obstacle map. The issues, that we
try to overcome, is computational complexity of polygon decomposition
and low accuracy of obstacle modeling with geometric approximation
(which lead to lower quality of the planned trajectories). In Section 5
we show that our algorithm provide fast obstacle decomposition and
high-quality real-time planning in the cluttered environments.
4
3. Polygon decomposition

3.1. Background

Consider a robot navigating an environment populated with obsta-
cles (of non-trivial shapes). The surrounding map is available
(e.g. through the simultaneous localization and mapping system) in
the form of the occupancy grid. The latter can be considered a binary
image, i.e. the image that contains only two types of pixels: black
(corresponding to obstacles) and white (corresponding to free space).
Denote the set of all blocked pixels on the image as 𝑋. We aim to
decompose it into the 𝑁 regions {𝑆𝑖}𝑁𝑖=1 so that the following conditions
are met:

1. 𝑋 =
⋃𝑁
𝑖=1 𝑆𝑖,

2. 𝑆𝑖 ∩ 𝑆𝑗 = ∅, 𝑖 ≠ 𝑗,
3. IsConvex(𝑆𝑖 ∪ 𝑆𝑗) = 𝐹𝑎𝑙𝑠𝑒 𝑖 ≠ 𝑗.

Here IsConvex is a predicate that returns true if the region is
convex. Informally, we want to split the arbitrary-shaped obstacles that
surround the robot into the convex sub-obstacles.

The following two criteria will be employed to measure the effec-
tiveness of the decomposition. The first is the number of sub-regions,
𝑁 (the lower, the better). The second is 𝛥 (also, the lower, the better),
which is computed as:

𝛥 =
𝑁
∑

𝑖=1
𝐴(𝐶(𝑆𝑖))∕

𝑁
∑

𝑖=1
𝐴(𝑆𝑖) − 1. (1)

Here 𝐴(⋅) denotes the region’s area, and 𝐶(⋅) denotes the convex
hull of the region. The introduced criterion is minimal, i.e., it equals 0,
when all the regions 𝑆𝑖 are convex (as in this case, the areas of their
convex hulls equal the areas of the regions themselves). If some 𝑆𝑖 is
not convex, 𝛥 is positive. Following this formulation, the two existing
methods can be mentioned.

The first method is Interior Extension of Edges (Nielsen et al.,
2019). Interestingly, it represents an approach with the initial parti-
tioning of space and subsequent solution of the optimization problem to
unite the regions. This method works with a polygon representation of
the workspace. The polygon vertices are selected whose forming faces
make an angle greater than 180 degrees. Further, separating lines are
drawn from these faces, extending them already outside the polygon.
The intersections of the separating lines divide the workspace into a set
of convex polygons 𝑆. The second stage of the algorithm is the union
of convex polygons. A set of possibilities for merging two polygons 𝛺
is created, and its elements are denoted as 𝑗. The following integer
programming problem is solved for minimizing the total width of the
combined polygons:

min
∑

𝑗∈𝛺
𝑤𝑗𝜆𝑗 ,

s.t.
∑

𝑗∈𝛺
𝑎𝑖𝑗𝜆𝑗 = 1,∀𝑖 ∈ 𝑆,

𝜆𝑗 ∈ {0, 1},∀𝑗 ∈ 𝛺,

(2)

where 𝑤𝑗 is polygon width; 𝑎𝑖𝑗 is the possibility of polygon 𝑖 merging
with its neighbors, defined in the set 𝛺, and equals 0 or 1; 𝜆𝑗 is the
decision variable, which determines the choice of the possibility of
polygon merging. An example of how the algorithm works is shown
in Fig. 2. We can think of an obstacle as a polygon with a hole. Thus,
on Fig. 2, the initial partition of a polygon consists of ten polygons, and
the final partition has five.

Interior Extension of Edges solves an optimization problem for
merging polygons. In the case of heavily noisy maps, the initial par-
titioning may be excessive, which can negatively affect the speed of
solving the optimization problem 3. An example of a noisy map is
shown in Fig. 3. By noise, we mean various artifacts caused by the

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 2. An example of how the interior extension of edges works (Nielsen et al., 2019).
(a) Initial partition after extension of edges. Partition consists ten convex polygons.
(b) The final partition after solving the optimization problem. Partition consists five
polygons.

Fig. 3. Excessive initial partitioning example. Inaccuracy of the sensors lead to
artifacts, which enlarge the number of small polygons.

inaccuracy of the sensors. Indeed, there exists a (limited) number of
the algorithms that can be used to remove this type of noise, like
the Douglas-Pecker algorithm (Douglas and Peucker, 1973). However,
such methods require extensive parameter tuning for each problem
instance, which significantly limits their applicability. To this end, we
suggest our own method of decomposition based on the ideas of another
decomposition method that is relevant to us, i.e. CDM (Construction
Decomposition Method) (Brown, 2017).

Noteworthy feature of CDM is that it represents the space skeleton
approach. The latter extracts information from the skeleton to solve a
decomposition problem. The main task of the method is to divide the
office space map into rooms. This is achieved by searching for places
where space begins to narrow.

CDM works with the polygon representation of the map. Based on
the vertices of 𝑃 polygons, a Straight Skeleton 𝑆(𝑃) is constructed. The
Straight Skeleton (Aichholzer and Aurenhammer, 1995) is a structure
generated through continuous uniform compression of the original
polygon. The skeleton is a set of 𝑁 vertices. Each of these vertices has
a ‘‘creation time’’ 𝑡𝑖; event type 𝜏 ∈ {𝜏𝑠, 𝜏𝑒}, where 𝑠 and 𝑒 means which
event formed the vertex: area break or edge removal, respectively, as
well as a set of neighboring vertices connected by skeleton faces. An
example straight skeleton is shown in Fig. 4.

CDM performs a complete traversal of the 𝑆(𝑃) skeleton vertices in
search of split points. Split points are the skeleton vertex that formed
the event when area break 𝜏𝑠. When the dividing point 𝑠 is found,
a new face 𝑒𝑖𝑗 is added, connecting the vertices 𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝑉 , a set
of polygons vertices), called the dividing line. The vertices 𝑣𝑖, 𝑣𝑗 are
located on different faces and closest to the skeleton 𝑠 vertex. Creating
a dividing line is denoted by the function 𝜈(𝑒𝑘,𝑙 , 𝑣𝑖) → 𝑣∗. Vertex 𝑣∗ is
added as follows: the face 𝑒𝑘,𝑙, between whose vertices 𝑣𝑘, 𝑣𝑙 the vertex
𝑣∗ is located, is divided into two faces: 𝑒𝑘,∗ and 𝑒∗,𝑙. The separating
points are those vertices of the 𝑠𝑖 skeleton that meet the condition
𝑡𝑖𝑚𝑒(𝑖) < 𝑡𝑖𝑚𝑒(𝑖 + 1) ∩ 𝑡𝑖𝑚𝑒(𝑖) < 𝑡𝑖𝑚𝑒(𝑖 + 1). An example of how the
CDM algorithm works is shown in Fig. 4(b). In this image, the skeleton
is marked in blue, the split lines are in red (thus, the initial polygon
is split into three sub-areas). In this work, we will not use CDM for
the decomposition of obstacles straightforwardly but rather use its by-
product, i.e. the straight skeleton, to create our own decomposition
algorithm.
5
3.2. Our algorithm

Recall that our main goal is to decompose the obstacles on the
input map into a set of convex polygons. The latter representation is
beneficial for local planning as a typical local planner can only handle
convex obstacles with primitive shapes (e.g. rectangles, ovals, etc.).
The input of the decomposing algorithm is the binary occupancy grid
obtained through the robot’s sensors, which are subject to noise. First,
we vectorize the map, i.e. convert each obstacle on a map from a
set of occupied cells to a (possibly non-convex) polygon. This can be
done by one of the several edge extraction algorithms like (Douglas
and Peucker, 1973). Next, we iterate over the obstacles and split each
obstacle into a set of primitive shapes (this work uses rectangles).

Indeed, one can use the previously described Interior Extension of
Edges algorithm for splitting a polygonal obstacle of a complex shape
into a set of sub-polygons, but in practice, it does not perform well. The
reason is the following. In the real world, faces of numerous obstacles
like sofas, boxes, etc. are straight but, due to the inaccurate mapping,
they are transferred to the occupancy grid and later to the polygonal
representation of this grid map as broken lines. Consider Fig. 5 as an
example. On the left, one can see the original obstacle of a rectangular
shape. On the right, we show how this obstacle is actually mapped.
Clearly, numerous ‘‘noisy’’ vertices of the polygon are introduced. It
is these vertices that cause trouble when you straightforwardly apply
Interior Extension of Edges method for decomposition, as each vertex
that forms a concave angle is the source of the split line. Consequently,
there are many split lines, and the initial split of the polygon is com-
posed of numerous sub-polygons. Merging them becomes a bottleneck,
especially for the prolonged obstacles.

To this end, we suggest filtering out certain vertices (i.e. not con-
sider them as the sources of the split lines), and we use the previously
mentioned Straight Skeletons (or simply skeletons) for that.

We assume that most obstacles can be approximated by a rectangle.
Other robots, cars, walls, furniture, and other objects on top can be
represented as a rectangle. If the obstacle has a non-convex shape, it can
be represented as a set of rectangles. Let us now consider the straight
skeleton of a rectangle. The straight skeleton of rectangles has a face
parallel to and equidistant from the two largest edges of the rectangle.
However, if the obstacle’s contour contains a lot of noise, the skeleton’s
face will appear as a broken line (Fig. 6(b)). The essence of the our
method is to select a sequence of vertices on the skeleton in the vicinity
of a certain line. We assume that the vertices of the skeleton connected
into a broken line approximate a skeleton face of the original polygon.
By the definition of the edge of the skeleton, this line will lie between
the two parallel edges of the rectangle that make up the obstacle. This
approach, as will be shown below, will work well if the polygon consists
of several rectangles rather than one.

We will represent the Straight Skeleton as an undirected graph. The
vertices of the graph contain information about the metric coordinates
of the skeleton point, time 𝑡, and all vertices connected with it. We take
a random vertex of the skeleton and add connected vertices to it until
they no longer approach a certain straight line with a given error. Since
we collect the vertices of the skeleton around a certain line, there can
be several such sets of vertices. Each of the resulting sets of vertices can
correspond to individual rectangles, which can form complex polygons.

We have formed sets of vertices that are located along some lines.
Now there is no need to work with every corner of the original polygon,
but only with those that are within a certain radius around the extreme
points (the two points farthest from each other). We can say that
these two extreme points approximate this line. The radius information
can be taken from the Straight Skeleton, since its vertices contain a
parameter called ‘‘creation time’’ (hereinafter referred to as ‘‘time’’),
which can be used to measure the distance between this point and
the nearest vertices of the polygon. This reveals one of the significant
practical advantages of using a direct skeleton: the information about
the radius of the desired neighborhood is calculated along with the

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 4. An example of how the CDM works. The skeleton is marked in blue, the split lines are in red (thus, the initial polygon is split into three sub-areas).
Fig. 5. An example of origin polygon and noisy polygon.
Fig. 6. An example of straight skeletons of origin polygon and noisy polygon.
creation of the skeleton. Next, we extend the faces that form the
concave corner into the polygon until the extended edges intersect
another face of the polygon 2. Of the two resulting ‘‘split lines’’, we
select the shorter one.

This approach makes it possible to significantly reduce the number
of dividing lines and, consequently, the number of cells during the
initial partitioning; see Fig. 7(h). Also, grouping the vertices of the
skeleton around a certain straight line can reduce the contribution of
noise to the final partition, since the straight line in this case represents
an estimate of the original face of the skeleton, which would be if there
was no noise. Finally, we combine these segments according to the
optimization problem (2).

So our method works as follows. First, we form the Straight Skele-
ton, then group its vertices around some lines. In each set of vertices,
we select the two extreme ones. Next, we expand only those faces that
form concave corners and are located near the extreme points. This way
we get the initial partition. And in the end, we combine the resulting
segments.

Let us now describe it in detail. Our method includes next stages:

1. Build Straight Skeleton (Fig. 7(a)).
2. Skeleton vertices 𝑆 = {𝑠𝑖}𝑁𝑖=1 are combined into clusters {𝐾𝑗}𝑚𝑖=1

∈ 𝑆,𝑚 ≤ 𝑁 :
|𝑓 (𝑠𝑘𝑥 , 𝑠𝑘𝑦)| < max

𝑘
(𝑡𝑠𝑘),∀𝑠𝑘 ∈ 𝐾𝑗 , 𝑘 = 1,… , 𝑛 (3)

𝑓 (𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐 is the normal equation of the line. The
introduction of this heuristic is motivated by the fact that we
can select the vertices of the skeleton that lie on the same line.
It is assumed that the obstacles consist of a set of rectangles that
must be selected. The width of such rectangles is assumed to be
max𝑘(𝑡𝑠𝑘). The clustering goes like this:

(a) Give a random skeleton vertex 𝑣0 and their neighbor 𝑣1.
If there are several neighbors, choose the closest one.
6
Fig. 7. An example of various stages of the decomposition method.

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
𝐶 = {𝑣0, 𝑣1} and is taken as the beginning 𝑠𝑏 and the end
𝑠𝑒 of the chain. Hereinafter, the two most distant vertices
from each other will be called the start and end vertices.

(b) In a loop. In turn, the predominantly starting vertex of
the chain or the end vertex of the chain are connected
to the neighboring vertex, and a check is made whether
in this case the entire chain forms a straight line. If so,
a new vertex is added to the chain; if not, it is dis-
carded. If the initial or final vertex does not have such
neighbors, the search for points associated with internal
vertices is performed. The cycle ends when the chain stops
expanding.

(c) Condition for checking that the vertices lie approximately
on the same line: using two extreme points of the chain,
one of which is a candidate for joining, the general for-
mula of the line 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 is formed (Fig. 7(b)).
Further, intermediate points of the chain are substituted
into this formula, and deviations are obtained at the
output: the distances from these points to the straight
line. Everything is in order if it is less than the specified
parameter. They lie almost on the same line.

(d) We save the resulting chain, and if there are still unused
vertices, we return to step (a); otherwise, we stop.

3. We use the vertices of the end and the beginning of the chains
(𝑠𝑒 and 𝑠𝑏, respectively) and search for the nearest vertices of
the obstacle boundary in circles of radius 𝑡(𝑠𝑒) and 𝑡(𝑠𝑏). If these
vertices are concave, the faces that form them expand to the first
intersection with the face of the original polygon.

4. Of the obtained pairs of separating lines, we leave the lines that
are the smallest in length (Fig. 7(c)).

5. If not all vertices are connected, we return to step 2. Otherwise,
go for item 5.

6. Adjacent segments that form a convex figure are merged. Solving
the optimization problem (2)

The work of the method is shown in Fig. 7. Image (a) shows
the Straight Skeleton of the obstacle, and image (b) shows the graph
representation of the skeleton. We start at vertex 7 and select 9 as the
most distant vertex to the selected (c). Next, we choose 8 as the closest
vertex to 7 (d). Vertices 9 and 8 determine the line based on which the
condition (3) is checked. Continuing the chain in figure (e), we cannot
expand further to the right. Then vertex 6 is chosen. In this case, the
start and end vertices are 6 and 14, as the farthest from each other (f).
Continuing the chain to the left (g), we are looking for other vertices
connected to the inner vertices of the chain. Since the vertices 4 and
13 are at a distance less than max𝑖 𝑡𝑖 from the line 1-14, they are also
members of the cluster (h). Next, the nearest concave vertices of the
polygon to the skeleton vertices 1 and 14 are searched for. Separating
lines are drawn from them, and the shortest (i) is selected from a pair
of lines.

Method pseudo-code is provided in algorithm 1. 𝑉 are skeleton
vertices (which are not contours); 𝐸 is a set of polygon faces; 𝐶 is
a current chain of skeletal vertices located around the straight line 𝐿
defined by its extreme points; 𝑓 (𝐶) is a function that returns the normal
formula of the straight line, constructed from two extreme points of
the chain 𝐶 - 𝑣𝑏, and 𝑣𝑒; 𝜓(𝑣𝑖, 𝐿) is the membership function of the
vertex 𝑣𝑖 in the neighborhood of the line 𝐿 containing elements from 𝐶.
𝜔(𝑠, 𝐸) are the function searches for concave polygon vertices in some
neighborhood around the skeleton vertex 𝑣, returns true if such a vertex
exists, and false if it does not. 𝜈(𝑣, 𝐸) is a function that takes a skeleton
vertex 𝑣 and a set of polygon faces 𝐸 as input. It searches for the nearest
concave vertex and expands the faces that form that vertex, returns two
segments corresponding to the expanded faces.

Following this algorithm, we calculate the convex hulls for the
resulting polygons. Our goal is to include the minimum free space in the
convex hulls. As shown in the experiments section, this goal is achieved,
and the free space included in the convex hull does not affect the final
local trajectory.
7
Algorithm 1 Decomposition method based on Straight Skeleton.
Require: Skeleton vertex 𝑁 ; initialization 𝐸: 𝐸′ = 𝐸; initialization 𝑉
Ensure: Set of polygon faces with split lines 𝐸′.
1: while |𝑉 | ≠ 0 do
2: 𝐶 = {𝑣0, 𝑣1}
3: 𝑉 = 𝑉 ⧵ 𝐶
4: 𝐿 = 𝑓 (𝐶)
5: for all 𝑣𝑖 ∈ 𝑉 do
6: if 𝜓(𝑣𝑖) then
7: 𝐶 = 𝐶 ∪ 𝑣𝑖
8: 𝑉 = 𝑉 ⧵ 𝑣𝑖
9: 𝐿 = 𝑓 (𝐶)
10: end if
11: end for
12: if 𝜔(𝑣𝑏, 𝐸) then
13: 𝑒𝑏1, 𝑒

𝑏
2 = 𝜈(𝑣𝑏, 𝐸)

14: 𝐸′ = 𝐸′ ∪ min(|𝑒𝑏1|, |𝑒
𝑏
2|)

15: end if
16: if 𝜔(𝑣𝑒, 𝐸) then
17: 𝑒𝑒1, 𝑒

𝑒
2 = 𝜈(𝑣𝑒, 𝐸)

18: 𝐸′ = 𝐸′ ∪ min(|𝑒𝑒1|, |𝑒
𝑒
2|)

19: end if
20: end while

4. Trajectory optimization regarding obstacle polygons

4.1. Common MPC formulation for local trajectory planning

Model Predictive Control (MPC) is a feedback control approach that
uses a model to predict the future output of a process and determines
the next immediate control action by solving an optimal control prob-
lem over a receding horizon. We apply the following common nonlinear
MPC formulation with continuous-time state dynamics and discrete
time control:

{𝐱𝑜𝑝𝑡[𝑖],𝐮𝑜𝑝𝑡[𝑖]}𝑘+𝑚𝑖=𝑘 = 𝑎𝑟𝑔min
𝑥,𝑢,𝑝

𝑘+𝑚
∑

𝑖=𝑘
𝐽 (𝐪[𝑖],𝐮[𝑖],𝐩[𝑖]), (4a)

s.t.

�̇�[𝑖] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑓1(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])
𝑓2(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])

…
𝑓𝜇(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖])

⎤

⎥

⎥

⎥

⎥

⎦

(4b)

ℎ1(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0,

ℎ2(𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0,

…

ℎ𝜒 (𝐱[𝑖],𝐮[𝑖],𝐩[𝑖]) ≤ 0.

(4c)

Here 𝑚 denotes the prediction horizon, 𝐪[𝑖] is a 𝜇-size state vector,
𝐮[𝑖] is a 𝜈-size vector of control inputs (considered as constant within
the timestep 𝑖), and 𝐩[𝑖] is a 𝜅-size parameter vector. (4a) defines the
cost 𝐽 . (4b) defines the continuous dynamics of the process. (4c) is a
set of inequality constraints that must be satisfied within the whole
process. The reference of {𝐪𝑜𝑝𝑡[𝑖],𝐮𝑜𝑝𝑡[𝑖]}𝑘+𝑚𝑖=𝑘 provides minimum value
of 𝐽 . This reference is a result of the optimization procedure.

For the kinematic model of the differential-drive mobile robot, let
the state vector be 𝐱 = [𝑥, 𝑦, 𝑣, 𝜃]𝑇 , where 𝑥, 𝑦 is a coordinate of the
robot in the global frame, 𝜃 is a heading angle, and 𝑣 is a linear velocity.
Model (4b) looks as follows:

�̇� =

⎡

⎢

⎢

⎢

⎢

𝑣 cos 𝜃
𝑣 sin 𝜃
𝑎

⎤

⎥

⎥

⎥

⎥

(5)
⎣

𝜔
⎦

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 8. Polygon (a) and its potential field (b).
where 𝑎, 𝜔 are the linear acceleration and angular velocity.
The cost function 𝐽 is a sum of two terms: path-related 𝐽1 and

obstacle-related 𝐽2. Obstacle-related term is similar to repulsive poten-
tial term in the classic APF algorithm (Khatib, 1985). It is defined in
the next subsection, while the path-related term is given as follows:

𝐽1(𝐱,𝐮) = ‖𝐱[𝑚] − 𝐱𝑟[𝑚]‖𝑤𝑒 +
𝑚−1
∑

𝑖=0
𝑙(𝐱[𝑖],𝐮[𝑖]), (6)

where 𝑙(𝐱(𝑘),𝐮(𝑘)) = ‖𝐱(𝑘) − 𝐱𝑟(𝑘)‖𝑤𝑥 + ‖𝐮(𝑘)‖𝑤𝑢 , 𝑤𝑥 ∈ R𝑛, 𝑤𝑒 ∈
R𝑛, 𝑤𝑢 ∈ R𝑚 are weights for states and control variables. While the
position coordinates (𝑥𝑟, 𝑦𝑟, 𝜃𝑟) of the reference path 𝐱𝑟 can be obtained
with the global planner, the reference value 𝑣𝑟 is suggested based on
the target speed.

Constraint-based methods such as Schoels et al. (2020a) and Schoels
et al. (2020b) use (4c) to express collision avoidance conditions. We do
not follow this approach and use (4c) only for the box constraints of the
variables.

4.2. Obtaining the obstacle-related cost (APF)

In the proposed problem, we assume that the obstacles are rep-
resented as a set of convex polygons, obtained as a result of the
decomposition algorithm from the previous section. In this subsection,
we define 𝐽2 based on this set. It should be noted that the distance
between neighboring points of the trajectory in practice is several times
smaller than the considered size of the robot. Since the robot is convex,
a slight increase in its considered dimensions allows for accounting for
potential collisions between sampling instants.

Assume that a set of polygons includes 𝑁𝑠 sides totally. A local
coordinate system is attached to the starting point of each side 𝑠 passed
on to the MPC problem and counterclockwise with respect to each
polygon. To optimize a collision-free trajectory 𝐱𝐭 [𝑘] = {𝑥𝑘, 𝑦𝑘}, 𝑖 =
0,… , 𝑚 over prediction horizon 𝑚, the position of every point of this
trajectory is re-obtained in the local-coordinate system attached to the
side 𝑠. Suppose (𝑥0, 𝑦0) is the position of the trajectory point 𝐱𝐭 [𝑖] in the
local system attached to the side 𝑠. Then, the cost function describing
the potential of collision between the polygon’s side 𝑠 and the robot at
the position 𝐱𝐭 [𝑘] is given as follows:

𝐽2(𝐱𝐭[𝐤], 𝑠) =
⎧

⎪

⎨

⎪

⎩

1
𝜎
√

2𝜋
exp(−

𝑦20
2𝜎2) if 𝑦0 + 𝑑3 > 0

𝑑4 < 𝑥0 < 𝑙𝑠 + 𝑑4
0 otherwise

(7)

where 𝜎 > 0, 𝑙𝑠 is the length of segment 𝑠, and 𝑑3, 𝑑4 determine the
boundaries of the area in a local coordinate system in which the motion
of the robot is penalized. Fig. 8 shows an example of a map image
with one polygon and its potential field obtained with (7). Finally, the
cost function for the proposed optimization trajectory problem is the
following:

𝐽 = 𝐽1(𝐱,𝐮) +
𝑚
∑

𝑁𝑠
∑

𝐽2(𝐱𝐭[𝐤], 𝑠(𝑖)). (8)

𝑖=1 𝑗=1

8
Fig. 9. Choosing important polygons. A six-order ellipse is generated around the global
path. Polygons whose parts lie inside this ellipse are passed on to the MPC solver.

4.3. Choice of the surrounding polygons

While the robot can move in the area with an undefined number
of obstacles, the number of polygon sides that the proposed algorithm
can handle is defined by 𝑁𝑠. Since the reference path in the optimizing
trajectory problem is known (𝐱𝑟), we propose an approach to choose
polygons surrounding the path and affecting the trajectory is suggested.
Further, the cost function is obtained with the knowledge of these
obstacles and the initial path of the robot.

The proposed obstacle classifying algorithm depends on the initial
path of the robot in the moving area. Suppose an initial path (Fig. 9)
whose length 𝑙 ∈ R+ consists of 𝑆𝑝 ∈ N segments with 𝑃𝑠 = [𝑥𝑠, 𝑦𝑠, 𝜃𝑠]
defines the position of the center (𝑥𝑠, 𝑦𝑠), and orientation 𝜃𝑠 for every
segment of the path in a global coordinate system. Assuming that the
moving area shown in Fig. 9 has 𝑁𝑜 ∈ N obstacles, every one of which
has 𝑣 ∈ N vertices with 𝑃𝑜 = [𝑥𝑜, 𝑦𝑜] defines the positions of every vertex
in the same coordinate system. Let us introduce the variable 𝑑𝑜 defined
with the following equation:

𝑑𝑜 =
((𝑥𝑜 − 𝑥𝑠)𝑐𝑜𝑠(𝜃𝑠) + (𝑦𝑜 − 𝑦𝑠)𝑠𝑖𝑛(𝜃𝑠))6

𝑑61

+
(−(𝑥𝑜 − 𝑥𝑠)𝑠𝑖𝑛(𝜃𝑠) + (𝑦𝑜 − 𝑦)𝑐𝑜𝑠(𝜃𝑠))6

𝑑62
, (9)

Here 𝑑1, 𝑑2 define the boundaries of a scanning ellipse, where the
polygons are classified as obstacles affecting the trajectory of the robot.
The value of 𝑑𝑜 is obtained for every segment vertex pair. If 𝑑𝑜 ≤ 1,
then the polygon corresponding to the current vertex is located inside
the scanning area and classified as an important obstacle and included
in the optimization problem. Otherwise, the polygon is classified as an
obstacle far from the trajectory and is not included in the optimization

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
problem. As a result of this procedure, 𝑁𝑛𝑒𝑎𝑟𝑒𝑠𝑡 significant obstacles with
𝑁𝑠 sides are passed on to the MPC problem.

5. Results

This section discuss an experimental evaluation of our approach.
The first subsection provide the technical details and parameters of
the experimental implementation. We have made a set of diverse ex-
periments, which evaluate, first, our polygon decomposition algorithm
(Section 5.2), second, our MPC solver (Section 5.3), and, third, both al-
gorithms working together (Section 5.4). Numerical evaluation is made
both on virtual and real data (Section 5.3), furthermore, we provide a
real robot experiments (Section 5.4). In these experiments Husky UGV
mobile robot was moving under our approach in the office environment
(twisty corridors of the campus building) and in the artificial cluttered
environment with a narrow passage.

5.1. Implementation and parameters

Our general approach executes local planning as a sequence of the
following operations:

• Apply the decomposition algorithm to obtain the set of non-
convex polygons from the occupancy grid;

• Get the convex hulls for obtained polygons;
• Choose the convex polygons nearest to the global path;
• Solve the MPC problem defined by the process model (5) and cost
(8) with respect to the nearest polygons.

To demonstrate the reliability of the proposed trajectory optimization
problem, we implement its using Acados (Verschueren et al., 2022).
The studied optimization problem is described using a Python in-
terface; then a generated self-contained C code for this problem is
deployed on an embedded platform. It utilizes the Sequential Quadratic
programming to solve the specified problem. For the QP problem in
Acados framework, we have used partial condensing high-performance
interior-point (HPIPM) solver since Acados relies on HPIPM for refor-
mulating QP problems via (partial) condensing and expansion routines.
Prediction horizon for MPC was set to 30 as higher number lead to
meaningful enlarging of the SQP optimization time. Weighting coeffi-
cients were tuned to 𝐰𝑥 = [5, 5, 5 ∗ 10−5, 10−3]𝑇 and 𝐰𝑢 = [10−2, 10−6]𝑇 .
This is our common setting for MPC-based local planning. The maxi-
mum number of polygon edges, considered by MPC, was set to 100. The
reason for this limitation is that Acados solver process up to 400 prob-
lem parameters without delays, while one polygon edge correspond to
4 parameters.

Fig. 10 shows an example of the obtained trajectory with two
obstacles represented with polygons. The global path of the motion
consists of two segments between the point (2.6, 0.6) and (5.5, 6.5) where
the initial orientation of the model is zero. The dashed line represents
the initial path while the continuous is the optimized trajectory. Fig. 11
shows obtained trajectory with the proposed optimization problem for a
part of the map from MovingAI 2D Pathfinding Benchmark (Sturtevant,
2012). These results show that the proposed optimization problem can
provide a collision-free trajectory.

The decomposition method has been implemented using the
OpenCV and CGAL libraries. OpenCV1 is applied to find and approxi-
mate contours, while CGAL2 is applied to create and work with Straight
Skeleton.

The following issues are also worth highlighting. To decompose
the polygons, you need to select contours on the grid. We have used
the representation of the grid as an image and selected the contours

1 https://opencv.org/.
2 https://www.cgal.org/.
9
Fig. 10. Example trajectory obtained from the MPC local planner considering two
simple polygonal obstacles and a polyline global plan.

using methods from the OpenCV library. To eliminate the excessive
number of polygon vertices, the Douglas-Pecker algorithm (Douglas
and Peucker, 1973) has been used. Employing it requires manual se-
lection of the approximation parameter 𝜀. Also, sometimes the resulting
polygons can be self-intersecting, which make it impossible to create a
Straight skeleton. Besides, due to noise, the selected polygons have had
to be filtered, and in some cases, those have not selected at all.

To solve these problems, it has been decided to allocate an area
around the robot 10 × 7 meters. This decision has significantly acceler-
ated the decomposition algorithm so that the described problems have
not affected the work of the local planner. This size of the submap
allows for safe re-planning of the trajectory while moving through the
environment.

5.2. Comparative numerical experiment on polygon decomposition

PolySAP initial decomposition is compared with the initial decom-
position of the Interior Extension of Edges method (Nielsen et al.,
2019). The reason of choice is that Interior Extension of Edges is
relatively modern algorithm, which rely on numerical optimization for
merging the initial set of polygons. The comparison was made on a
MovingAI dataset (Sturtevant, 2012) for the planning tasks. Moving AI
consist of various maze-like environments, including the environments
based on real city maps.

Consider the simplest case from Fig. 7 for illustration. In this ex-
ample, a rectangular area is shown with some protrusions that act as
noise on a lidar map. The task is to divide the given polygon into the
smallest number of polygons. The ideal option is that the figure should
not break at all. Using the Interior Extension of Edges, this obstacle is
broken by 12 dividing lines, and the primary decomposition includes a
set of 18 polygons, which, following the merger step, form 7 polygons.
At the same time, using our method, only 2 dividing lines are drawn,

https://opencv.org/
https://www.cgal.org/

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 11. Results of the MPC local planner for the two maps from the MovingAI 2D Pathfinding Benchmark.
Fig. 12. Comparison of decomposition methods. (a) Decomposition by the interior
extension of edges. (b) Decomposition method based on the straight skeleton.

Table 1
Comparison of the convex decomposition using Interior Extension of Edges and
PolySAP.
 Interior extension of edges PolySAP
 𝛥 0% 11%
 Runtime 5673 ± 471 ms 1062 ± 341 ms

forming 3 cells, which are not combined, as a result. Since the Interior
Extension of Edges splits the workspace into convex polygons, their
convex hulls will not increase the total area of the obstacles. Under
the proposed method, convex hulls will increase the total area for this
example by only 6%. An example of how these methods work is shown
in Fig. 12. Examples of decomposition before and after the selection of
convex hulls for the city maps are shown in Fig. 13. The last two figures
are enlarged fragments of the same map.

In a set of experiments we have compared our method, PolySAP, to
Interior Extensions of Edges according to the criterion 𝛥 (see (1)) and
we also compared the runtime (experiments have been executed on an
Intel Core i3-7020U (2.30 GHz × 4) running Ubuntu). We provide the
average 𝛥 and the average running time for the entire MovingAI dataset
in Table 1. Clearly PolySAP is 5 times faster (on average) than Interior
Extensions of Edges. Its overhead in 𝛥 is 11%. Indeed it higher than
0% (that corresponds to absolutely accurate decomposition), however
this does not globally affect the path planning pipeline as the further
experiments demonstrate.

Fig. 14 shows one example of how the decomposition provided by
method differs from the one obtained by Interior Extensions of Edges.
As can bee seen, our method splits the scene into much lower number
of polygons. E.g. the top-row map in Fig. 14 contain 67 polygons for
our method and 168 polygons for the competitor (the similar ratio was
observed on the other maps).

5.3. Comparative numerical experiment on collision avoidance

We primarily compare our approach with two approximation-based
MPC planners: CIAO by (Schoels et al., 2020a,b) and a simple compu-
tation of the distance to the nearest boundary point. These baselines
are chosen, as they are intended for the MPC trajectory optimization
10
with an arbitrary obstacle map. A newer approach by Thirugnanam
et al. (2022) is less relevant: although it considers obstacle polygons,
it requires a discrete-time process model, whereas our approach and
CIAO-star allow for continuous-time models. In addition, the approach
adopted by Thirugnanam et al. (2022) is relatively slow and does
not consider the procedure of obtaining the polygon data. Some other
works (Blackmore et al., 2011; Szmuk et al., 2017) also consider a
given set of simple-shaped obstacles. CIAO can work with an arbitrary
obstacle map. Among the versions of this algorithm, we choose orig-
inal CIAO by Schoels et al. (2020a) as it aims to follow the global
plan (further versions by Schoels et al. (2020b), contributes to rapid
movement toward the goal configuration), and shows the best success
rate (Schoels et al., 2020b). The original paper also provides results that
outperform the GuSTO algorithm (Bonalli et al., 2019). Using Bench-mr
framework, we also compare our method with different sampling and
searching-based path planners, including Theta∗(Daniel et al., 2010),
RRT (LaValle and Kuffner, 2001), RRT∗(Karaman and Frazzoli, 2010)
and BFMT (Starek et al., 2014): this comparison seeks to highlight
the difference between optimization-based and sampling- or searching-
based path planners. We have made a comparison for ten planning
cases from the MovingAI 2D Pathfinding Benchmark (Sturtevant, 2012)
and for one case from the real environment (an artificial environment
with two rooms and a small passage between them; the task is to
move from one room to another; the polygons are shown in Fig. 9).
Comparison results are given in Table 2. We use standard metrics
calculated via the Bench-mr framework (Heiden et al., 2021): angle-
over-length (AOL), maximum and normalized curvature, path length,
planning time, success rate, and number of collisions. The first three
metrics are designed to represent the smoothness of the generated
trajectories (normalized curvature is measured along the path segments
between instant turns, while AOL is measured along the entire path).
AOL is calculated via dividing the total heading change by the path
length (Heiden et al., 2021)

𝐴𝑂𝐿 = 1
𝑙

𝑛−1
∑

𝑖=1
(|𝜃𝑖+1 − 𝜃𝑖|)

where 𝜃𝑖 is the orientation of the 𝑖th path segment, 𝑙 is path length. Note
that CIAO has not been able to plan a collision-free trajectory in two
cases out of ten. This is due to the fact that the CIAO uses inequality
constraints to provide collision avoidance and requires a collision-
free initial guess (Schoels et al., 2020a). PolySAP and Nearest Point
approximator were both able to converge to collision-free trajectories
in all cases. It can be seen that PolySAP significantly outperforms CIAO
and nearest point approximations in computation time, slightly outper-
forms them in path length, and edge them in curvature metrics. RRT,
RRT∗, BFMT and Theta∗ show much longer length due to non-optimal
planning. Besides, Theta∗ demonstrates better AOL, while PolySAP
shows better normalized curvature. The PolySAP planner provides a

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 13. Decomposition example for a BenchMR map: results of decomposition (left column) and convexification (right column). The lower row shows an enlarged fragment of
the same map.
Table 2
Metrics comparison for PolySAP, CIAO, Nearest Point, Theta∗, BFMT, RRT and RRT∗ on 10 testcase scenarios.
 Metric Theta∗ BFMT RRT RRT∗ CIAO Nearest Point PolySAP (ours)—
 AOL 0.313 0.656 0.423 0.316 0.379 0.624 0.368
 Maximum curvature 0.938 1.0 0.956 0.852 0.757 1.28 0.865
 Normalized curvature 3.095 12.01 4.068 2.39 2.11 2.6 1.634
 Path length (m) 10.79 23.81 12.15 9.99 7.012 7.07 6.95
 Planning time (s) 0.11 1.855 0.0127 0.0157 0.049 0.017 0.0034
 Success rate 10/10 8/10 10/10 10/10 8/10 10/10 10/10
 Collisions 5/10 6/10 0/10 2/10 2/10 0/10 0/10
instant turn toward the destination point early into the motion, which
is considered within AOL and ignored within the normalized curvature.

The visualizations of examples of optimized trajectories is given in
Fig. 15 on the left. Significant difference of our approach comparing
to CIAO is the capacity to handle some cases, when the global path is
intersected by obstacles. Such case is shown in Fig. 15 on the right.
CIAO has not been able to provide the path as it requires a collision-
free initial guess. Fig. 16 shows the comparison of generated path
between PolySAP, CIAO and other planners implemented in Bench-
mr framework. The planned paths with the last three planners avoid
the turns, while taking an unwarranted roundabout to reach the goal
position.

5.4. Real robot experiment

As a proof of concept, we made a planning experiment on a real
robot. We implement our planner as a Robotic Operation System pack-
age3 and deploy it on the Husky UGV4 mobile platform equipped with
Velodyne VLP 16 LIDAR. RTAB-MAP SLAM by Labbé and Michaud
(2019) is used for creating and updating the Occupancy Grid. The set
of experiments were made within an experimental area in the office

3 https://wiki.ros.org/.
4 https://opencv.org/.
11
building at Moscow Institute of Physics and Technology. The entire map
of the environment has a size of 114 by 17 m. A central part of the
map is shown in Fig. 17. This is the most cluttered part of the map,
while other parts include twisty wide corridors. In the experiments our
platform was able to successfully navigate between various points of
this environment. We use 𝜃 ∗ algorithm by Nash et al. (2007) to obtain
the global plan. Local planning is executed on a laptop with Intel Core
i3-7020U CPU running Ubuntu. The laptop is connected to the robot
via Ethernet. Replanning rate was set to 10 Hz, i.e. 100 ms for one
planning operation. Sequential quadratic programming is an iterative
optimization technique, therefore one can set the iteration limit in or-
der to guarantee the required planning time. This was not necessary in
our experiment: real order of the planning time is several milliseconds.
CIAO* (Schoels et al., 2020a) and MPPI (Williams et al., 2016) applied
for the similar environment requires hundreds of miliseconds to obtain
the trajectory.

Fig. 18 and the supplementary video5 show the most challenging
task, when the robot is to move through the narrow passage between
two rooms in an artificial indoor environment. This environment can be
considered a simple maze. Its polygon decomposition is shown in Fig.
9. The robot passing through this environment can be seen in the and
in Fig. 18. The top left cell shows the projection of the global path and

5 https://youtu.be/bb6M6Sgaqq8.

https://wiki.ros.org/
https://opencv.org/
https://youtu.be/bb6M6Sgaqq8

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 14. Comparison of decomposition results for the interior extension of edges and
PolySAP.

the local trajectory onto the occupancy grid. As is seen, a dangerous
linear global path (it collides with the passage due to the robot size) is
transformed into a smooth curve, which allows the robot to safely pass
through the second room.

6. Discussion

In general, our approach is intended for local MPC trajectory plan-
ning for a mobile robot in a known 2D environment. Specifically, we
consider scenarios where the exact obstacle map (occupancy grid) is
provided by the sensor system and the SLAM algorithm. Our approach
has been tested in environments where polygon decomposition is rele-
vant, such as city maps and artificial indoor environments. We believe
12
that polygon decomposition can be applied to many types of envi-
ronments, including offices, storage facilities, mazes, and more. Most
indoor environments, as well as many outdoor environments, consist
of flat surfaces and can be effectively represented using polygons. Our
approach may be less effective in environments with complex, ‘‘non-
polygonal’’ features, such as those with numerous small obstacles. In
such cases, polygon decomposition might be redundant and computa-
tionally expensive. Nonetheless, it still has the capability to produce
accurate results.

We consider local planning as a model predictive control task.
However, it is worth noting that generally, we use MPC as a framework
for planning, not for direct control of the robotic system. We obtain
an optimized trajectory and reference control inputs as a solution of
the MPC task. These data are then submitted to the robot’s low-level
controller for execution. The direct use of generated control inputs is
also an option, but it would be wise to combine it with a feedback
control strategy. We use the standard view of the MPC statement (4)
and propose a novel method for calculating one specific term of the cost
function (4a). The system dynamics(4b) is out of scope here. We use a
standard differential drive model as it corresponds to the dynamics of
our real robot. However, it can be replaced with other suitable models
of the mobile platforms, which meet the kinodynamic constraints.

6.1. Limitations

It is worth pointing out the following limitations of our approach:

• The proposed approach considers the robot with a circular foot-
print. We inflate the polygons with the radius of the robot and,
therefore, can consider it pointwise. If the robot is oblong, one can
resort to the approach explored in Ziegler et al. (2014). Under this
approach, the robot footprint is covered with a set of circles, and
the distance to obstacles is calculated separately for each circle.

• Measured computation times of the MPC solver suggest that re-
planning with precomputed polygons is feasible at a rate of
100 Hz. The runtime of the polygon decomposition algorithm
depends on the size and complexity of the map. It takes less
than two seconds to process relatively large city maps from the
MovingAI dataset. If the map is continuously updated, polygons
can be recalculated while the robot is moving through a large
environment. One set of polygons can be used for several dozen
MPC re-plannings. In such cases, a sliding window around the
robot can be employed to focus on a relatively small area for fast
polygon decomposition. Our experiments use a 7 m × 10 m area
around the robot.

• Under our method, obstacle avoidance is ‘‘localized’’ within the
specific term of the cost function. Therefore, our approach can
potentially be combined with other penalty-based approaches
within the single MPC solver. E.g., PolySAP can be applied for
avoiding obstacles from the static map together with additional
terms for avoiding dynamic or previously unknown obstacles.
Fig. 15. Visualization of CIAO (blue) and PolySAP (green) trajectories on two scenarios. Orange dash correspond to the global path.

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Fig. 16. One scenario for comparison of PolySAP, CIAO and different path planners in Bench-mr framework.
Fig. 17. Occupancy Grid map of the environment for real robot experiments. Artificial narrow passages may be seen in the top left area.
Fig. 18. Real robot moving through the narrow passage with PolySAP local planner.
• Our current algorithm considers an obstacle map to be static
within the trajectory prediction horizon. For the general case of
the dynamic environment, the procedure of obstacle decomposi-
tion has to be repeated for each instantaneous map at timesteps
13
𝑘...𝑘 + 𝑚. The setting of the dynamic environment is often more
specific. We have a given static map and a given set of dynamic
obstacles with predicted trajectories. One specific case of this set-
ting is when dynamic obstacles may relate to other autonomous

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
agents in the room (Franze and Lucia, 2015). With such a setting,
we can use our approach to avoid static obstacles with an addition
of specific 𝐽 term to dodge dynamic obstacles.

• Our approach is intended for local planning and requires an initial
guess provided by the global planner. This initial guess can be
a rough estimate. In some cases, it may even intersect some
polygons, and the PolySAP will provide a safe trajectory (see Fig.
15, right part). The optimizer will push the trajectory toward the
nearest border of the polygon, which may lead to an incorrect or
a non-optimal solution when the initial guess goes through the
polygon center.

7. Conclusion

In this paper, we propose PolySAP, a novel approach for incor-
porating obstacle avoidance into the Model Predictive Control (MPC)
task statement. This approach is based on representing obstacles as
a set of convex polygons. We introduce a new algorithm for obstacle
segmentation and a novel artificial potential function that repels the
trajectory from the obstacles. Our polygon decomposition algorithm
operates five times faster than the baseline method of Interior Extension
of Edges. Experiments using planning datasets and a real mobile robot
demonstrate that PolySAP can generate smooth and safe trajectories
from rough global paths. Compared to the baseline CIAO MPC local
planner, our approach delivers a significantly faster solution with only
a minor increase in path length. Unlike CIAO, PolySAP can provide
correct trajectories even when the global plan touches or slightly
intersects obstacles. Overall, our approach offers fast, collision-aware
trajectory optimization by representing environments as a set of convex
polygons. It is a promising technique for improving rough and unsafe
trajectories of indoor mobile robots.

We believe that a promising direction of future work is to combine
PolySAP local planner with the global planner based on route decom-
position. A relevant example of such method is the Visibility Graph
(VG) global planner (Lozano-Pérez and Wesley, 1979). Here the map is
represented as a set of polygons. A visibility graph connects mutually
visible vertices of these polygons, and the shortest path can be found via
routing within this graph. A VG planner provides fast but unsafe global
plans, which touch the polygons’ borders. Another specific downside
of VG is high complexity of its formation for large terrains. Indoor
environments are typically relatively compact. The combination of
PolySAP and VG looks promising for the following reasons. First, VG
exploits the polygon decomposition of the space. Second, our MPC
solver can turn unsafe VG plans into a safe and executable trajectories.
Therefore, we can compensate for the drawbacks of the two approaches
(the unsafety of VG and local convergence of MPC) by combining
them.

CRediT authorship contribution statement

Aleksey Logunov: Software, Investigation. Muhammad Alhad-
dad: Software, Investigation, Data curation. Konstantin Mironov:
Methodology, Investigation, Conceptualization. Konstantin Yakovlev:
Formal analysis, Conceptualization. Aleksandr Panov: Methodology,
Investigation, Funding acquisition, Conceptualization.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT in
order to improve formulations in the text. After using this service,
the authors reviewed and edited the content as needed and take full
responsibility for the content of the publication.
14
Funding

This work was supported by the Ministry of Science and Higher
Education of the Russian Federation under Project 075-15-2024-544.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Aleksandr Panov reports financial support was provided by Analytical
Center for the Government of the Russian Federation. If there are other
authors, they declare that they have no known competing financial in-
terests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Acar, Ercan U., Choset, Howie, Rizzi, Alfred A., Atkar, Prasad N., Hull, Douglas, 2002.
Morse decompositions for coverage tasks. Int. J. Robot. Res. 21 (4), 331–344.
http://dx.doi.org/10.1177/027836402320556359.

Adamkiewicz, Michal, Chen, Timothy, Caccavale, Adam, Gardner, Rachel, Culbert-
son, Preston, Bohg, Jeannette, Schwager, Mac, 2022. Vision-only robot navigation
in a neural radiance world. IEEE Robot. Autom. Lett. 7 (2), 4606–4613. http:
//dx.doi.org/10.1109/LRA.2022.3150497.

Aichholzer, Oswin, Aurenhammer, Franz, 1995. A novel type of skeleton for polygons.
J. Univers. Comput. Sci. 1, 752–761. http://dx.doi.org/10.1007/978-3-642-80350-
5_65.

Alhaddad, Muhammad, Mironov, Konstantin, Staroverov, Aleksey, Panov, Aleksandr,
2024. Neural potential field for obstacle-aware local motion planning. In: 2024
IEEE International Conference on Robotics and Automation. ICRA, pp. 9313–9320.
http://dx.doi.org/10.1109/ICRA57147.2024.10611635.

Blackmore, Lars, Ono, Masahiro, Williams, Brian C., 2011. Chance-constrained optimal
path planning with obstacles. IEEE Trans. Robot. 27 (6), 1080–1094. http://dx.doi.
org/10.1109/TRO.2011.2161160.

Bojadžić, Damir, Kunze, Julian, Osmanković, Dinko, Malmir, Mohammadhossein,
Knoll, Alois, 2021. Non-holonomic RRT & MPC: Path and trajectory planning for an
autonomous cycle rickshaw. http://dx.doi.org/10.48550/arXiv.2103.06141, arXiv
preprint arXiv:2103.06141.

Bonalli, Riccardo, Cauligi, Abhishek, Bylard, Andrew, Pavone, Marco, 2019. GuSTO:
Guaranteed sequential trajectory optimization via sequential convex program-
ming. In: 2019 International Conference on Robotics and Automation. ICRA, pp.
6741–6747. http://dx.doi.org/10.1109/ICRA.2019.8794205.

Bormann, Richard, Jordan, Florian, Li, Wenzhe, Hampp, Joshua, Hägele, Martin,
2016. Room segmentation: Survey, implementation, and analysis. In: 2016 IEEE
International Conference on Robotics and Automation. ICRA, pp. 1019–1026. http:
//dx.doi.org/10.1109/ICRA.2016.7487234.

BrainCorp, 2023a. Automated inventory management, BrainCorp. https://braincorp.
com/industries/commercial-offices/.

BrainCorp, 2023b. Commercial offices, BrainCorp. https://braincorp.com/applications/
shelf-scanning/.

Brown, Stanley, 2017. Coverage path planning and room segmentation in indoor
environments using the constriction decomposition method. In: A thesis presented
to the University of Waterloo in fulfillment of the thesis requirement for the degree
of Master of Applied Science in Mechanical and Mechatronics Engineering.

Butzke, Jonathan, Sapkota, Krishna, Prasad, Kush, MacAllister, Brian,
Likhachev, Maxim, 2014. State lattice with controllers: Augmenting lattice-
based path planning with controller-based motion primitives. In: 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, pp. 258–265.

Choset, Howie, Pignon, Philippe, 1998. Coverage path planning: The boustrophedon
cellular decomposition. Field Serv. Robot. 203–209. http://dx.doi.org/10.1007/
978-1-4471-1273-0_32.

Daftry, Shreyansh, Abcouwer, Neil, Del Sesto, Tyler, Venkatraman, Siddarth,
Song, Jialin, Igel, Lucas, Byon, Amos, Rosolia, Ugo, Yue, Yisong, Ono, Masahiro,
2022. Mlnav: Learning to safely navigate on martian terrains. IEEE Robot. Autom.
Lett. 7 (2), 5461–5468. http://dx.doi.org/10.1109/LRA.2022.3156654.

Daniel, Kenny, Nash, Alex, Koenig, Sven, Felner, Ariel, 2010. Theta*: Any-angle path
planning on grids. J. Artificial Intelligence Res. 39, 533–579.

Dijkstra, Edsger W., 1959. A note on two problems in connexion with graphs. Numer.
Math. 1 (1), 269–271. http://dx.doi.org/10.1145/3544585.3544600.

Ding, Hui, 2020. Motion path planning of soccer training auxiliary robot based on
genetic algorithm in fixed-point rotation environment. J. Ambient. Intell. Humaniz.
Comput. 11 (12), 6261–6270. http://dx.doi.org/10.1007/s12652-020-01877-4.

http://dx.doi.org/10.1177/027836402320556359
http://dx.doi.org/10.1109/LRA.2022.3150497
http://dx.doi.org/10.1109/LRA.2022.3150497
http://dx.doi.org/10.1109/LRA.2022.3150497
http://dx.doi.org/10.1007/978-3-642-80350-5_65
http://dx.doi.org/10.1007/978-3-642-80350-5_65
http://dx.doi.org/10.1007/978-3-642-80350-5_65
http://dx.doi.org/10.1109/ICRA57147.2024.10611635
http://dx.doi.org/10.1109/TRO.2011.2161160
http://dx.doi.org/10.1109/TRO.2011.2161160
http://dx.doi.org/10.1109/TRO.2011.2161160
http://dx.doi.org/10.48550/arXiv.2103.06141
http://arxiv.org/abs/2103.06141
http://dx.doi.org/10.1109/ICRA.2019.8794205
http://dx.doi.org/10.1109/ICRA.2016.7487234
http://dx.doi.org/10.1109/ICRA.2016.7487234
http://dx.doi.org/10.1109/ICRA.2016.7487234
https://braincorp.com/industries/commercial-offices/
https://braincorp.com/industries/commercial-offices/
https://braincorp.com/industries/commercial-offices/
https://braincorp.com/applications/shelf-scanning/
https://braincorp.com/applications/shelf-scanning/
https://braincorp.com/applications/shelf-scanning/
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb11
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb12
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1007/978-1-4471-1273-0_32
http://dx.doi.org/10.1109/LRA.2022.3156654
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb15
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb15
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb15
http://dx.doi.org/10.1145/3544585.3544600
http://dx.doi.org/10.1007/s12652-020-01877-4

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Douglas, David, Peucker, Thomas, 1973. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Can. Cartogr. 10
(2), 112–122. http://dx.doi.org/10.3138/FM57-6770-U75U-7727.

Erdmann, M., Lozano-Perez, T., 1986. On multiple moving objects. In: Proceedings.
1986 IEEE International Conference on Robotics and Automation. vol. 3, pp.
1419–1424. http://dx.doi.org/10.1109/ROBOT.1986.1087401.

Franze, Giuseppe, Lucia, Walter, 2015. A receding horizon control strategy for au-
tonomous vehicles in dynamic environments. IEEE Trans. Control Syst. Technol.
24 (2), 695–702. http://dx.doi.org/10.1109/TCST.2015.2440999.

Gammell, Jonathan D., Strub, Marlin P., 2021. Asymptotically optimal sampling-based
motion planning methods. Annu. Rev. Control. Robot. Auton. Syst. 4, 295–318.
http://dx.doi.org/10.1146/annurev-control-061920-093753.

Gilbert, Elmer G., Johnson, Daniel W., Keerthi, S. Sathiya, 1988. A fast procedure for
computing the distance between complex objects in three-dimensional space. IEEE
J. Robot. Autom. 4 (2), 193–203. http://dx.doi.org/10.1109/56.2083.

González, David, Pérez, Joshué, Milanés, Vicente, Nashashibi, Fawzi, 2016. A review
of motion planning techniques for automated vehicles. IEEE Trans. Intell. Transp.
Syst. 17 (4), 1135–1145. http://dx.doi.org/10.1109/TITS.2015.2498841.

Hart, Peter E., Nilsson, Nils J., Raphael, Bertram, 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4
(2), 100–107. http://dx.doi.org/10.1109/TSSC.1968.300136.

Heiden, Eric, Palmieri, Luigi, Arras, Kai O, Sukhatme, Gaurav S, Koenig, Sven, 2020.
Experimental comparison of global motion planning algorithms for wheeled mobile
robots. http://dx.doi.org/10.48550/arXiv.2003.03543, arXiv preprint arXiv:2003.
03543.

Heiden, Eric, Palmieri, Luigi, Bruns, Leonard, Arras, Kai O., Sukhatme, Gaurav S.,
Koenig, Sven, 2021. Bench-MR: A motion planning benchmark for wheeled mobile
robots. IEEE Robot. Autom. Lett. 6 (3), 4536–4543. http://dx.doi.org/10.1109/LRA.
2021.3068913.

Houska, B., Ferreau, H.J., Diehl, M., 2011a. ACADO toolkit – an open source framework
for automatic control and dynamic optimization. Optim. Control. Appl. Methods 32
(3), 298–312. http://dx.doi.org/10.1002/oca.939.

Houska, B., Ferreau, H.J., Diehl, M., 2011b. An auto-generated real-time iteration
algorithm for nonlinear MPC in the microsecond range. Automatica 47 (10),
2279–2285. http://dx.doi.org/10.1016/j.automatica.2011.08.020.

Huang, W.H., 2001. Optimal line-sweep-based decompositions for coverage algorithms.
In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Au-
tomation (Cat. No.01CH37164). vol. 1, pp. 27–32 vol.1. http://dx.doi.org/10.1109/
ROBOT.2001.932525.

Ji, Jie, Khajepour, Amir, Melek, Wael William, Huang, Yanjun, 2016. Path planning
and tracking for vehicle collision avoidance based on model predictive control with
multiconstraints. IEEE Trans. Veh. Technol. 66 (2), 952–964. http://dx.doi.org/10.
1109/TVT.2016.2555853.

Jian, Zhiqiang, Zhang, Songyi, Chen, Shitao, Nan, Zhixiong, Zheng, Nanning, 2021.
A global-local coupling two-stage path planning method for mobile robots.
IEEE Robot. Autom. Lett. 6 (3), 5349–5356. http://dx.doi.org/10.1109/LRA.2021.
3074878.

Kalakrishnan, Mrinal, Chitta, Sachin, Theodorou, Evangelos, Pastor, Peter, Schaal, Ste-
fan, 2011. STOMP: Stochastic trajectory optimization for motion planning. pp.
4569–4574. http://dx.doi.org/10.1109/ICRA.2011.5980280,

Karaman, Sertac, Frazzoli, Emilio, 2010. Optimal kinodynamic motion planning using
incremental sampling-based methods. In: 49th IEEE Conference on Decision and
Control. CDC, IEEE, pp. 7681–7687.

Katerishich, Maksim, Kurenkov, Mikhail, Karaf, Sausar, Nenashev, Artem, Tset-
serukou, Dzmitry, 2023. DNFOMP: Dynamic neural field optimal motion planner
for navigation of autonomous robots in cluttered environment. In: 2023 IEEE
International Conference on Systems, Man, and Cybernetics. SMC, IEEE, pp.
1984–1989. http://dx.doi.org/10.1109/SMC53992.2023.10394025.

Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H., 1996. Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12 (4), 566–580. http://dx.doi.org/10.1109/70.508439.

Kayacan, Erkan, Chowdhary, Girish, 2019. Tracking error learning control for precise
mobile robot path tracking in outdoor environment. J. Intell. Robot. Syst. 95,
975–986. http://dx.doi.org/10.1007/s10846-018-0916-3.

Khatib, O., 1985. Real-time obstacle avoidance for manipulators and mobile robots. In:
Proceedings. 1985 IEEE International Conference on Robotics and Automation. vol.
2, pp. 500–505. http://dx.doi.org/10.1109/ROBOT.1985.1087247.

Kim, Dong Hun, Shin, Seiichi, 2006. Local path planning using a new artificial potential
function composition and its analytical design guidelines. Adv. Robot. 20 (1),
115–135. http://dx.doi.org/10.1163/156855306775275530.

Kurenkov, Mikhail, Potapov, Andrei, Savinykh, Alena, Yudin, Evgeny,
Kruzhkov, Evgeny, Karpyshev, Pavel, Tsetserukou, Dzmitry, 2022. NFOMP:
Neural field for optimal motion planner of differential drive robots with
nonholonomic constraints. IEEE Robot. Autom. Lett. 7 (4), 10991–10998.
http://dx.doi.org/10.1109/LRA.2022.3196886.

Labbé, Mathieu, Michaud, François, 2019. RTAB-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term online
operation. J. Field Robot. 36 (2), 416–446. http://dx.doi.org/10.1002/rob.21831.

Latombe, J.C., 1991. Robot motion planning. Kluwer Acad. Publ. Boston.
15
LaValle, Steven M., Kuffner, Jr., James J., 2001. Randomized kinodynamic
planning. Int. J. Robot. Res. 20 (5), 378–400. http://dx.doi.org/10.1177/
02783640122067453.

Li, Xinming, 2020. Robot target localization and interactive multi-mode motion tra-
jectory tracking based on adaptive iterative learning. J. Ambient. Intell. Humaniz.
Comput. 11 (12), 6271–6282. http://dx.doi.org/10.1007/s12652-020-01878-3.

Li, Y., Chen, H., Joo Er, M., Wang, X., 2011. Coverage path planning for UAVs based
on enhanced exact cellular decomposition method. Mechatronics 21 (5), 876–885.
http://dx.doi.org/10.1016/j.mechatronics.2010.10.009.

Li, Linjun, Miao, Yinglong, Qureshi, Ahmed H, Yip, Michael C, 2021. Mpc-mpnet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints. IEEE Robot. Autom. Lett. 6 (3), 4496–4503. http://dx.
doi.org/10.1109/LRA.2021.3067847.

Li, Zhaoying, Zhang, Zhao, Liu, Hao, Yang, Liang, 2020. A new path planning
method based on concave polygon convex decomposition and artificial bee
colony algorithm. Int. J. Adv. Robot. Syst. 17 (1), http://dx.doi.org/10.1177/
1729881419894787.

Lozano-Pérez, Tomás, Wesley, Michael A., 1979. An algorithm for planning
collision-free paths among polyhedral obstacles. Commun. ACM 22 (10), 560–570.

Luis, Carlos E., Vukosavljev, Marijan, Schoellig, Angela P., 2020. Online trajectory
generation with distributed model predictive control for multi-robot motion plan-
ning. IEEE Robot. Autom. Lett. 5 (2), 604–611. http://dx.doi.org/10.1109/LRA.
2020.2964159.

Mohamed, Ihab S., Allibert, Guillaume, Martinet, Philippe, 2020. Model predictive path
integral control framework for partially observable navigation: A quadrotor case
study. In: 2020 16th International Conference on Control, Automation, Robotics
and Vision. ICARCV, IEEE, pp. 196–203. http://dx.doi.org/10.1109/ICARCV50220.
2020.9305363.

Morato, Marcelo Menezes, Bernardi, Emanuel, Stojanović, Vladimir, 2021. A qLPV
nonlinear model predictive control with moving horizon estimation. Complex Eng.
Syst. 1 (5), 1–24. http://dx.doi.org/10.20517/ces.2021.09.

MOXI, 2023. Diligent robotics. https://www.diligentrobots.com/.
Nash, Alex, Daniel, Kenny, Koenig, Sven, Felner, Ariel, 2007. Theta*: Any-angle path

planning on grids. In: AAAI. vol. 7, pp. 1177–1183.
Nielsen, Lasse Damtoft, Sung, Inkyung, Nielsen, Peter, 2019. Convex decomposition

for a coverage path planning for autonomous vehicles: Interior extension of edges.
Sensors 19 (19), http://dx.doi.org/10.3390/s19194165.

Panov, Aleksandr I., 2019. Goal setting and behavior planning for cognitive
agents. Sci. Tech. Inf. Process. 46 (6), 404–415. http://dx.doi.org/10.
3103/S0147688219060066, URL: https://link.springer.com/article/10.3103/
S0147688219060066.

Papaioannou, Savvas, Kolios, Panayiotis, Theocharides, Theocharis, Panayiotou, Chris-
tos G, Polycarpou, Marios M, 2023. Distributed search planning in 3-d environments
with a dynamically varying number of agents. IEEE Trans. Syst. Man Cybern.: Syst.
53 (7), 4117–4130. http://dx.doi.org/10.1109/TSMC.2023.3240023.

Parikh, Priyam, Trivedi, Reena, Dave, Jatin, Joshi, Keyur, Adhyaru, Dipak, 2023.
Design and development of a low-cost vision-based 6 dof assistive feeding robot
for the aged and specially-abled people. IETE J. Res. 70 (2), 1716–1744. http:
//dx.doi.org/10.1080/03772063.2023.2173665.

Preparata, Franco P., Shamos, Michael Ian, 1989. Computational Geometry: an
Introduction. Springer-Verlag, New York.

Ratliff, Nathan, Zucker, Matt, Bagnell, J. Andrew, Srinivasa, Siddhartha, 2009. CHOMP:
Gradient optimization techniques for efficient motion planning. In: 2009 IEEE
International Conference on Robotics and Automation. pp. 489–494. http://dx.doi.
org/10.1109/ROBOT.2009.5152817.

Ren, Jing, McIsaac, K.A., Patel, R.V., 2006. Modified Newton’s method applied to
potential field-based navigation for mobile robots. IEEE Trans. Robot. 22 (2),
384–391. http://dx.doi.org/10.1109/TRO.2006.870668.

Salzmann, Tim, Arrizabalaga, Jon, Andersson, Joel, Pavone, Marco, Ryll, Markus,
2024. Learning for CasADi: Data-driven models in numerical optimization. In:
Abate, Alessandro, Cannon, Mark, Margellos, Kostas, Papachristodoulou, Antonis
(Eds.), Proceedings of the 6th Annual Learning for Dynamics & Control Conference.
In: Proceedings of Machine Learning Research, vol. 242, PMLR, pp. 541–553.

Schoels, Tobias, Palmieri, Luigi, Arras, Kai O., Diehl, Moritz, 2020a. An NMPC approach
using convex inner approximations for online motion planning with guaranteed
collision avoidance. In: 2020 IEEE International Conference on Robotics and
Automation. ICRA, pp. 3574–3580. http://dx.doi.org/10.1109/ICRA40945.2020.
9197206.

Schoels, Tobias, Rutquist, Per, Palmieri, Luigi, Zanelli, Andrea, Arras, Kai O.,
Diehl, Moritz, 2020b. CIAO*: MPC-based safe motion planning in predictable
dynamic environments. IFAC- Pap. (ISSN: 2405-8963) 53 (2), 6555–6562. http:
//dx.doi.org/10.1016/j.ifacol.2020.12.072, 21st IFAC World Congress. URL: https:
//www.sciencedirect.com/science/article/pii/S2405896320303281.

Schulman, John, Duan, Yan, Ho, Jonathan, Lee, Alex X., Awwal, Ibrahim, Brad-
low, Henry, Pan, Jia, Patil, Sachin, Goldberg, Ken, Abbeel, P., 2014. Motion
planning with sequential convex optimization and convex collision checking. Int.
J. Robot. Res. 33 (9), 1251–1270. http://dx.doi.org/10.1177/0278364914528132.

Song, Xiaona, Sun, Peng, Song, Shuai, Stojanovic, Vladimir, 2023. Quantized neural
adaptive finite-time preassigned performance control for interconnected nonlinear
systems. Neural Comput. Appl. 35 (21), 15429–15446. http://dx.doi.org/10.1007/
s00521-023-08361-y.

http://dx.doi.org/10.3138/FM57-6770-U75U-7727
http://dx.doi.org/10.1109/ROBOT.1986.1087401
http://dx.doi.org/10.1109/TCST.2015.2440999
http://dx.doi.org/10.1146/annurev-control-061920-093753
http://dx.doi.org/10.1109/56.2083
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.48550/arXiv.2003.03543
http://arxiv.org/abs/2003.03543
http://arxiv.org/abs/2003.03543
http://arxiv.org/abs/2003.03543
http://dx.doi.org/10.1109/LRA.2021.3068913
http://dx.doi.org/10.1109/LRA.2021.3068913
http://dx.doi.org/10.1109/LRA.2021.3068913
http://dx.doi.org/10.1002/oca.939
http://dx.doi.org/10.1016/j.automatica.2011.08.020
http://dx.doi.org/10.1109/ROBOT.2001.932525
http://dx.doi.org/10.1109/ROBOT.2001.932525
http://dx.doi.org/10.1109/ROBOT.2001.932525
http://dx.doi.org/10.1109/TVT.2016.2555853
http://dx.doi.org/10.1109/TVT.2016.2555853
http://dx.doi.org/10.1109/TVT.2016.2555853
http://dx.doi.org/10.1109/LRA.2021.3074878
http://dx.doi.org/10.1109/LRA.2021.3074878
http://dx.doi.org/10.1109/LRA.2021.3074878
http://dx.doi.org/10.1109/ICRA.2011.5980280
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb33
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb33
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb33
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb33
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb33
http://dx.doi.org/10.1109/SMC53992.2023.10394025
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1007/s10846-018-0916-3
http://dx.doi.org/10.1109/ROBOT.1985.1087247
http://dx.doi.org/10.1163/156855306775275530
http://dx.doi.org/10.1109/LRA.2022.3196886
http://dx.doi.org/10.1002/rob.21831
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb41
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1177/02783640122067453
http://dx.doi.org/10.1007/s12652-020-01878-3
http://dx.doi.org/10.1016/j.mechatronics.2010.10.009
http://dx.doi.org/10.1109/LRA.2021.3067847
http://dx.doi.org/10.1109/LRA.2021.3067847
http://dx.doi.org/10.1109/LRA.2021.3067847
http://dx.doi.org/10.1177/1729881419894787
http://dx.doi.org/10.1177/1729881419894787
http://dx.doi.org/10.1177/1729881419894787
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb47
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb47
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb47
http://dx.doi.org/10.1109/LRA.2020.2964159
http://dx.doi.org/10.1109/LRA.2020.2964159
http://dx.doi.org/10.1109/LRA.2020.2964159
http://dx.doi.org/10.1109/ICARCV50220.2020.9305363
http://dx.doi.org/10.1109/ICARCV50220.2020.9305363
http://dx.doi.org/10.1109/ICARCV50220.2020.9305363
http://dx.doi.org/10.20517/ces.2021.09
https://www.diligentrobots.com/
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb52
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb52
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb52
http://dx.doi.org/10.3390/s19194165
http://dx.doi.org/10.3103/S0147688219060066
http://dx.doi.org/10.3103/S0147688219060066
http://dx.doi.org/10.3103/S0147688219060066
https://link.springer.com/article/10.3103/S0147688219060066
https://link.springer.com/article/10.3103/S0147688219060066
https://link.springer.com/article/10.3103/S0147688219060066
http://dx.doi.org/10.1109/TSMC.2023.3240023
http://dx.doi.org/10.1080/03772063.2023.2173665
http://dx.doi.org/10.1080/03772063.2023.2173665
http://dx.doi.org/10.1080/03772063.2023.2173665
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb57
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb57
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb57
http://dx.doi.org/10.1109/ROBOT.2009.5152817
http://dx.doi.org/10.1109/ROBOT.2009.5152817
http://dx.doi.org/10.1109/ROBOT.2009.5152817
http://dx.doi.org/10.1109/TRO.2006.870668
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb60
http://dx.doi.org/10.1109/ICRA40945.2020.9197206
http://dx.doi.org/10.1109/ICRA40945.2020.9197206
http://dx.doi.org/10.1109/ICRA40945.2020.9197206
http://dx.doi.org/10.1016/j.ifacol.2020.12.072
http://dx.doi.org/10.1016/j.ifacol.2020.12.072
http://dx.doi.org/10.1016/j.ifacol.2020.12.072
https://www.sciencedirect.com/science/article/pii/S2405896320303281
https://www.sciencedirect.com/science/article/pii/S2405896320303281
https://www.sciencedirect.com/science/article/pii/S2405896320303281
http://dx.doi.org/10.1177/0278364914528132
http://dx.doi.org/10.1007/s00521-023-08361-y
http://dx.doi.org/10.1007/s00521-023-08361-y
http://dx.doi.org/10.1007/s00521-023-08361-y

A. Logunov et al. Engineering Applications of Artiϧcial Intelligence 153 (2025) 110690
Starek, J., Schmerling, Edward, Janson, Lucas, Pavone, Marco, 2014. Bidirectional
fast marching trees: An optimal sampling-based algorithm for bidirectional motion
planning. In: Workshop on Algorithmic Foundations of Robotics.

Stoican, Florin, Prodan, Ionela, Grøtli, Esten Ingar, Nguyen, Ngoc Thinh, 2019.
Inspection trajectory planning for 3d structures under a mixed-integer framework.
In: 2019 IEEE 15th International Conference on Control and Automation. ICCA,
IEEE, pp. 1349–1354. http://dx.doi.org/10.1109/ICCA.2019.8899514.

Sturtevant, N., 2012. Benchmarks for grid-based pathfinding. Trans. Comput. Intell.
AI Games 4 (2), 144–148. http://dx.doi.org/10.1109/TCIAIG.2012.2197681, URL:
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf.

Szczepanski, Rafal, Tarczewski, Tomasz, Erwinski, Krystian, 2022. Energy efficient local
path planning algorithm based on predictive artificial potential field. IEEE Access
10, 39729–39742. http://dx.doi.org/10.1109/ACCESS.2022.3166632.

Szmuk, Michael, Pascucci, Carlo Alberto, Dueri, Daniel, Açikmeşe, Behcet, 2017. Con-
vexification and real-time on-board optimization for agile quad-rotor maneuvering
and obstacle avoidance. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IROS, pp. 4862–4868. http://dx.doi.org/10.1109/IROS.2017.
8206363.

Szot, Andrew, Clegg, Alexander, Undersander, Eric, Wijmans, Erik, Zhao, Yili,
Turner, John, Maestre, Noah, Mukadam, Mustafa, Chaplot, Devendra Singh,
Maksymets, Oleksandr, et al., 2021. Habitat 2.0: Training home assistants to
rearrange their habitat. Adv. Neural Inf. Process. Syst. 34, 251–266.

Tang, Gang, Tang, Congqiang, Zhou, Hao, Claramunt, Christophe, Men, Shaoyang,
2021. R-DFS: A coverage path planning approach based on region optimal
decomposition. Remote. Sens. 13 (8), http://dx.doi.org/10.3390/rs13081525.

Thirugnanam, Akshay, Zeng, Jun, Sreenath, Koushil, 2022. Safety-critical control and
planning for obstacle avoidance between polytopes with control barrier functions.
In: 2022 International Conference on Robotics and Automation. ICRA, pp. 286–292.
http://dx.doi.org/10.1109/ICRA46639.2022.9812334.

Thrun, S., 1998. Learning metric-topological maps for indoor mobile robot navigation.
Artificial Intelligence 99 (1), 21–71. http://dx.doi.org/10.1016/S0004-3702(97)
00078-7.

Tong, Chunyu, 2020. Three-dimensional reconstruction of the dribble track of soccer
robot based on heterogeneous binocular vision. J. Ambient. Intell. Humaniz.
Comput. 11 (12), 6361–6372. http://dx.doi.org/10.1007/s12652-020-02039-2.

Verschueren, Robin, Frison, Gianluca, Kouzoupis, Dimitris, Frey, Jonathan, Dui-
jkeren, Niels van, Zanelli, Andrea, Novoselnik, Branimir, Albin, Thivaharan,
Quirynen, Rien, Diehl, Moritz, 2022. Acados—a modular open-source framework
for fast embedded optimal control. Math. Program. Comput. 14 (1), 147–183.
http://dx.doi.org/10.1007/s12532-021-00208-8.

Vogel, Jorn, Leidner, Daniel, Hagengruber, Annette, Panzirsch, Michael,
Bauml, Berthold, Denninger, Maximilian, Hillenbrand, Ulrich, Suchenwirth, Lioba,
Schmaus, Peter, Sewtz, Marco, Bauer, Adrian Simon, Hulin, Thomas,
Iskandar, Maged, Quere, Gabriel, Albu-Schaffer, Alin, Dietrich, Alexander,
2021. An ecosystem for heterogeneous robotic assistants in caregiving: Core
functionalities and use cases. IEEE Robot. Autom. Mag. 28 (3), 12–28.
http://dx.doi.org/10.1109/MRA.2020.3032142.
16
Waechter, A., Biegler, L.T., 2005–2022. IPOPT. https://github.com/coin-or/Ipopt.
Williams, Grady, Drews, Paul, Goldfain, Brian, Rehg, James M, Theodorou, Evangelos A,

2016. Aggressive driving with model predictive path integral control. In: 2016
IEEE International Conference on Robotics and Automation. ICRA, pp. 1433–1440.
http://dx.doi.org/10.1109/ICRA.2016.7487277.

Williams, Grady, Wagener, Nolan, Goldfain, Brian, Drews, Paul, Rehg, James M,
Boots, Byron, Theodorou, Evangelos A, 2017. Information theoretic MPC for model-
based reinforcement learning. In: 2017 IEEE International Conference on Robotics
and Automation. ICRA, IEEE, pp. 1714–1721. http://dx.doi.org/10.1109/ICRA.
2017.7989202.

Wu, YuXuan, Wang, Jing, Zhou, Meng, Dong, Zhe, Chen, YangQuan, 2021. Air-ground
cooperative exploration of 3D complex environment with maximized visibility
and obstacles avoidance. In: 2021 International Conference on Unmanned Aircraft
Systems. ICUAS, IEEE, pp. 1416–1421. http://dx.doi.org/10.1109/ICUAS51884.
2021.9476714.

Yang, Fan, Cao, Chao, Zhu, Hongbiao, Oh, Jean, Zhang, Ji, 2022. FAR planner: Fast,
attemptable route planner using dynamic visibility update. In: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, pp. 9–16. http:
//dx.doi.org/10.1109/IROS47612.2022.9981574.

You, Wenwen, Xie, Xiangpeng, Wang, Hui, Xia, Jianwei, Stojanovic, Vladimir, 2024.
Relaxed model predictive control of TS fuzzy systems via a new switching-type
homogeneous polynomial technique. IEEE Trans. Fuzzy Syst. 32 (8), http://dx.doi.
org/10.1109/TFUZZ.2024.3405078.

Zanelli, A., Domahidi, A., Jerez, J., Morari, M., 2017. FORCES NLP: An efficient
implementation of interior-point methods for multistage nonlinear nonconvex
programs. Internat. J. Control 93 (1), 13–29. http://dx.doi.org/10.1080/00207179.
2017.1316017.

Zeng, Jun, Zhang, Bike, Sreenath, Koushil, 2021. Safety-critical model predictive control
with discrete-time control barrier function. In: 2021 American Control Conference.
ACC, IEEE, pp. 3882–3889. http://dx.doi.org/10.23919/ACC50511.2021.9483029.

Zhang, Zeqing, Zhang, Yinqiang, Han, Ruihua, Zhang, Liangjun, Pan, Jia, 2022. A
generalized continuous collision detection framework of polynomial trajectory
for mobile robots in cluttered environments. IEEE Robot. Autom. Lett. 7 (4),
9810–9817. http://dx.doi.org/10.1109/LRA.2022.3191934.

Ziegler, Julius, Bender, Philipp, Dang, Thao, Stiller, Christoph, 2014. Trajectory
planning for bertha — A local, continuous method. In: 2014 IEEE Intelligent
Vehicles Symposium Proceedings. pp. 450–457. http://dx.doi.org/10.1109/IVS.
2014.6856581.

Zimmermann, Simon, Busenhart, Matthias, Huber, Simon, Poranne, Roi, Coros, Stelian,
2022. Differentiable collision avoidance using collision primitives. In: 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS, IEEE,
pp. 8086–8093. http://dx.doi.org/10.1109/IROS47612.2022.9981093.

Zuo, Zhiqiang, Yang, Xu, Li, Zheng, Wang, Yijing, Han, Qiaoni, Wang, Li, Luo, Xi-
aoyuan, 2020. MPC-based cooperative control strategy of path planning and
trajectory tracking for intelligent vehicles. IEEE Trans. Intell. Veh. 6 (3), 513–522.
http://dx.doi.org/10.1109/TIV.2020.3045837.

http://refhub.elsevier.com/S0952-1976(25)00690-6/sb65
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb65
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb65
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb65
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb65
http://dx.doi.org/10.1109/ICCA.2019.8899514
http://dx.doi.org/10.1109/TCIAIG.2012.2197681
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://dx.doi.org/10.1109/ACCESS.2022.3166632
http://dx.doi.org/10.1109/IROS.2017.8206363
http://dx.doi.org/10.1109/IROS.2017.8206363
http://dx.doi.org/10.1109/IROS.2017.8206363
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://refhub.elsevier.com/S0952-1976(25)00690-6/sb70
http://dx.doi.org/10.3390/rs13081525
http://dx.doi.org/10.1109/ICRA46639.2022.9812334
http://dx.doi.org/10.1016/S0004-3702(97)00078-7
http://dx.doi.org/10.1016/S0004-3702(97)00078-7
http://dx.doi.org/10.1016/S0004-3702(97)00078-7
http://dx.doi.org/10.1007/s12652-020-02039-2
http://dx.doi.org/10.1007/s12532-021-00208-8
http://dx.doi.org/10.1109/MRA.2020.3032142
https://github.com/coin-or/Ipopt
http://dx.doi.org/10.1109/ICRA.2016.7487277
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICUAS51884.2021.9476714
http://dx.doi.org/10.1109/ICUAS51884.2021.9476714
http://dx.doi.org/10.1109/ICUAS51884.2021.9476714
http://dx.doi.org/10.1109/IROS47612.2022.9981574
http://dx.doi.org/10.1109/IROS47612.2022.9981574
http://dx.doi.org/10.1109/IROS47612.2022.9981574
http://dx.doi.org/10.1109/TFUZZ.2024.3405078
http://dx.doi.org/10.1109/TFUZZ.2024.3405078
http://dx.doi.org/10.1109/TFUZZ.2024.3405078
http://dx.doi.org/10.1080/00207179.2017.1316017
http://dx.doi.org/10.1080/00207179.2017.1316017
http://dx.doi.org/10.1080/00207179.2017.1316017
http://dx.doi.org/10.23919/ACC50511.2021.9483029
http://dx.doi.org/10.1109/LRA.2022.3191934
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1109/IROS47612.2022.9981093
http://dx.doi.org/10.1109/TIV.2020.3045837

	Polygon decomposition for obstacle representation in motion planning with Model Predictive Control
	Introduction
	Contribution
	Structure

	Related Works
	Motion planning for mobile robots
	Trajectory optimization and collision avoidance
	Polygon decomposition
	Discussion

	Polygon Decomposition
	Background
	Our algorithm

	Trajectory optimization regarding obstacle polygons
	Common MPC formulation for local trajectory planning
	Obtaining the obstacle-related cost (APF)
	Choice of the surrounding polygons

	Results
	Implementation and parameters
	Comparative numerical experiment on polygon decomposition
	Comparative numerical experiment on collision avoidance
	Real robot experiment

	Discussion
	Limitations

	Conclusion
	CRediT authorship contribution statement
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Funding
	Declaration of competing interest
	Data availability
	References

