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Policy Optimization to Learn Adaptive Motion
Primitives in Path Planning with Dynamic Obstacles

Brian Angulo1, Aleksandr Panov2 and Konstantin Yakovlev3

Abstract—This paper addresses the kinodynamic motion plan-
ning for non-holonomic robots in dynamic environments with
both static and dynamic obstacles – a challenging problem that
lacks a universal solution yet. One of the promising approaches
to solve it is decomposing the problem into the smaller sub-
problems and combining the local solutions into the global one.
The crux of any planning method for non-holonomic robots
is the generation of motion primitives that generates solutions
to local planning sub-problems. In this work we introduce
a novel learnable steering function (policy), which takes into
account kinodynamic constraints of the robot and both static and
dynamic obstacles. This policy is efficiently trained via the policy
optimization. Empirically, we show that our steering function
generalizes well to unseen problems. We then plug in the trained
policy into the sampling-based and lattice-based planners, and
evaluate the resultant POLAMP algorithm (Policy Optimization
that Learns Adaptive Motion Primitives) in a range of challenging
setups that involve a car-like robot operating in the obstacle-rich
parking-lot environments. We show that POLAMP is able to plan
collision-free kinodynamic trajectories with success rates higher
than 92%, when 50 simultaneously moving obstacles populate
the environment showing better performance than the state-of-
the-art competitors.

The code is available at https://github.com/BrianAnguloYauri/
POLAMP.

Index Terms—Motion and Path Planning, Task and Motion
Planning, Reinforcement Learning.

I. INTRODUCTION

AUTONOMOUS robotic systems have become one of the
most popular research topics in recent years due to their

pronounced potential social benefits. In particular, autonomous
driving is developing rapidly and at the same time requires
efficient motion planning in complex and highly dynamic
environments, meanwhile taking into account the kinodynamic
constraints of an non-holonomic autonomous vehicle. Often,
the planners that address the first aspect of the problem, i.e.
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Fig. 1: Illustration of the POLAMP algorithm. Red arrow represent
the start state, Blue arrow – the goal one. Black and Blue rectangles
represent the static and dynamic obstacles respectively. Cyan curve
is the generated trajectory by A*-POLAMP.

dynamic environment, like the ones presented in [1], [2], [3] do
not take into account the kinodynamic constraints. On the other
hand, kinodynamic planners often do not explicitly reason
about the future changes of the environments, even if these
changes are for-seen, e.g. predicted by the control system of
the robot. In this work we want to enrich the kinodynamic
planning methods with the ability to take the dynamics of the
environment as well (at the planning stage).

Two common approaches to kinodynamic planning are
widespread: lattice-based and sampling-based planning meth-
ods. Lattice-based planning methods utilize the so-called mo-
tion primitives [4] that form a regular lattice. Each motion
primitive represents a small segment of kinodynamically feasi-
ble trajectory of the robot, which is pre-computed before plan-
ning. At the planning stage the search-based algorithms (e.g.
A* [5] of its variants) are used to find the resultant trajectory,
represented as a sequence of the motion primitives. Contrary,
sampling-based planners, e.g. RRT [6] or RRT* [7], grow
a search tree by sampling states in the robot’s configuration
space and invoke a local planner to connect two states while
respecting the kinematic constraints of the robot. Thus, the
motion primitives are constructed online (i.e. while planning).

One of the prominent approaches to alleviate the complexity
of local planners to respect the kinematic constraints of the
robot is to use methods based on reinforcement learning
such as methods proposed in RL-RRT [8] and PRM-RL [9].
In this work, we suggest Policy Optimization algorithm to
Learn Adaptive Motion Primitives (POLAMP) to take into
account the future changes of the environment at the planning
stage, while producing plans that satisfy the kinodynamic
constraints of the robot. POLAMP utilizes a reinforcement
learning approach to find a policy that generates local seg-
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ments of trajectory which are embedded in the global planning
algorithms, RRT and A*, to generate a global motion plan.
Our learnable local planner utilizes local observation to avoid
both static and dynamic obstacles and, as well, respect the
kinodynamic constraints of the robot. As a result, POLAMP
is able to generate feasible solutions with high success rate
(> 92%) in the environments with up to 50 moving obstacles
thus outperforming competitors.

II. RELATED WORK

The problem of kinodynamic planning is well researched
and various approaches such as graph-based, sampling based,
optimization, reinforcement learning or the combination of
them are used, see [10] for review. Nevertheless, the kino-
dynamic planning in presence of dynamic obstacles is still a
challenging problem.

A widespread approach to kinodynamic planning in robotics
is sampling-based planners. The most popular way to account
for the robot’s dynamics is to sample in the robot’s state space
and attempt to connect states via different local planners [11],
[12], [13], [1], including for car-like robot [14]. The method
described in this work also relies on the local planner, but it is
learnable and takes the moving obstacles into account. Unlike
the methods presented in [1], [15], it assumes that the infor-
mation on how the obstacles are intended to move in future is
available (e.g. predicted from the sensors’ observations) and
takes this information into account while planning.

Recently a lattice-based planner for car-like robots in highly
dynamic environments was proposed [16]. Other variants of
lattice-based planners for car-like robots are described in [4],
[17], [18]. Contrary to these algorithms the suggested method
does not construct a lattice in the high-dimensional space to
search for a feasible plan, but uses a local learnable planner
to connect states.

There also exist methods that, first, generate a rough path,
often the one that does not take the kinodynamic constraints
into account, and then generate controls to follow the path
respecting the system’s dynamics and avoiding obstacles. The
variants of these methods are described in [19], [20], [21],
[22]. Unlike them the method proposed in this work builds a
feasible trajectory in one planning step. Avoiding the moving
obstacles is performed by utilizing the knowledge of their
future trajectories.

Finally, the most similar methods to the one presented in
this article are RL-RRT [8] and PRM-RL [9]. Our method also
uses a learning local planner inside a sampling-based planner.
However, unlike these methods our local planner considers
the presence of dynamic obstacles and is trained using a
specifically-designed curriculum learning.

III. PROBLEM STATEMENT

We are interested in planning a feasible kinodynamic tra-
jectory for a non-holomonic robot, that avoids both static and
moving obstacles. In particular we are interested in car-like
robots whose dynamics is described as [23]:

Fig. 2: Actor-Critic architecture that is implemented in POLAMP

ẋ = vcos(θ)

ẏ = vsin(θ) (1)

θ̇ =
v

L
tan(γ),

where x,y are the coordinates of the robot’s reference point
(middle of the rear axle), θ is the orientation, L is the wheel-
base, v is the linear velocity, γ is the steering angle. The former
three variables comprise the state vector: x(t) = (x, y, θ). The
latter two variables form the control vector: u(t) = (v, γ),
which can also be re-written using the acceleration a and the
rotation rate ω as follows: v = v0 + a · t, γ = γ0 + ω · t.

The robot is operating in the 2D workspace populated with
static and dynamic obstacles. Their shapes are rectangular
(as the one of the robot). Let Obs = {Obs1(t), ..., Obsn(t)}
denote the set of obstacles, where Obsi(t) maps the time
moments to the positions of the obstacle’s reference point
in the workspace. For the static obstacles it obviously holds
that ∀t : Obsi(t) = Obsi(0). In our work, we consider the
functions Obsi(t) to be known.

Denote by Xfree(t) the configurations of the robot which
are not in collision with any of the obstacles at time moment
t (w.r.t. the robot’s and the obstacles’ shapes). The problem
now is to find the controls (as functions of time) that move
the robot from its start configuration sstart to the goal one
sgoal s.t. that the kinodynamic constraints (1) are met and the
resultant trajectory is in Xfree(t).

IV. METHOD

We rely on the combination of the global and the local
planners to solve the described problem. Global planner is
aimed to systematically decompose the problem into the set
of sub-problems which are easier to solve, i.e. moving from
one configuration to another. The local planner is tailored to
solve the latter problem. Any such a sub-problem is in essence
the two-boundary value problem with additional constraints
(prohibiting the robot to collide with the obstacles) which is
hard to solve directly. To this end, we cast this problem as the
partially-observable Markov decision process (POMDP) and
obtain the policy for solving the POMDP via the reinforcement
learning, more specifically via the custom-tailored Proximal
Policy Optimization algorithm. Once the policy is obtained
(learned) we plug it into the global planner. We use the
adaptations of the renowned algorithms, RRT and A*, to get
the final solvers. We name this type of solvers as POLAMP –
Policy Optimization to Learn Adaptive Motion Primitives.
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Fig. 3: The learning environment. Green rectangle with the Red
arrow is the current state of the robot. Green rectangle with the
cyan orientation is the goal desired state. Blue rectangles are the
static obstacles and the Blue rectangle with Pink arrow is the moving
obstacle. Orange lines are the laser beams.

A. Learnable Local Planner

a) Background: Formally, POMDP can be represented as
a tuple (S,A,P,R,Ω), where S is the state space, A is the
action space, P is the state-transition model, R is the reward
function, Ω is the observation space. During learning at each
time step the agent receives an observation ot ∈ Ω, takes an
action at ∈ A and receives a reward rt ∈ R. The goal is to
learn a policy, i.e. the mapping from the observations to the
distributions of actions, π : Ω → P (A). The policy should
maximize the following expected return from the start state
st:

J(π) = Eri,si∼P,ai∼π[

T∑
i=t

γi−tr(si, ai)|st, at], i > t,

where γ is the discounting factor.
The Q-function is used to concise definition of the most

essential information for the agent in order to make an optimal
decision:

Qπ(st, at) = Eri,si∼P,a∼π[Rt|st, at], i > t,

In this paper, we consider algorithms of the actor-critic
family, which are more stable, have less variance, and are less
prone to convergence to a local minimum. The actor updates
the policy approximator π̂w using the following equation:

∇wJ(π̂w) = Eπ̂w

[
∇w log π̂w(s, a)Q

π̂w(s, a)
]
,

where π̂w is an arbitrary differentiable policy. Critic evaluates
the approximation of the Qπ̂w(s, a) value for the current policy
π̂w. Actor-critic algorithms have two sets of parameters: a
critic updates parameters ϕ of the Q-function, and an actor
updates parameters w of the policy according to the critic
assumptions.

In this work, we use Proximal Policy Optimization
method [24] (PPO) because it has shown the best performance

among other methods in our preliminarly evaluation. Actor
part of the PPO optimizes the clipped loss function

L(s, a, wk, w) = min(
πw(a|s)
πwk

(a|s)
Aπwold (s, a),

clip(
πw(a|s)
πwold

(a|s)
, 1− ϵ, 1 + ϵ)Aπwold (s, a)),

where Aπw is an estimation of the advantage function
A(s, a) = Q(s, a) − V (s) given by the critic part. Clipping
is a regularizer removing incentives for the policy to change
dramatically. The hyperparameter ϵ corresponds to how far
away the new policy can go from the old while still profiting
from the objective. When integrating the PPO algorithm into
our method, we considered the state st as a function from
observation st ≈ f(ot), where f is lower layers of neural
network approximator of the actor and critic shown in Fig. 2.

b) Observations, actions and rewards: In this paper, we
consider actions at = (a, ω) ∈ R2 that are composed of setting
the linear acceleration a ∈ (−5, 5) m/s2 and rotation rate
ω ∈ (−π/12, π/12) rad/s. The latter ones can be converted
to robot’s controls using the transformations for Eq. 1, where
we set the range of the linear velocity in v ∈ (0, 4) m/s and
steering angle in γ ∈ (−π/6, π/6) rad. Although we consider
linear acceleration and rotation rate as actions of the policy,
the latter, in principle, is able to work with different control
inputs.

The observation ot is a vector that consists of the
Nbeams = 39 measurements of the lidar that cover
the 360◦ surrounding of the robot up to the length of
beammax = 20 m – see Fig. 3 concatenated with the features
(∆x,∆y,∆θ,∆v,∆γ, θ, v, γ, a, ω), where ∆(si) stands for
the difference between the respective parameter si of the goal
state and the current one, (θ, v, γ) are last three parameters of
the current state and (a, ω) are the current controls. We con-
sider an ideal environment, so both simulation and actuation
model do not have errors.

The reward function is described by:

R = wT
r [rgoal, rcol, rfield, rt, rbackward, rvmax , rγmax ],

where wr is a vector of weights, rgoal is 1 if the agent
has reached the goal state with the (ϵρ, ϵθ) tolerance and 0
otherwise, rcol is−1 if the agent collides with the obstacles and
0 otherwise, rfield = ρcurr−ρlast, where ρlast = ∥st−1−sgoal∥
and ρcurr = ∥st − sgoal∥ we penalize the agent for moving
away from the goal, rt = −1 is the constant penalty for
each time step, rbackward is −1 the the agent is using rear gear
(moving backwards) and 0 otherwise, rvmax is −1 for exceeding
the maximum speed limit, rγmax is −1 for exceeding the
maximum of steering angle threshold. We set the weights to
be wr = [20, 8, 1, 0.1, 0.3, 0.5, 0.5] (empirically those values
result in a more efficient learning).

c) Curriculum policy learning: To accelerate training
end we propose a three-stage curriculum learning (see Fig. 5).
During the first stage, we train the agent in the empty
environment. This stage is tailored to learn the kinodynamic
constraints of the vehicle. Once the agent achieves an accept-
able success rate (80% of the solved tasks), we stop training
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Fig. 4: Maps (1-3) used in our tests. Red rectangles and arrows show the start coordinates and orientations (with the start velocity v = 0
and the steering angle γ = 0), and Cyan rectangles and arrows show the goal coordinates and orientations.

Algorithm 1 POLAMP with RRT planner

Require: sstart, sgoal, Obs(t), Nmax, RL-PI, D, Nnbs, Rex

Ensure: P: Motion Plan
1: sstart.t← 0
2: T ← INITIALIZETREE(sstart)
3: while Nmax was not reached do
4: srand ← RANDOMSAMPLE
5: neighbors← NEAREST(T , srand, Nnbs)
6: for si ∈ neighbors do
7: sj ← EXTEND(si, srand, Rex)
8: sj ← RL-STEER(si, sj , sgoal, Obs(t), RL-PI, D)
9: if sj .tr is not empty then

10: T ← APPEND(sj)
11: if sgoal.tr is not empty then
12: T ← APPEND(sgoal)
13: return P = MOTIONPLAN(T )
14: else
15: break
16: return P = ∅

and proceed to the next stage. In the second stage, we re-train
the policy in a new environment which is populated with static
obstacles so the agent learns to avoid the collisions with them.
In the last stage, we add an adversarial dynamic obstacle to the
static environment so the agent learns to circumnavigate it or
wait in place if needed to let the obstacle go away. The latter
is the essential skill for planning with dynamic obstacles.

B. Global planners

Although our learnable local planner can generate a tra-
jectory between two nearby states it is not well-suited for
constructing a long-term plans. Thus we suggest using a global
planner as well that can consistently explore different regions
of the workspace relying on the global observation and find
the ways to reach the remotely located goals. In this work,
we utilize the classical algorithms RRT and A* as the global
planners. For the detailed explanation of these algorithms we
refer the reader to the original papers, and now proceed with
an overview.

The pseudocodes of both algorithms are given in Alg. 1
and Alg. 2 respectively. The main difference between the
sampling-based (i.e. RRT) and the lattice-based (i.e. A*) algo-
rithms is how to choose the state to extend and how to extend
the given state. On the one hand RRT uses RandomSample

in the state space to grow the search tree randomly from the
Nearest state in the tree using Extend to limit the maximum
distance of the states that should be connected. On the other
hand, A* does not choose a random sample, but rather uses a
deterministic priority queue of states, OPEN, to choose which
state to expand (extend). The OPEN queue is sorted in order
of increasing f -values, where f(s) = g(s) + ϵ · h(s) consists
of two terms g(s) and h(s). g(s) is the cost of the shortest
path from the start state to the current one, and h(s) is the
heuristic estimate of the cost from s to goal. Upon choosing a
most promising state A* the next states (Successors) using a
fixed set of motion primitives through which the robot reaches
the next states.

The major difference between these classical algorithms
and POLAMP is that POLAMP explicitly reasons about time
moments to take the dynamic obstacles into account while
planning. Local planning is implemented with the RL-STEER
function. This function solves a local planning problem, de-
fined by the two states si and sj . If the distance between si and
sgoal is less than D then the goal is attempted to be reached
from si. To reach the target state the policy RL-PI is used
which has an access to the information on how the dynamic
obstacles move, i.e. Obs(t). If RL-PI managed to connect the
states, it returns the generated trajectory sj .tr and the time by
which the target state is reached, i.e. sj .t. Thus all the states
in the search tree bear the information on their reaching time
which is used while planning.

In this work, we use a modified version of RRT, when at
each iteration Nearest gets several Nnbs with the maximum
radius of extend Rext and tries to generate trajectories to them
until one of them is build. Unlike the original algorithm A*,
where the search ends when the goal state is expanded, in
this work, the search ends as soon as the trajectory to the
final state is found. To generate the successors we use the
technique of online motion primitives from [16], i.e. we apply
discrete controls ξ = (a, γ) for a period of H to determine the
robot’s desired configurations. Then we use our learned policy
to construct collision-free trajectories to these configurations.

V. EXPERIMENTAL EVALUATION

We evaluated POLAMP (and compared it with the competi-
tors) in two types of environments: with static obstacles and
with both static and dynamic obstacles.
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Algorithm 2 POLAMP with A* planner

Require: sstart, sgoal, Obs(t), H , ξ, D, RL-PI, Nmax

Ensure: P: Motion Plan
1: CLOSED ← ∅, OPEN ← ∅
2: sstart.t← 0, g(sstart)← 0, f(sstart)← h(sstart)
3: OPEN ← INSERT(sstart)
4: while OPEN is not empty or Nmax was not reached do
5: si ← OPEN.POP(), CLOSED ← INSERT(si)
6: SUCCESSORS ← GETNEXTSTATES(ξ,H)
7: for sj ∈ SUCCESSORS do
8: sj ← RL-STEER(si, sj , sgoal, Obs(t), RL-PI, D)
9: if sj .tr is empty then

10: continue
11: if sgoal.tr is not empty then
12: CLOSED ← stn , CLOSED ← sgoal
13: return P = MOTIONPLAN(CLOSED)
14: c(si, sj)←COST(stn .tr)
15: if g(sj) is better than any previous one then
16: OPEN ← INSERT(sj)
17: return P = ∅

A. Policy learning

To train the policy we created a dataset of different tasks
(start and goal states) in three types of environments: empty,
static, dynamic. Every of these environments had a size
40m× 40m. Each task was generated randomly in a way that
the distance between the start and goal locations was in the
interval of [15, 30]m, moreover the difference in orientations
did not exceeded π

4 . The task was considered solved if the
agent reached the goal state with the Euclidean error ϵρ ≤ 0.3
m and the orientation error ϵθ ≤ π/18 rad with no collisions.

To generate tasks in static environments we sampled 12
fragments of size 40m × 40m from the map depicted on
Fig. 4 on the left (Map1), which has the size of 100m×60m.
For training in dynamic environments we populated the static
environments with one adversarial dynamic obstacle. I.e. the
start state of the dynamic obstacles and its trajectory were
generated semi-randomly in such way that with a very high
chance it will intersect the path of the agent and will force the
latter to detour/wait. An illustration is given in Fig. 3.

Similarly to the train dataset we created a separate set of
validation tasks. We used them to measure the progress of
training, i.e. once in a while we evaluated the performance
of the currently trained policy on the validation tasks. If the
success rate (the fraction of the solved tasks) was lower than
80% we continue learning, in the opposite case – we stopped
learning.

The effect of curriculum learning. To qualitatively assess
the effect of the proposed curriculum learning we trained two
policies: the first (baseline) was trained immediately in the
dynamic environment, πstand, while the second one, πcurr,
was trained with the proposed three-stage curriculum. The
corresponding learning curves are shown in Fig 5. Evidently
the curriculum policy πcurr starts to converge from approx.
300M time step with almost 30 of reward and in this time the
standard policy πstand only achieves the reward of 13 (and

Fig. 5: A comparison of learning curves between curriculum and stan-
dart learning for our policy. The dash lines represent the intermediate
trained policy in the respecting environment.

starts converging later). Thus, we confirm that the suggested
curriculum leads to a faster convergence, which is especially
useful when the resources, e.g. training time, are limited.

Agent Dynamic Orientation SR %
πst
w/o−θ

no no 99
πst
w−θ no yes 32

πdyn
w/o−θ

yes no 28

πdyn
w−θ yes yes 22

TABLE I: The results of the trained DDPG agent in different setups.

Training the learnable baseline. The learnable baseline
which we primarily aimed to compare with was RL-RRT [8].
Similarly to POLAMP it is a combination of the global
planner, RRT, with the learnable local planner, based on the
DDPG policy. To provide a fair comparison we trained this
policy on our dataset from scratch. However, even after a
prolonged training its success rate on the validation tasks was
not exceeding 22%.

To understand the reasons of such performance we con-
ducted additional training for the three variants of this policy in
more simple setups. The characteristics of those setups and the
resultant success rates are shown in Table I. Notably, the policy
that ignored the orientation constraints and dynamic obstacles
(the same setting from RL-RRT), πstat

w/o−θ, showed a very good
performance – almost 100% success rate. This goes in line
with the original paper on RL-RRT as the authors considered
this setting. However, when the setup becomes more complex,
the performance of the policy drops significantly. For example,
the policy which ignores the dynamic obstacle, πstat

w/−θ, showed
only 32% SR, and the one that ignores the goal orientation,
πdyn
w/o−θ, – 28%. Thus, we conduct that this type of policy has

an acceptable performance only in basic setups.
The poor performance of the RL-RRT in the case of more

complex environmental conditions and with a large number
of dynamic obstacles is primarily due to the instability of
the learning process of the DDPG algorithm in a stochastic
environment. DDPG belongs to the class of the off-policy
methods, saves experience from different episodes in the
replay buffer (including those that led to collisions), and
generates a deterministic policy relative to the value function.
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Map Planner SR,% TTR,% Samples,% Time,%

1 POLAMP-RRT 100 100 100 100
POLAMP-A* 100 93 179 103
RRT-ES 90 120 3851 104
RL-RRT 40 96 2424 578
SST* 85 140 4124 111
SST*(3x) 90 113 11576 351

2 POLAMP-RRT 100 100 100 100
POLAMP-A* 100 78 121 85
RRT-ES 62.5 143 1322 107
RL-RRT 4.5 153 677 308
SST* 82.5 123 1225 102
SST*(3x) 100 100 3405 293

3 POLAMP-RRT 100 100 100 100
POLAMP-A* 100 84 143 89
RRT-ES 31 102 3426 98
RL-RRT 8 126 1532 407
SST* 58.8 141 3560 101
SST*(3x) 85 111 9073 287

TABLE II: Results of the experiments on the static maps.

In POLAMP, we use the on-policy PPO method, when only the
latest relevant trajectories are considered to improve the policy,
which at the later stages of training are unlikely to contain
collision situations. In a number of works [25], [26], [27],
on-policy algorithms showed a significant advantage over off-
policy in a stochastic environment, due to the ability to gener-
ate a stochastic policy. The advantage of PPO over DDPG in
our task is undeniable when using curriculum learning when
a replay buffer prevents the DDPG from adapting to the new
conditions of the next stage of training.

B. Evaluation In Static Environments

We used three different maps, resembling the parking lots,
for the evaluation – see Fig. 4. Each map had a size of 100m×
60m and was generated based on the dataset from [28]. Please
note, that only several fragments of Map1 were observed by
the policy during training, while Map2 and Map3 were not
used while training at all. For each map, we generated 20
different planning instances, i.e. the start-goal location pairs.
We generated them randomly and discarded the instances for
which the straight-line distance between start and goal was less
than 50m (in order to avoid non-challenging tasks). Start/goal
orientations were also chosen randomly as the multiplicative
of 90◦. Each test was repeated 30 times. A test was counted
as failure if the robot was not able to reach the goal with
following tolerance: ϵρ ≤ 0.5 m and ϵθ ≤ π/18.

We compared POLAMP to the following algorithms: RRT
that utilized a well-known non-learnable steering function
based on the exponential stabilization [29] (denoted RRT-ES),
a kinodynamic motion planner SST* [30], RL-RRT [8] – a
state-of-the-art planning method with a learnable local planner
(details on learning this planner were provided above).

For the RRT part of the algorithms, we set the radius of the
Extend method Rext = 10 m, the maximum distance which we
can reach the goal from is D = 30 m, the number of nearest
neighbors Nnbs = 5 and the maximum number of iterations of
the RRT Nmax = 1500 for the POLAMP-RRT and RL-RRT,
and Nmax = 3000 for the RRT-ES and SST*. We additionally
ran SST with 9000 iterations to study how the solution of
this probabilistic complete and asymptotic optimal planner will

improve. We denote this variant as SST*(3x). For POLAMP-
A* we used the same parameters as for RRT. Additionally, we
used the 7 discrete steering angles ranged uniformly between
[γmin, γmax], the linear velocity v = 2 and the time horizon
H = 3 s to generate the lattice of the motion primitives. All
these values were chosen following a preliminary evaluation
aimed at identifying the suitable parameters’ values.

The metrics we used were: success rate (SR) – how often
the planner produces a path that reaches the goal, time to reach
the goal (TTR), total number of samples and the runtime of
the algorithm.

The results are presented in Table II. Notably, POLAMP has
a much higher success rate compared to the other algorithms
reaching almost 100% in every map. This shows that our
learnable local planner, indeed, generalizes well to the unseen
consitions. The observable trend is that POLAMP requires
much fewer samples than RRT-ES to generate the motion plan.
For example, for Map2 POLAMP requires 14x and 12x less
samples compared to RRT-ES and SST* respectively. This
is because POLAMP performs collision avoidance for local
steering while RRT-ES and SST* do not. While the success
rate of SST*(3x) is notably higher and approaches 100%
on Map2, it requires way more samples compared to SST*
and, consequtively, POLAMP. In comparison with RL-RRT,
POLAMP also requires less samples.

Also, is can be noted that RL-RRT has a higher success rate
for the Map1 than for the other maps, meaning that, unlike our
policy, the policy of RL-RRT did not generalize well to the
other two maps. We can suggest that the main reason for RL-
RRT not being able to perform well on Map2 and Map3 is
that the learnable component of that planner, i.e. DDPG, was
not able to learn sufficiently well in our setup, i.e. provided
only with the instances that were taken from the Map1. In
other words, the DDPG policy was not able to learn well
in our dataset and was overffited to Map1. Meanwhile, PPO
that used the same amount of data for training, was able to
generalize to solving local pathfinding queries on (the unseen
during training) Map2 and Map3. Thus, we infer that PPO
is a more sample efficient policy that, generally, should be
preferred over DDPG in similar setups.

C. Evaluation In Dynamic Environments

For this series of the experiments, we used Map2 and Map3,
i.e. the maps that were not used for training. These maps were
populated with the varying number of dynamic obstacles: from
0 to 70. Every dynamic obstacle is a rectangular shape car-
like robot. Its trajectory is generated by sampling the random
control input (a, ω) every 10th time step. We generated 5
different trajectories for every dynamic obstacle. Two different
start-goal pairs were chosen for each map. Each test was
repeated 20 times for the sampling-based planners.

As before we compared POLAMP to RL-RRT. We also
compared to A*-CMP [16]. For this algorithm we used the
same parameters as for POLAMP-A*. Another baseline was
the combination of RRT with the seminal Dynamic Window
Approach (DWA) [31] as a local planner (RRT-DWA). The
latter is capable of avoiding moving obstacles and is widely
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Fig. 6: Planning results for the maps with dynamic obstacles (success rate, time to reach and number of samples). The legend for all
algorithms is shown in the figure on the right.

used in robotics. For RRT-DWA we did not account for the
final orientation as DWA is not tailored to obey orientation
constraints. Also, we compared to RRTX [1] that used Dubins
steering function [32]. This algorithm is essentially a plan-
execute-re-plan type of algorithm that re-uses the search
tree while the robot is moving towards the goal. For better
performance of RRTX at each re-planning iteration we did
not take into account the moving obstacles located more then
20 m away from robot. In the case of RRTX, the SR means
how often the robot can reach the goal without collisions while
executing the path. Additionally because RRTX needs much
more samples during the re-planning we do not show this
metric for RRTX.

The results are presented in Fig 6. The first clear trend is
that POLAMP-RRT, POLAMP-A* and A*-CMP in all cases
maintain a high success rate (> 92%) until the number of
dynamic obstacles goes beyond 50. However, POLAMP-A*
and POLAMP-RRT require much fewer samples than A*-
CMP to find the trajectory. This is because the A*-CMP
requires two groups of primitives. One group of primitives
allows accelerate and move at a constant speed while another
group tries to decelerate to avoid collision with dynamic
obstacles. However our algorithm only requires one group of
primitives, because our policy is able to decelerate to avoid
collision with dynamic obstacles when it is necessary.

We also note that there are trade-off between POLAMP-
RRT, POLAMP-A* and A*-CMP. On the one hand,
POLAMP-RRT is slightly better than the baseline A*-CMP
and our POLAMP-A* in terms of success rate. Thanks to the
randomness of RRT, POLAMP-RRT is able to explore more
and can solve complicated tasks, unlike A* which performs
a systematic non-explorative search. On the other hand, A*-
CMP has the lowest duration in comparison with the rest
algorithms. The latter is because in each iteration A*-CMP
uses the minimum and maximum acceleration to generate the
neighbors, i.e. the algorithm makes abrupt changes in speed.
However, our local learnable steering tries to change the speed
smoothly due to the presence of obstacles. Our algorithm is
better than the other baselines RL-RRT, and RRT-DWA. Due
the poor performance of the πdyn

w−θ the RL-RRT algorithm did

not show good results. RRT-DWA works well only when the
number of obstacles is small.

POLAMP-RRT and POLAMP-A* are also better than
RRTX. RRTX tries to replan the path online but sometimes
when the current path is occluded by dynamic obstacles the
robot is forced to stop and stay in its place until it finds
another solution. In these situations, the robot can get into
a deadlock from where it is impossible to get out without a
collision because of moving obstacles. This problem is due
to RRTX not taking into account the future trajectories of
dynamic obstacles while planning. Besides, TTR of RRTX is
almost double that of the other algorithms. This is because
RRTX has abrupt path changes when the path is affected by
the appearance of dynamic obstacles.

Overall, the conducted experiments show that our policy
πcurr generalizes well to both new environments and in-
creasing number of dynamic obstacles (recall that it was
trained only with one moving obstacle). A combination of that
policy with a search-based or sampling-based global planner
works well in challenging environments with dozens of si-
multaneously moving obstacles. Some experimental videos are
provided in the Multimedia Materials.

VI. CONCLUSION

In this paper, we considered a problem of kinodynamic
planning for non-holonomic robot in the environments with
dynamic obstacles. We enhanced the two classical planning
methods, A* and RRT, with a learnable steering function that
takes into account kinodynamic constraints and both static and
moving obstacles. We designed a reward function and created
a specific curriculum for learning the steering behaviors. The
resultant algorithm, POLAMP, was evaluated empirically in
both static and dynamic environments and was shown to
outperform the state-of-the-art baselines (both learnable and
non-learnable).

Possibly, the main limitation of our work is that we as-
sume the accurate knowledge of the future trajectories of
the moving obstacles. Considering the uncertain trajectories
is an appealing direction of future work. Another direction
is to fuse more machine learning techniques to the planning
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pipeline, e.g. to utilize the learnable methods for choosing the
informative regions for driving expansions in global planners.
We also plan to use POLAMP in applications related to self-
driving vehicles, such as automatic parking with dynamic
obstacles, etc. Some attempts in this direction have already
been made [33], [34], but a complete experimental study is
required.
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