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ABSTRACT12

Among the main challenges associated with navigating a mobile robot in complex environments are
partial observability and stochasticity. This work proposes a stochastic formulation of the pathfinding
problem, assuming that obstacles of arbitrary shapes may appear and disappear at random moments of
time. Moreover, we consider the case when the environment is only partially observable for an agent.
We study and evaluate two orthogonal approaches to tackle the problem of reaching the goal under
such conditions: planning and learning. Within planning, an agent constantly re-plans and updates the
path based on the history of the observations using a search-based planner. Within learning, an agent
asynchronously learns to optimize a policy function using recurrent neural networks (we propose an
original efficient, scalable approach). We carry on an extensive empirical evaluation of both approaches
that show that the learning-based approach scales better to the increasing number of the unpredictably
appearing/disappearing obstacles. At the same time, the planning-based one is preferable when the
environment is close-to-the-deterministic (i.e., external disturbances are rare).
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1 INTRODUCTION25

Consider a mobile robot operating in a complex, non-stationary environment, e.g. a service robot that has26

to transfer documents between the offices in an office building. One of the key challenges that arise when27

such robot navigates from its current location to the target one is that at no moment of time the robot28

possesses an accurate model of the environment. Among the main reasons for that the following can be29

named.30

First, the apriori map of the environment (e.g. the floor plan) is either unknown or approximate, i.e.31

it does not contain the crucial information about the furniture, open/closed doors, etc. This leads to a32

necessity to invoke the so-called simultaneous localization and mapping (SLAM) (Bresson et al., 2017)33

pipeline that builds and constantly updates the map, based on the data from the sensors installed on the34

robot (cameras, lidars, etc.). Due to the measurement errors and to the limited sensors’ range, the robot at35

each timestep acquires only a local semi-accurate patch of the map. Combining these patches to a global36

map via SLAM typically results in a more inaccurate map, which is subject to constant changes while the37

robot is progressing toward its goal.38

Indeed, planning a path on the basis of such a map (that constantly changes and does not contain39

accurate information about a large portion of the environment) is a challenging task. Within a planning40

framework, it is typically addressed via re-planning, i.e. at each timestep, an agent constructs a new plan41

taking into account the up-to-date map. This can be done in a straightforward fashion (from scratch) using,42

for example, a suitable variant of A* algorithm (Hart et al., 1968), or via the more involved techniques, like43

incremental search, that re-use the search efforts of the previous planning attempts (e.g. D*Lite (Koenig44

and Likhachev, 2002) algorithm, which is widely used in mobile robotics). Overall, such approaches can45



Figure 1. The challenges associated with pathfinding in stochastic environments. Top row: the robot
with unlimited field of view is stuck in an oscillating behavior due to blocking/unblocking of a single grid
cell (which might correspond to opening/closing the door by humans). Bottom row: due to the partial
observability the robot is unaware that the previously blocked cell becomes traversable (the door opens)
and, thus, the robot is not able to plan a path to the goal. Both cases can be successfully solved by the
learnable policy suggested in the paper, which is empirically shown to learn such behaviors as “wait for an
obstacle to disappear,” “keep exploring the environment for additional options of reaching the goal” etc.

cope reasonably well with the problems induced by the robot’s internal disturbances like noisy sensor46

data and partial observability.47

There exists, however, a much harder problem, associated with the disturbances that are external to48

the robot. The environment (and, thus, its representation as a map) can change due to the actions of49

other agents interacting with the environment, e.g. people that close/open doors, move pieces of furniture50

from one place to the other etc. These stochastic changes may lead to complete failures of the described51

planning/re-planning approach.52

As an example, consider the environment, depicted at the top of Figure 1. Even if it is fully observable,53

the robot can stuck in an oscillating behavior due to the stochastic (from the robot’s perspective) blockage54

of one of the grid cells that can correspond to opening/closing a door. When the door is closed the robot55

constructs a detouring path and starts moving along it. After three steps, the door opens and a shorter path56

is found which is adopted by the robot (Figure 1, top right). However, when the robot comes close to57

the door, it might be closed again, and the robot switches back to the detour path. Another challenging58

example is depicted on Figure 1 at the bottom row. Due to partial observability and, again, unpredictable59

changes in the environment, the robot is stuck being unable to find a path to the goal on a map produced60

by accurately combining all observations.61

We are unaware of the works that study the pathfinding problem when the environment is both partially62

observable and stochastic (when the obstacles may appear/disappear unpredictably). Our work aims to fill63

this gap. We develop and study empirically two orthogonal approaches to tackle the problem: the one that64

follows the planning/re-planning scheme (Ghallab et al., 2016), and the learnable one, when we utilize a65

reinforcement learning approach (Sutton and Barto, 2018; Moerland et al., 2020) to optimize a policy66
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function that maps observations to actions. Within the planning approach, we rely on a heuristic search67

based method that constantly attempts to find a path on the grid. As expected, this approach often fails due68

to the reasons explained above. To mitigate this issue to a certain extent we develop an extension of this69

approach that handles the history of observations in a way to heuristically identify stochastic obstacles and70

avoid them. Moreover, we apply a learning approach to the problem at hand and optimize a policy (deep71

neural network) that learns to deal with the stochasticity end-to-end. One can think of this as learning to72

adaptively change the action selection heuristics online (when solving a pathfinding query). For example,73

the agent may choose to “wait” as many timesteps as needed when a passage gets temporarily blocked.74

We carry out an extensive experimental evaluation on a wide range of setups and show that the designed75

learnable policy outperforms the planning approach both in terms of success rate and the solution cost (i.e.76

number of actions needed to reach the goal) when the number of stochastically appearing/disappearing77

obstacles is not zero. Thus, we infer that the learning-based approaches should be the tool of choice when78

solving the studied kind of problems. Despite the latter may sound obvious, we are unaware of the works79

that empirically confirm this claim.80

Overall, our main contributions can be summarized as follows. First, we introduce and study a81

challenging variant of the single-agent pathfinding problem inspired by the real-world robotic applications.82

In this setting the obstacles might stochastically appear/disappear in the environment and the latter83

is only partially-observable to the agent. Second, we propose the planning based and the learning84

based approaches to solve the problem. The latter utilizes reinforcement learning and is able (as shown85

empirically) to form an adaptive pathfinding policy that successfully handles a wide range environment’s86

disturbances. Finally, we empirically show that the designed learnable approach outperforms the planning87

one in the majority of the setups (on different maps, with different numbers of stochastic obstacles etc.).88

The rest of the paper is organized as follows. Section 2 provides a brief overview of related works.89

Section 3 focuses on the formulation of the problem of pathfinding in stochastic environments with partial90

observability. Section 4 describes the methods of planning and asynchronous reinforcement learning that91

are being compared. Section 5 is devoted to the experimental study of the limits of applicability of the92

methods under consideration. In the conclusion, the results obtained are discussed.93

2 RELATED WORK94

Context The previous work in grid-based pathfinding was mainly focused on the application of the95

planning-based approaches to solving the problem. It was known that the planners based on the heuristic96

search are the versatile tools when the environment is static and partially observable. These planners97

have not been examined (both theoretical and empirical) in the setting with both unpredictably appear-98

ing/disappearing obstacles and partial observability, thus it was not evident whether planning approaches99

will succeed in it. On the other hand, pure reinforcement learning (RL) techniques (without hierarchy100

and model) were known to be very powerful in solving a wide range of problems with simple casual101

structure (like playing the video game of pong), however, when it comes to the problems that require102

reasoning about the outcomes of the series of actions (like navigation on a grid) RL shows much worse103

results. E.g. in one of the most citepd papers, that addresses the navigation on a fully-observable grid104

without stochastic obstacles (Panov et al., 2018), the RL methods demonstrated pure convergence of the105

learning process in even simplest cases. In some papers considering reinforcement learning in a partially106

observable stochastic environment, tabular methods are used that do not presuppose scaling to large-sized107

environments (Pena and Banuti, 2021). In the other recent paper from OpenAI (Cobbe et al., 2020),108

which describes a state-of-the-art RL benchmark including the grid-based navigation problem with the109

maximum grid size being 25×25, the advanced RL methods were not able to generalize easily and fast,110

which means that navigation queries on large grids remained unsolved. Overall, no clear evidence that RL111

methods, in general, can handle navigation problems on the large partially-observable grids exist so far.112

Relevant papers There exist a lot of different works relevant to the considered problem. Most of them113

are related to robotics, as the problem of operating in unknown environments with partial observability,114

uncertainty, and presence of the dynamic obstacles naturally appears in this field of research. (Fiorini and115

Shiller, 1998) introduces velocity obstacles – one of the major approaches to avoid dynamic obstacles116

that is based on the idea of predicting their further movement and choosing such an action that does not117

lead to a collision with any of the observable dynamic obstacles. This idea was further used in many118

approaches, including such algorithms as ORCA (Van Den Berg et al., 2011) and ALAN (Godoy et al.,119
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2018), developed for multi-agent pathfinding problems.120

Neural networks and machine learning are also widely used for planning in dynamic environments. In121

(Chen et al., 2020), (Zhu et al., 2014), biologically-inspired neural networks were applied for planning in122

unknown dynamic environments. Recent works, such as (Lei et al., 2018), (Wang et al., 2020), have tried123

to apply reinforcement learning to solve the problem of planning in dynamic environments. Moreover, it124

is also worth mentioning such kind of planners as ABT (Kurniawati and Yadav, 2016) or DESPOT (Ye125

et al., 2017) that solve the POMDP-problem, building a belief-state tree to deal with uncertainties and126

presence of dynamic obstacles.127

Another field of research related to this work is heuristic search algorithms. Though having a lot128

of restrictions and assumptions to be applicable, they provide strong theoretical guarantees such as129

completeness and even optimality. (Koenig and Likhachev, 2002) intrudes state-of-the-art algorithm130

called D* Lite for planning in unknown partially-observable environments. In (Van Den Berg et al., 2006),131

there was presented an anytime version of D* algorithm that works not only in unknown environments,132

but also can deal with dynamic obstacles. Another well-known approach is SIPP (Phillips and Likhachev,133

2011) that can be applied for planning in the environments with dynamic obstacles and guarantees to134

find optimal solutions. However, it assumes that the environment is fully observable and trajectories of135

dynamic obstacles are known.136

The stochastic shortest path (SSP) is a generalized version of the classical shortest path problem with137

a presence of stochasticity. In most cases, stochastic behavior is expressed in a non-deterministic result of138

the actions’ execution. Mainly, it is considered as a Markov Decision Process (MDP) and the solution139

of such kind of problems is a policy that chooses which action to produce in any state to minimize the140

solution cost. An overview of different variations of this problem is given in (Randour et al., 2015).141

Though the SSP problem contains stochasticity, it is assumed that the probability distributions are known,142

which makes it different from the problem that is considered in this paper.143

It is also worth noting a direction of research where planning algorithms are combined with reinforce-144

ment learning. In (Skrynnik et al., 2021; Davydov et al., 2021) authors train RL agents in a centralized145

(QMIX) and decentralized (PPO) way for solving multi-agent pathfinding tasks. The resulting RL policies146

are combined with a planning approach (MCTS), which leverages the resulting performance. In (Ferber147

et al., 2020), RL was used to learn the heuristic function to make it more informative. A similar idea of148

using reinforcement learning to get a better heuristic was suggested in (Micheli and Valentini, 2021) but149

for the problem of temporal planning.150

Overall, there exist a large body of works that study the problems which are similar to ours in some151

aspects. However they all are different in the set of assumptions. As noted above, some of the works152

assume that the environment is known and fully observable, some of them – that even trajectories of153

dynamic obstacles are known. Most assume that the trajectories of the dynamic obstacles can be predicted154

at least for a short period of time. Approaches that deal with stochastic environments assume that155

probability distributions are given, so they can use them to build an optimal policy. Contrary to all these156

assumptions, in the problem that we are considering, the environment is changing in an unpredictable157

way.158

3 PROBLEM STATEMENT159

Consider an agent moving on a 4-connected M×N grid. At each time step of the discrete timeline160

T = 0,1, ...,Tmax, where Tmax is the duration (length) of the episode, a grid cell can be either occupied or161

free. The cells that are occupied for all time steps are called static obstacles, the cells that are occupied for162

some time steps while being free for the others correspond to the stochastic obstacles (e.g. closing doors,163

chairs that are moved by humans etc.). Indeed, the agent can use only the free cells for movement.164

The action set for the agent is comprised of five actions: A = {up,down, le f t,right,wait}. Being at165

the grid cell c at timestep t, an agent can opt to either wait at the current cell or to move to one of the166

cardinally-adjacent cells. Let c′ denote the target cell of the action, which is either the same cell or one of167

the neighboring ones. In case c′ is free at t +1, the action is considered valid and the agent is transferred168

to c′. If, however, the destination cell of the move is blocked in the next time step the agent stays put, i.e.169

is kept in its current cell. Each action a ∈ A is associated with a non-negative cost: cost(a) = w ∈ R>0.170

We assume this cost to be uniform, i.e. 1, for all actions in the rest of the paper. In case the action chosen171

by the agent turns to be invalid the agent stays put but it still incurs a +1 cost.172
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The grid topology, its size and status of all the grid cells at a certain/any time step is not known to173

the agent. Instead, the agent can observe the grid environment only locally. Different ways to model174

this local observability model can be suggested. In this work we adopt the most easy-to-implement one:175

when located at the grid cell c at time step t, the agent observes a (2 ·R+ 1)× (2 ·R+ 1) patch of the176

grid environment, which is centered at c, where R is the given visibility range. In the example depicted177

in Figure 2, R = 5, which means that the agent observes a 11×11 patch of the grid at each time step1.178

Within the visibility range the agent is able to observe the blockage status of the cells, however it is not179

able to distinguish which cells are blocked only temporarily (due to the appearance of the stochastic180

obstacles) and which are blocked constantly (due to the static obstacles).181

We assume that the agent can not predict the blockage status of the grid cells which are both within or182

out of the visibility range. However, it is able to memorize the past observations if necessary.183

The problem now is formulated as follows. Given the start and the goal location (cell) design a184

mapping from the (history of the) observations to actions, i.e. the policy π , s.t. the chance of reaching the185

goal cell within the Tmax time steps is maximized. In this work we are not restricting ourselves to design186

the policy that minimizes the cost of reaching the goal, i.e. the sum of costs of the actions that led to the187

goal cell, however obtaining the lower cost paths is, obviously, preferable.188

Figure 2. Examples of the grid environments with different numbers of the stochastic obstacles (shown
in orange). Undiscovered static obstacles are transparent. The agent’s field of view is shown by the red
square.

4 METHODS189

To solve the considered problem we investigate two approaches. The first one relies on finding a path on190

the grid and then applying the first action of this path. The second approach is based on reinforcement191

learning. Here the agent optimizes a policy that maps the observations to actions end-to-end and follows192

this policy in a reactive fashion. Next, we describe both approaches in more details.193

4.1 Planning194

The main idea of planning is to repeatedly i) construct a full sequence of actions that reach the goal state195

(i.e. the grid cell) from the current one (which is the start cell initially), ii) apply the first action of the196

plan.197

When constructing a plan, we rely on the history of the received observations, i.e. we memorize the198

observations and construct a map out of the map. At each time step, upon receiving the new observation199

1The introduced observation model allows the agent to “see through the obstacles”. Although this assumption is not realistic in
the majority of the real-world cases it, indeed, reflects the property of the local observability and at the same time is very easy to
implement and experiment with.
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we update the map. We use it then to find a path from the current cell to the goal one by applying a200

pathfinding algorithm. We then extract the first move action from this path and add it to the resultant201

plan. If no path is found, we opt to perform a greedy action that moves the agent closer to the goal (more202

details on this will be given below). The high-level pseudocode of the planning algorithm is presented in203

Algorithm 1.204

Input: start cell s, goal cell g, initial observation obs, maximal number of actions the agent can
make Tmax

Output: either success or f ailure
map← obs
c← s
t← 0
while t < Tmax do

if c = g then
return success;

end
obs← GetCurrentObservation()
map←U pdateMap(map,obs)
path← PathFinding(c,g,map)
if path =∅ then

a← GreedyAction()
else

a← FirstActionFromPath(path)
end
ApplyAction(a)
t← t +1

end
return f ailure

Algorithm 1: High-level algorithm of reaching the goal in a stochastic environment via planning.

Input: number of training epochs Emax
Output: policy θ

D ←∅; e← 0; h0←∅;
θ ← InitializeActor()
φ ← InitializeCritic()
while e < Emax do

D ← GenerateTra jectories(); θ ←U pdateActor(D ,φ)
φ ←U pdateCritic(D)

end
return θ

Algorithm 2: A policy optimization algorithm (training phase).

The presented algorithm relies on the following intrinsic assumptions. First, it is assumed that the205

agent knows the goal’s coordinates within a reference frame, initially centered at the start position of206

the agent, and is able to localize itself within this frame at each timestep. Second, the agent is able to207

combine all the observations into a single representation of the environment, i.e. the map. This map is208

built/updated incrementally. The size of the map is unknown.209

The crucial procedure of the algorithm is PathFinding, which finds the path on the map provided210

with the start and goal locations, where start constantly changes due to agent moving through the211

environment. The most prominent way of solving pathfinding problems in the environments with partial212

observability is D*Lite algorithm (Koenig and Likhachev, 2002). Instead of re-planning the path from213

scratch after applying each action, it extensively reuses the previously built search tree to speed up214

the search. Unexpectedly, our preliminary tests have shown, that the performance of D*Lite is worse215

compared to the sequential re-planning with A* from scratch after each move. The main reason for such216
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Input: initial observation obs, maximal number of actions the agent can make Kmax
Output: trajectory D
D ←∅; k← 0; h0←∅
while k < Kmax do

if E pisodeIsDone() then
return D

end
action,hk← GetAction(obs,hk−1)
ApplyAction(a)
obs← GetObservation()
r← GetReward()
D .AddTuple(o,a,r)
k← k+1

end
return D

Algorithm 3: An algorithm for generating actions with a learnable policy model (inference phase).

phenomenon is that at some (numerous) time steps the feasible path from the agent’s current position to217

the goal is not existent due to the stochastic obstacles that temporarily block the narrow passages. In case218

these blockages appear close to the agent, running A* from scratch detects unsolvability notably faster219

compared to D*Lite which actually plans backwards from the goal state. As such blocking happens often220

(especially when the number of stochastic obstacles is high) sequential invocation of A* actually proved221

to be beneficial in our preliminary tests and, thus, we adopted A* to implement PathFinding in this work.222

Additionally, we attempted to adapt the UpdateMap procedure to the environments with stochastic223

obstacles. Recall, that the agent is not able to distinguish which grid cells within its visibility range are224

blocked temporarily, due to the stochastic obstacles, and which cells are blocked for good by the static225

obstacles. The basic UpdateMap procedure treats all the blocked cells as the static obstacles, adding226

them to the map. This ignores the fact that some of the temporarily blocked cells might become free227

in future. To this end, we introduce a modified UpdateMap procedure that tries to detect stochastic228

obstacles leveraging the history of observations. More specifically, in case when the agent observes a cell229

that is currently blocked but was free according to the preceding observations, it is marked as blocked230

temporarily. When this cell is within the observation radius its actual blockage status is taken into account231

while finding a path. When the agent moves away and this cell is no longer within the visibility range it is232

considered to be free, so the path can go through it. Intuitively, this allows the agent to anticipate that the233

the previously seen stochastic obstacle might move away. This variant of the planning algorithm with the234

additional indication of the stochastic obstacles is called Stochastic A* (SA*).235

Both regular planning algorithm (A*) and the adapted one (SA*) share the following additional236

techniques: exploration threshold and greedy action. Both these techniques are tailored to handle the case237

when the path to the goal does not exist (due to the temporal presence of the stochastic obstacles). Recall,238

that we assume that the size of the map is not known to the agent. This infers that it is not technically239

possible to detect that the current pathfinding query is unsolvable as the search algorithm will keep on240

exploring the environment assuming that the portion of the environment, that has not been seen/mapped241

before, is traversable. To mitigate this issue we impose the threshold on the number of internal iterations242

of A*/SA*. When this threshold is exceeded the search is aborted with the no-path-found result. In243

such case instead of picking the random action we choose the one that is likely to move the agent closer244

to the goal – the so-called greedy action. It is chosen as follows. When A*/SA* terminates due to the245

exploration threshold without finding the path we pick the node in the search tree that corresponds to the246

cell which is the closest to the goal. We then reconstruct the path to this cell in the tree and pick the first247

action of the path.248

4.2 Learning249

The main idea of the reinforcement learning (RL) approach is to optimize a policy π , which maps the250

observation to an action. The policy is trained to maximize the cumulative expected reward (cost function)251

for each interaction episode. We use the partially observable setting since the agent has no access to the252

global state.253
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Figure 3. The scheme of the proposed asynchronous learning approach. The bottom-left part shows the
environment and observation encoding. The top-left part of the scheme shows the neural network
architecture. We use residual layers as a shared encoder and recurrent heads. The recurrent layers (GRU)
are responsible for remembering obstacles and environment dynamics. The right part shows the
asynchronous learning procedure. The green blocks show GPU computations.

The advantage of RL over planning approaches is that the agent can learn the adaptive heuristic of254

acting in an environment with stochastic dynamics. At the same time, it should be taken into account255

that the work of the learnable approaches is divided into two phases: the actual training on prepared256

environment configurations (training phase, see Algorithm 2) and the work of the trained model on any257

environments (inference phase, see Algorithm 3).258

Formally, in RL setting, the interaction of an agent with the environment is described as partially259

observable Markov Decision Process (POMDP), which can be described as tuple (S,O,A,P,r,γ), where260

S is the set of environment states, o ∈ O is a partial observation of the state, a ∈ A is the set of agent’s261

actions, r(s,a) : S×A→ R is a reward (cost) function, and γ is the discount factor. The agent has no262

access to states S (true coordinates and full obstacle map), and the policy is a mapping from observations263

to actions: π(a|o) : A×O→ [0,1].264

We propose and describe an end-to-end architecture to train the agent in grid pathfinding scenarios.265

And we believe that our learning approach is applicable for a wide range of pathfinding tasks. The scheme266

of the learning approach is presented in Figure 3.267

As already mentioned in section 3 in the proposed environment the observation space O of the agent is268

a multidimensional matrix: O : 2×
(
2×R+1

)
×
(
2×R+1

)
, that represents the part of the environment269

around the agent within radius R. It includes the following two matrices.270

• Obstacle matrix: 1 encodes an obstacle, and 0 encodes its absence. If any cell of the agent’s field of271

view, which is outside the grid, is encoded as an obstacle. The agent does not distinguish between272

the type of obstacles. Both static and stochastic obstacles are encoded the same.273

• Target matrix: if the agent’s goal is inside the observation field, then there is 1 in the cell, where it274

is located, and 0 in other cells. If the target does not fall into the view, then it is projected onto the275

nearest cell of the observation field Skrynnik et al. (2021).276

At any time step, the agent has five actions available: stay in place, move vertically (up or down), or277

move horizontally (right or left). The agent can move to any adjacent free cell.278

The agent receives a reward of 1.0 when it reaches the goal and 0.0 in all other cases. We have chosen279

this function so one can train the agent, which can deal with a wide range of tasks in partially observable280

grid environments with stochasticity.281

To learn a policy in a model-free setting, there are a number of well-known methods in reinforcement282

learning, which can be roughly divided into two classes – value-based (Mnih et al., 2015) and policy-283
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based (Schulman et al., 2015; Haarnoja et al., 2018; Lillicrap et al., 2016) methods. The first group of284

approaches is characterized by the use of replay buffer to store experience and can learn only deterministic285

policies. The second group of methods is specifically designed for operating stochastic policies. In the286

problem we are considering, which is characterized by stochastic behavior of the environment itself, it287

is necessary to provide an opportunity to work with probability distributions on a set of agent actions.288

On-policy methods (Schulman et al., 2017) that use only current experience are the most promising for289

the partially observed formulation of the pathfinding problem. This is due to the fact that in some cases290

of recurrent stochasticity in the environment, it is necessary to use a stochastic policy, which is most291

effectively learned by on-policy policy gradient methods . Also this makes it possible to improve the292

quality of state prediction by observation when using recurrent neural network models.293

We optimize the policy πθ , which is approximated by a neural network θ , using Proximal Policy294

Optimization (PPO) method (Schulman et al., 2017). The approach is a variant of the actor-critic algorithm,295

and proven effective in many challenging domains (Berner et al., 2019; Yu et al., 2021; Cobbe et al.,296

2020). To adapt PPO for the POMDP setting, we approximate the state st using a recurrent neural network297

(RNN): st ≈ f (ht ,ot), where ht is a hidden state of RNN. PPO uses clipping in objective to improve298

performance monotonically. The clipped objective penalize the new policy πθk+1 for getting far from the299

previous one πθk .300

To approximate policy and value we adapt network architecture from IMPALA (Espeholt et al., 2018).301

As a feature encoder we use residual layers. We have changed the original architecture and removed max302

pooling, similar to AlphaZero architecture (Silver et al., 2017), which used akin encoding for observations.303

Removing max pooling is crucial, to prevent loosing spatial information of the grid observation. After the304

shared feature encoder, there are recurrent layers separate for the actor and the critic.305

We use single GPU asynchronous training setup based on SampleFactory (Petrenko et al., 2020). We306

called the modified version of the PPO algorithm as asynchronous proximal policy optimization (APPO).307

The asynchronous training can be divided into two main parts, which run in parallel: accumulating new308

trajectories and policy updating. The policy used to collect experience may lag behind the current one.309

That discrepancy is called a policy lag, and it negatively affects the performance. The policy lag especially310

affects the learning of recurrent architectures. To stabilize training for such case IMPALA (Espeholt et al.,311

2018) introduced importance sampling for value targets, called V-trace, which we also use in our training.312

5 EXPERIMENTAL EVALUATION313

5.1 Environment314

We designed and implemented the environment simulator that takes all the specifics of the partially315

observable pathfinding and stochastic obstacles into account. The following parameters are related to316

the interaction between the agent and the environment: observation radius (agents observe 1≤ R≤ Size317

cells in each direction) and the maximum number of steps in the environment before the episode ends318

Horizon≥ 1.319

The stochastic part of the environment is described with the following parameters: a number of the320

stochastic obstacles ≥ 0; obstacle size [x,y] (we assume that each stochastic obstacle is a square whose321

size is in between [x,y]); obstacle density ∈ (0,1] (the chance of each cell comprising the stochastic322

obstacle to be blocked, i.e. some of the cells forming the obstacle can be free); obstacle move radius ≥ 0323

(defines how far from the original placement the obstacle can move); obstacle appear time range [x,y]324

(the range of steps during which a stochastic obstacle can be active); obstacle disappear time range [x,y]325

(the range of steps during which a stochastic obstacle can be inactive). Figure 2 shows examples of the326

environments with the defined stochastic obstacles.327

For the experimental evaluation, we have set the following environment parameters of stochastic328

obstacles: obstacle size = [5,10], obstacle density = 0.7, obstacle move radius = 5, obstacle appear time329

range = [8,16], obstacle disappear time range = [8,16]. All the values for the parameters with ranges are330

chosen randomly out of the corresponding range. In other words each stochastic obstacle is a square with331

a side of 5 to 10, and 70% of the cells forming this square are blocked. The structure of each stochastic332

obstacle does not change with time. However, every tick of time it can move , but not more than 5 cells333

from the initial position. A stochastic obstacle is present on the map from 8 to 16 time ticks, after which it334

disappears for a period of 8 to 16 time ticks and then reappears.335

It is also worth to note that stochastic obstacles can be superimposed on static obstacles, on top of336

each other, but cannot block the cell in which the agent is located.337
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Moreover, the observation radius was set to 5 and Horizon to 512.338

5.2 Setup339

During the experiments, we evaluated both planning approaches – the basic one, i.e. A*, and the improved340

one, i.e. SA*. There is only one crucial parameter that is needed to be set for them – a maximum number341

of iterations, that was set to 10000. Besides the planning approaches, we have also evaluated the learning342

one, i.e. APPO. The details about its training process and the choice of hyperparameters are described in343

section 5.3.344

The experiments were conducted on the maps from three different collections taken from MovingAI345

(Sturtevant, 2012) – a grid-based pathfinding benchmark: a) wc3 – 36 maps from Warcraft 3 computer346

game; b) sc1 – 75 maps from Starcraft computer game; c) streets – 30 maps with real city data taken from347

OpenStreetMap. The chosen maps represent different landscapes with varying topological structure, i.e.348

they include maps with small passages, large open areas, prolonged obstacles of non-trivial shapes etc.349

The original maps can be in size up to 1024×1024. For our experiments we have scaled them to 64×64350

or such a size that the lowest side is 64. These collections were divided for training and test subsets in a351

ratio of 8 : 2, simply using the alphabetic names of the maps. Examples of the maps are shown in Figure 4.352

The names of all the maps that were used for tests can be found in section 5.4.353

For each of the evaluated maps, there were generated 200 instances. The instances were generated354

randomly, but in such a way that the path between start and goal locations is guaranteed to exist for the355

static obstacles. Moreover, each of these instances was evaluated with a different number of stochastic356

obstacles: from 0 to 200 with an increment of 25.357

During the experiments, we evaluated such a parameter as success rate, which shows the ratio between358

the number of successfully solved instances to their total amount. An instance is considered successfully359

solved in case the solution was found within less than 512 steps (Horizon parameter), i.e. the resulting360

plan contains less than 512 actions. Besides the success rate, we have also evaluated the average episode361

length, taking Horizon value for the instances that were not solved by an algorithm, and computed how362

many times each of the algorithms has found a solution with less number of actions.363

To evaluate the computational efficiency of the approaches, we have measured such a parameter364

as “steps per second” (SPS), which shows how fast the approach returns an action that the agent needs365

to perform on the current step. The more actions the approach returns within a second, the faster it366

works. The evaluation of all algorithms were conducted using AMD Ryzen Threadripper 3970X CPU367

(single-core). Also, the performance of RL approach, i.e. APPO, were tested using NVIDIA GeForce368

RTX 3080 Ti.369

Figure 4. Examples of the evaluated maps from different collections.

5.3 APPO Training370

First, we make a hyperparameter search to adjust the number of residual blocks and the number of filters371

in them (see Figure 5). As the environment configuration, we use a map with 30% density of static372

obstacles and 64 stochastic obstacles in 64×64 grid, obstacle size is {5,10}, the density of the stochastic373

obstacles is 0.7, appear and disappear time ranges are {8,16}. The agent was trained for 100 million374

steps. The best results were shown by a network with 3 residual layers and 60 filters in them, thus we use375

these settings in all proceedings experiments.376
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Second, we train APPO for one billion steps using training collection. For each episode, the initial377

position of the agent and his target, as well as the configuration of stochastic obstacles were sampled378

randomly. Solving a task with a large number of stochastic obstacles is difficult in terms of exploration.379

Thus, we used curriculum learning to automatically adjust the difficulty of the environment. In each380

curriculum phase, the agent is trained until it reaches the average success rate of 0.9 on the 256 consequent381

episodes, after that the number of stochastic obstacles is increased by one. The final number of stochastic382

obstacles at the end of the training was 46.383

Figure 5. Heatmap of the network architecture parameters. We use version with 60 filters and 3 residual
blocks as encoder in APPO model for all experiments, since it showed better performance in our
hyperparameter sweep.

5.4 Results384

The aggregated results of the experiments are shown in Table 1. As one can see in most of the cases,385

APPO solves more instances than planning approaches. The only case where APPO shows a worse386

success rate is the one that doesn’t contain any stochastic obstacles, where planning approaches have387

solved 100% of instances. The success rate of A* algorithm, which doesn’t detect stochastic obstacles and388

remembers all the obstacles it has seen, is very poor. While APPO and SA* successfully solved 45% of389

the instances with 200 stochastic obstacles, A* has shown even worse success rate with only 25 stochastic390

obstacles. Such behavior explains by the fact that A* in most cases can’t pass stochastic obstacles and391

fails to find a path to the goal. This behavior also explains its high SPS – A* makes a very few expansions392

before it makes a conclusion that the path cannot be found.393

A more detailed view of the success rates of the approaches is presented in Figure 6. It shows the394

success rates of the approaches on each of the maps separately. As one can see, there is not a single map395

where SA* significantly outperforms APPO. Despite the points with 0 stochastic obstacles, in all the396

cases they either show very close results, or APPO outperforms SA*. There are some maps, for example,397

timbermawhold or swampofsorrows, that show significantly higher success rates compared to398

other maps. Such behavior explains by the fact that these maps contain several relatively small disjoint399

areas. As a result, the instances on these maps are much simpler than on the other maps, as the distance400

between start and goal location is much lower. On the other hand, there are some maps, where success401

rates of all approaches drop to less than 20% on the instances with the highest amount of stochastic402

obstacles. There are actually two reasons for such behavior. First, there are maps such as ThinIce (see403

Figure 4(a)) or Typhoon, that contains a difficult structure for partially observable environments, i.e.404

they contain “trap” areas, that are on the way to the goal but do not actually lead to it. Second, some maps405

of wc3 collection in the original MovingAI benchmark contain huge borders of obstacles, that affected406

the scaled maps and reduced their actual size with traversable areas to 48x48 (see Figure 4(c)). Thus, the407

density of stochastic obstacles on such maps is actually much higher than on other maps.408

To get some insight about the quality of the found solutions, we have computed how many times409

APPO or SA* has found a solution with less number of actions. We have excluded the results of A* in410

this comparison, as its success rate is very low. However, there actually were some instances where A*411
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has found a solution with the least number of actions – 220 out of 56,000. The results were aggregated412

among the collections and are presented in Figure 7. As one can see, there actually presents two more413

lines called “Equal” and “Failed”. “Equal” line indicates the portion of instances that were successfully414

solved by both approaches with an equal number of actions, while “Failed” one indicates the portion of415

instances that were solved neither by APPO nor by SA*. The results on sc1 and street collections are416

very similar. The portion of instances that were solved with equal number of steps on sc1 and street417

collections is relatively small, while on wc3 it’s much higher. This behavior on wc3 is explained by the418

presence of such maps as timbermawhold and swampofsorrows with isolated parts, where the419

instances are easy and thus solved by both approaches with equal cost. About 70% of all the instances on420

these maps were successfully solved by both approaches with an equal number of actions. The behavior421

of SA* and APPO methods shows that the planning approach outperforms the others when the number422

of stochastic obstacles is very small. The learning approach outperforms the others when the number of423

stochastic obstacles rises to about 100. When the number of stochastic obstacles rises to the maximum,424

both approaches show close results. Generally, these plots indicate the same trends as the ones that show425

the success rates of the algorithms.426

Algorithm Obstacles SPS (CPU) SPS (GPU) Episode length Success rate

A* 1127.87 - 57 1
APPO 0 105.58 812.3 95.64 0.93

SA* 1052.73 - 57 1

A* 2226.9 - 331.14 0.38
APPO 25 100.71 754.58 120.11 0.93

SA* 847.81 - 135.39 0.88

A* 2589.9 - 410.22 0.21
APPO 50 100.39 731.58 157.29 0.9

SA* 866.21 - 189.96 0.8

A* 2438.91 - 438.91 0.15
APPO 75 98.23 712.26 200.41 0.82

SA* 909.81 - 232.68 0.72

A* 2226.41 - 453.42 0.12
APPO 100 100.04 702.45 242.72 0.74

SA* 955.12 - 271.56 0.65

A* 2061.56 - 462.88 0.1
APPO 125 98.49 693.69 279.28 0.65

SA* 976.84 - 297.88 0.59

A* 1911.56 - 468.22 0.09
APPO 150 98.23 686.08 309.25 0.57

SA* 988.06 - 320.56 0.54

A* 1793.01 - 474.08 0.08
APPO 175 97.75 667.67 334.54 0.51

SA* 1021.84 - 338.94 0.49

A* 1631.31 - 475.79 0.07
APPO 200 98.39 659.66 353.37 0.45

SA* 1014.4 - 354.45 0.45

Table 1. Averaged results of A*, SA*, and APPO aggregated over all the evaluated maps. Bold values
highlight better performance (episode length – lower better, success rate – higher better) for each number
of stochastic obstacles. SPS denotes steps per second.
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Figure 6. Success rates of A*, SA* and APPO on each of the evaluated maps depending on the number
of stochastic obstacles. The shaded area shows 95% confidence interval.

6 CONCLUSION AND DISCUSSION427

In this paper, we have introduced and studied a challenging variant of the single-agent pathfinding428

problem inspired by real-world robotic applications. In this setting, some of the obstacles unpredictably429

appear/disappear in the environment, and the latter is only partially observable to the agent. We designed430

two orthogonal approaches to solve this problem: planning-based and learning-based. For the former,431

we utilized the well-known A* algorithm and suggested its modification, called Stochastic A* (SA*),432

that differs in the way how the incoming observations are processed; for the latter, we have proposed an433
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Figure 7. Comparison of the solutions found by SA* and APPO depending on the collection of the maps
and number of stochastic obstacles. Points on “SA*” and “APPO” lines indicates the portions of instances
for which the corresponding approach has found a solution of a better quality than other one. “Equal”
correspond to the portion of instances for which both approaches have found solution with equal quality.
“Failed” correspond to the portion of instances that were solved neither by SA* nor by APPO.

original asynchronous policy optimization method (APPO) based on the established actor-critic neural434

network architecture. Both approaches were experimentally evaluated on a range of setups involving435

different maps and degrees of stochasticity (i.e. numbers of the appearing/disappearing obstacles). The436

results indicate that both of the suggested approaches has their own pros and contras. SA* is evidently437

faster than APPO but its success rate is generally lower compared to APPO. The only case when SA*438

performs better/on par with APPO is either when no stochastic obstacles are present at all or when439

this number is very high. Both cases can be seen as the outliers. For all other configuration APPO,440

indeed, is able to successfully solve more instances than SA*. We believe that this happens due to441

the ability of APPO to adaptively adjust the heuristic of choosing actions, which is learned rather than442

hard-coded. We also would like to note that low computational efficiency of our implementation of APPO443

is not a fundamental problem, as there is a room for a significant speed-up via using specialized code444

implementations (e.g. TensorRT).445

One of the perspective avenues for future research is investigating the analogous problem statements,446

but when certain predictions about the dynamics of the environment can be made. One of such settings447

that is of particular interest is the decentralized multi-agent pathfinding setting, when each agent can448

distinguish between the static obstacles and the moving agents and is able to predict, to a certain extent,449

the future moves of the latter. We assume that in such settings, the planning-based approaches may450

exhibit a better performance due to the additional knowledge that they can take into account, i.e. the451

locations that will be blocked at the next time step due to the moves of the other agents. In such case,452

pathfinding algorithms can be straightforwardly extended to reason about the temporal dimension and to453

build plans that will avoid future collisions with the other agents. As for the learning-based approaches,454

modifying (and learning) them for such settings might be more problematic. Indeed, such approaches for455

decentralized multi-agent pathfiding do exist currently, see (Sartoretti et al., 2019; Riviere et al., 2020) and456

others, but mainly they rely on the accurate long-horizon predictions of how the other agents will behave,457

i.e. they rely on the ability to acquire/accurately reconstruct the full paths of the other agents to their goals.458

In case this ability is limited, e.g. only the next action can be inaccurately predicted, their performance459

might get worse. So the question whether the learning-based approaches will beat the planning-based460

ones in such settings is still to be answered.461
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