
Object-Oriented Decomposition of World Model in Reinforcement Learning

Leonid Ugadiarov1 , Aleksandr I. Panov2,3

1MIPT
2FRC CSC RAS

3AIRI
ulaelfray@gmail.com, panov@airi.net

Abstract
Object-oriented models are expected to have bet-
ter generalization abilities and operate on a more
compact state representation. Recent studies have
shown that using pre-trained object-centric repre-
sentation learning models for state factorization in
model-free algorithms improves the efficiency of
policy learning. Approaches using object-factored
world models to predict the environment dynamics
have also shown their effectiveness in object-based
grid-world environments. Following those works,
we propose a novel object-oriented model-based
value-based reinforcement learning algorithm Ob-
ject Oriented Q-network (OOQN) employing an
object-oriented decomposition of the world and
state-value models. The results of the experiments
demonstrate that the developed algorithm outper-
forms state-of-the-art model-free policy gradient
algorithms and model-based value-based algorithm
with a monolithic world model in tasks where indi-
vidual dynamics of the objects is similar.

1 Introduction
The Markov decision process (MDP) [Sutton and Barto,
2018] is considered as a mathematical model for reinforce-
ment learning problems. Object-oriented MDP [Diuk et al.,
2008] is based on the relational MDP and describes the dy-
namics of the environment in terms of the objects it contains,
their classes, and the relationships between them. One of the
main challenges in visual-based reinforcement learning (RL)
is determining how to effectively represent the state of the
environment. The most common approach is to encode the
entire input image which is then used as input for the pol-
icy network [Mnih et al., 2015]. Previously, [Santoro et al.,
2017] has shown that such representations may fail to capture
important relationships and interactions between objects in
the state. It is expected that the use of object representations
in reinforcement learning will lead to more compact mod-
els with better generalization ability [Keramati et al., 2018].
The recent studies on the effect of state factorization on the
performance of model-free algorithms [Stanić et al., 2022]
[Yoon et al., 2023] show that the generalization ability of the
algorithms does improve in this case. On the other hand, an

environment model that uses object representations and is ex-
plicitly trained to model relationships between objects can
further improve learning efficiency. A contrastively-trained
transition model CSWM [Kipf et al., 2020] that simultane-
ously learns to factorize the state and predict the change in
the state of individual objects demonstrates a quality of pre-
diction that is superior to the results of models with a mono-
lithic state. In another work [Watters et al., 2019], an object-
oriented world model is employed during exploration phase,
which helps to maintain the effectiveness of policy learning
as the environment becomes more complex.

Models trained in an unsupervised learning approach
which factorize visual input data into individual objects
demonstrate high quality in relatively simple environments
with strongly distinguishable objects. Also, in object-
structured environments, an action performed in a step is
often applied to a single object or a small number objects,
rather than to all objects in the environment, makes it easier
to predict the dynamics of individual objects. Despite recent
progress in this problem [Biza et al., 2022b] no fully-featured
dynamics models have been proposed that takes into account
sparsity of action-object relationships. These obstacles make
it difficult to employ factored world models in reinforcement
learning. For example, the CSWM model has never been used
for policy learning in offline or online settings. In this work
we demonstrate the successful application of a GNN-based
object-oriented world model for model-based policy learning.

In model-based reinforcement learning (MBRL) the agent
builds models for transition and reward functions using the
experience of interaction with the environment. The agent
performs multi-step planning to select the optimal action
based on the predictions of the models. The model-based al-
gorithms could be more efficient than model-free algorithms
if the world model is sufficiently accurate. A notable exam-
ple of model-based approach is Dreamer algorithm [Hafner et
al., 2023], whose latest version masters a wide range of envi-
ronments with a fixed set of hyperparameters, outperforming
specialized methods, and is acknowledged as the first algo-
rithm to collect diamonds in Minecraft from scratch without
human data or curricula. However, its world model is mono-
lithic and recent attempts to factorize it have had limited suc-
cess [Zholus et al., 2022]. Our research is focused on value-
based MBRL as object-based decomposition of value func-
tion could contribute to the training of object-oriented world

model which is consistent with policy.

2 Background and Related Work
We consider a simplified version of the object-oriented MDP:
[Diuk et al., 2008]:

U = (S,A, T,R, γ,O,Ω), (1)

S = S1 × · · · × SK — a state space, Si — an in-
dividual state space of the object i, A — an action
space, T = (T1, . . . , TK) — a transition function,
Ti = Ti(Ti1(si, s1, a), . . . , TiK(si, sK , a)) — an individual
transition function of the object i, R =

∑K
i=1 Ri — a reward

function, Ri = Ri(Ri1(si, s1, a), . . . , RiK(si, sK , a)) —
an individual reward function of the object i, γ ∈ [0; 1]
— a discount factor, O — an observation space,
Ω : S → O — an observation function. The goal of
reinforcement learning is to find the optimal policy: π∗ =
argmaxπ Est+1∼T (·|st,at),at+1∼π(·|st+1)

[∑τ
i=0 γ

iR(st, at)
]

for all s0.
Based on the experience of interactions with the envi-

ronment, the agent can build an world model that approxi-
mates the transition function T̂ ≈ T and the reward function
R̂ ≈ R, and use its predictions as an additional signal for pol-
icy learning. The accuracy of the world model is crucial for
finding the optimal policy: an error-free model allows one to
compute the optimal policy without interacting with the envi-
ronment, but it requires a large number of steps for a deep ex-
ploration of the environment and data collection for the world
model training. A less accurate model is easier to obtain, but
erroneous predictions degrade the quality of the resulting pol-
icy, especially in the case of using multi-step forecasts when
model errors tend to accumulate.

Of the many neural network architectures used as transi-
tion models, three categories can be distinguished: mono-
lithic state models, structured models, and factorized mod-
els. The architecture of monolithic models does not take
into account the nature of the environment. Examples of this
type of model are autoencoders and variational autoencoders
[Kingma and Welling, 2022] [Rezende et al., 2014]. Struc-
tured models explicitly reflect the organization of the envi-
ronment: an observation is transformed into a hidden state,
divided into slots. The model is trained unsupervised to ex-
tract objects from the state and assign them to individual slots.
An example of this type of model is a CSWM [Kipf et al.,
2020] model, which derives a factorized vector representa-
tion of a state using a convolutional encoder and predicts state
transition using a graph neural network. Factorized models,
unlike structured ones, take a factorized state as input. These
models are trained to predict the transitions for individual fac-
tors without solving the problem of their extraction from the
state. An example of a model in this category is a work [Biza
et al., 2022a] in which the transition model is also based on a
graph neural network. Structured and factorized models per-
form better than monolithic models in environments where it
is necessary to accurately predict the dynamics of individual
objects.

In this paper, we propose an object-oriented model-based
Q-learning algorithm inspired by TreeQN [Farquhar et al.,

2018] model. Following CSWM [Kipf et al., 2020] we use
a structured transition model. Our reward and state-value
models are graph neural networks which should be consis-
tent with the compositional structure of the environment. The
proposed algorithm demonstrates high sample efficiency and
outperforms TreeQN and model-free algorithm PPO [Schul-
man et al., 2017] in tasks where individual dynamics of the
objects is similar.

As related work in RL we consider [Watters et al., 2019],
where an object-oriented world model is used in a reinforce-
ment learning setting, but only at the exploration phase. An-
other work in RL is [Ke et al., 2021], where the authors used
CSWM transition model in the task of approximating a re-
ward function, but did not solve the problem of finding the
optimal policy.

3 Object-Oriented Q-network
Figure 1 outline the high-level overview of the proposed
framework (OOQN) predicting action values. A fully convo-
lutional Extractor takes an image-based observation st as
input and produces feature maps {mi

t}Ki=1 (K - architectural
parameter). We treat those feature maps as disjoint masks of
individual objects presented in the image. A fully connected
Encoder shared across objects converts the masks into K
lower-dimensional vector embeddings constituting a factored
abstract state representation zt. An attention model is used
to obtain a factored representation at of the given action at
given the state zt. A GNN based transition model predicts
shifts in object representations ∆z after taking the action.
The outputs of GNN based reward and state-values models
are used to predict the value of the action at.

3.1 Action-attention model
An action-attention model W : ZK ×A → RK predicts ac-
tion attention weights for each object for the given factored
state zt and action at. The weights w = (w1, . . . , wK)
are used to factorize the action: at = (atw

1, . . . , atw
K),

where at is the one-hot encoded action vector. The simplest
approach, which we refer to as none-attention, is to use the
original action at for all objects: w = (1, . . . , 1). Another
approach is to use GNN based attention model predicting at-
tention weights: WGNN = GNN(zt, at). The other consid-
ered attention mechanisms are hard and soft attention.

Hard / Soft attention
In this approach intermediate attention weights w̃ are ob-
tained as the product of the outputs of MLPs key : Z → RD

and query : A → RD: w̃i = key(zit)
T query(at). Soft at-

tention weights are obtained by applying softmax function
to intermediate weights: wsoft = softmax(w̃). In order
to obtain hard attention weights we construct a one-hot vec-
tor corresponding to the maximum weight in w̃: whard =
one hot(argmax w̃). In hard attention approach we always
associate an action only with one object.

3.2 Transition model
We approximate transition function using a graph neural net-
work [Biza et al., 2022b] with an edge model edgeT and
an node model nodeT which takes a factored state zt =

Figure 1: OOQN overview. Framework consists of the following blocks: a CNN-based Extractor module, a MLP-based Encoder, an
action attention module and a GNN-based transition, reward and state-value models. The attention module, transition and reward models
together form a world model. This diagram illustrates prediction of Q-values with one-step planning with the world model. In the case of
multi-step planning on every step the output of the transition model is redirected to the input of the world model.

Figure 2: Overview of gnn-based transition model and state-value model. a) Representation of the state as a complete graph. b) Transition
model: message-passing update scheme for the embedding of object 1 for hard / soft / GGN attention mechanisms. c) Transition model:
message-passing update scheme for the embedding of object 1 for none-attention mechanisms. d) State-value model: message-passing
update scheme for the state-value prediction for the object 1.

(z1t , . . . , z
K
t) and action at as input and predicts changes in

factored states ∆z. When we do not use attention mecha-
nisms to factorize actions the action is provided not only to
the node model nodeT but also to the edge model edgeT as
shown in Figure 2. The factored representation of the next
state is obtained via ẑt+1 = zt +∆z.

∆zi = nodeT (z
i
t, a

i
t,
∑
i ̸=j

edgeT (z
i
t, z

j
t , a

i
t)) (2)

The transition model and action-attention model are trained
using the joint loss function L (3). Transition loss LT de-
pends on the attention type. The second term in L is a con-
trastive objective, which prevents the transition model from
converging to a trivial solution and scores the current state
against a state z− sampled at random from the experience
buffer. To improve the extracted masks and evaluate the im-
pact of their quality on the efficiency of the policy learning al-
gorithm, additional loss functions with coefficients αbce and
αmin are applied to the produced feature maps.

Lhard/soft
T =

∑K
j=1 w

j∥ẑjt+1 − zjt+1∥2

Lgnn/none
T = ∥ẑt+1 − zt+1∥2

L = LT + αcontr max
[
0, ξ − ∥z−

t − zt∥2
]

+ αbceBCE(
∑K

j=1 m
j
t , thresh(ot))

+ αmin

∑K
i=1

∑K
i<j(min[mi

t,m
j
t])

2

(3)

3.3 Reward model

The reward model is implemented using the same architecture
as the transition model, but we use a sum for the reduction in
the readout to obtain the full reward. The reward model is
trained using the mean squared error loss function with envi-
ronmental rewards rt as target (4).

R̂i(zt,at)= nodeR(z
i
t, a

i
t,
∑

i̸=j edgeR(z
i
t, z

j
t , a

i
t))

R̂(zt,at) =
∑K

i=1 R̂
i(zt,at)

LR = (R̂(zt,at)− rt)
2

(4)

3.4 State-Value model

The state-value function is approximated using a graph neu-
ral network V̂ , which does not depend on actions in either the
edge model edgeV or the node model nodeV . The action-
value function Q̂ estimated with Bellman equation is used to
select the optimal action when the agent interacts with the
environment. V̂ is trained with an n-step Q-loss function
LV−nstep computed via Q̂ values using a frozen version of

Figure 3: a) An example of observation in Shapes2D 5x5 with 5 objects and masks obtained with Extractor module trained without
auxiliary loss (αbce = 0, αmin = 0). b) An example of observation in Shapes2D 5x5 with 5 objects and masks obtained with Extractor
module trained with auxiliary loss (αbce = 0.025, αmin = 0.1). c) An example of observation in Shapes2D 10x10 and masks obtained with
Extractor module trained with auxiliary loss (αbce = 0.000001, αmin = 0)

V̂ as a target model.

V̂ i(zt,at)= nodeV (z
i
t, a

i
t,
∑

i ̸=j edgeV (z
i
t, z

j
t))

Q̂i(zt,at)= R̂i(zt,at) + γV̂ i(ẑt+1)

Q̂(zt,at) =
∑K

i=1 Q̂
i(zt,at)

LV−nstep =
∑n

j=1

(∑j
k=1 γ

j−krt+n−k+

+γjQ̂
(
zt+n, argmaxaQ̂(zt+n,a, θ

−), θ−
)
−

−Q̂i(zt+n−j ,at+n−j , θ)
)2

(5)

4 Experiments
The efficiency of the proposed OOQN was evaluated in the
modified Shapes2D environment [Kipf et al., 2020]. We com-
pare OOQN with a model-based TreeQN algorithms and the
implementation [Raffin et al., 2021] of the model-free PPO
algorithm.

4.1 Environment
Shapes2D environment is a four-connected grid world, where
objects are represented as figures of simple shapes. Examples
of observations in the considered versions of the Shapes2D
environment are shown in the Figure 3. One object — the
cross is selected as a stationary target, the other objects are
movable. We implemented three tasks in Shapes2D.

Navigation
The agent controls all movable objects. In one step, the agent
can move an object to any adjacent cell that is free. The goal
of the agent is to collide the controlled objects with the target
object. Upon collision, the object disappears and the agent
receives a reward +1. When an object collides with another
movable object or field boundaries, the agent receives a re-
ward −0.1 and positions of objects are not changed. For each
step in the environment, the agent receives a reward −0.01.
The episode ends if only the target object remains on the field.
In the experiments, we use 5x5-sized environment with five
objects and 10x10-sized environment with eight objects.

Pushing
The agent controls only one object — the red circle. The task
is to push the other movable objects into the target. Upon col-
lision, the object disappears and the agent receives a reward

+1. When the red circle collides with the target object or
field boundaries, the agent receives a reward −0.1. When the
agent pushes a movable object into the field boundaries, the
agent receives a reward −0.1. For each step in the environ-
ment, the agent receives a reward −0.01. The episode ends if
only the target object and the controlled object remain on the
field. In the experiments, we use 7x7-sized environment with
five objects and 8x8-sized environment with six objects.

Pushing (no-agent)
The agent controls all movable objects as in Navigation task,
but collisions between two movable objects are permitted:
both objects move in the direction of motion. The agent is
tasked to push another movable object into the target while
controlling the current object. The pushed object disappears
and the agent receives a reward +1 for such an action. When
the currently controlled object collides with the target object
or field boundaries, the agent receives a reward −0.1. When
the agent pushes a movable object into the field boundaries,
the agent receives a reward −0.1. For each step in the en-
vironment, the agent receives a reward −0.01. The episode
ends if only the target object and one movable object remain
on the field. In the experiments, we use 5x5-sized environ-
ment with five objects.

4.2 Training
Extractor
During the experiments in the Shapes2D environment, it was
found that Extractor module extracts only movable objects.
To get around this limitation and obtain masks for all ob-
jects including the stationary cross, in all experiments the
Extractor module is pretrained on a set of trajectories col-
lected by a uniform random policy in the version of Shapes2D
where agent can move all objects. Examples of masks ex-
tracted by Extractor are shown in the Figure (3). It is im-
portant to note that the use of additional loss functions during
Extractor training significantly improved the quality of the
resulting masks.

World model
We consider offline setting for world model training and pre-
train the attention model, reward model and transition model

on the data set of trajectories collected with suboptimal pol-
icy. Namely, we use ϵ-greedy version of the trained PPO with
ϵ = 0.5 to collect the data. The training data sets sizes:

• Navigation 5x5: 100000 transitions

• Navigation 10x10: 200000 transitions

• Pushing (no-agent) 5x5: 150000 transitions

For Pushing tasks we collect trajectories with ϵ = 0.1 and
add to the data set manually generated examples of transi-
tions between states, where three object <controlled object,
movable object, target object > or <controlled object, mov-
able object, movable object> are closely spaced in an area of
size 3x3. Ratio between suboptimal policy data and manually
generated data is 1:1. The training data sets sizes for Pushing
tasks is 150000 transitions. The transition model, attention
model and Encoder are trained jointly using loss L (3) with
frozen Extractor. The reward model is trained using loss
LR (4) with frozen Extractor and Encoder.

State-Value model
The state-value model is trained in online setting using loss
LV−nstep (5).

4.3 Results

Figure 4: Moving average of episode return for OOQN models with
hard attention in Navigation 5x5. The model utilizing Extractor
trained with auxiliary terms in loss function demonstrates better final
performance. The curves are averaged over three seeds. Shaded
areas indicate min-max ranges.

The Figure 4 demonstrates graphs of the dependence of the
episode return on the number of steps in the Navigation 5x5
task for two variants of OOQN algorithm with hard attention.
The variant of OOQN which employs Extractor trained
with auxiliary terms in loss function L (3) outperforms the
variant without auxiliary terms. We concluded that the ef-
fectiveness OOQN correlates directly with the quality of the
feature maps extracted by Extractor. Thus, all the reported
results for OOQN are obtained with Extractor trained with
auxiliary terms in loss function.

We run experiments for OOQN with a number of vari-
ants of attention types: hard attention (OOQN-Hard), sofr
attention (OOQN-Soft), GNN attention (OOQN-GNN) and
none-attention (OOQN-None). Also we implement OOQN
that uses ground-truth attention (OOQN-GT). Ground-truth

attention weights are equal to one for objects which will be
moved after the agent takes an action. Ground-truth atten-
tion weights corresponding to the other objects equals to ze-
ros. OOQN variants are compared with the implementation
of model-free algorithm PPO [Raffin et al., 2021] and the
model-based algorithm TreeQN [Farquhar et al., 2018] with
monolithic world model. The reported results are episode re-
turns averaged by 100 episodes at two stages of training. We
use mean and standard error over 3 runs. The results are sum-
marized in Table 1 and Table 2. We report results of OOQN
with two-step planning with world model, but did not notice
significant differences compared to one-step planning.

We find that hard attention and ground-truth attention vari-
ants of OOQN consistently outperforms baselines in Naviga-
tion 5x5 task. The variant without attention outperforms PPO
only at the final stage of training. In Pushing 7x7 the best
baseline outperforms all OOQN models, but the results of the
ground-truth variant is close to the PPO’s result after 10 mil-
lion steps. In Navigation 10x10 task all OOQN variants are
more sample efficient than the best baseline at the beginning
of the training, but only hard attention and ground-truth atten-
tion variants outperform PPO at the final stage of the training.
In Pushing 8x8 task the only OOQN model which converges
and outperforms one of the baselines after 20 million steps is
the variant without attention. In Pushing (no-agent) 5x5 task
the OOQN-GT and OOQN-None outperforms the best base-
line at 5 million steps. At the final stage of training only the
variant without attention is better than the baselines.

The hard attention of OOQN fails to converge in Push-
ing and Pushing (no-agent) tasks. We associate this behavior
with the fact that hard attention always binds an action only
to one object, which is insufficient in Pushing and Pushing
(no-agent) tasks, where an action can affect several objects.

It could be seen that OOQN outperforms baselines in Nav-
igation and Pushing (no-agent) tasks, which are symmetrical
in terms of movable objects. Every object has the same tran-
sition function and the same reward is generated in states that
differ only in the permutation of movable objects. We hy-
pothesize that GNN based architecture of OOQN facilitates
faster generalization and transfer of the learned object’s dy-
namics to the other objects. It increases sample efficiency in
tasks where this generalization is correct, but hinder policy
learning in Pushing task, where the dynamics of the object
controlled by agent differs from the dynamics of all the other
movable objects.

The none-attention version OOQN-None demonstrates the
most stable results across all test tasks, so we consider it as
our best model at the current stage of our research.

5 Limitations
The current version of Extractor module extracts only mov-
able objects from the input image. This is an obstacle to the
application of OOQN in arbitrary environments. However, as
our experiments have shown, we can replace the Extractor
with any model that produces good quality object masks. For
example, we can use a pre-trained segmentation model to get
masks. As a further study, we consider the use of object-
centric models like SLATE [Singh et al., 2022].

Episode return

Model Navigation 5x5 Pushing 7x7
3M 10M 3M 10M

OOQN-Hard 3.81± 0.04 3.81± 0.04 −0.92± 0.09 −0.91± 0.11
OOQN-Soft 3.30± 0.04 3.75± 0.03 0.16± 1.68 2.62± 0.12
OOQN-GT 3.84± 0.01 3.85± 0.00 2.31± 0.02 2.68± 0.00
OOQN-GNN 3.22± 0.05 3.76± 0.02 0.86± 1.40 2.64± 0.05
OOQN-None 3.74± 0.01 3.84± 0.00 1.85± 0.22 2.61± 0.05

PPO 3.81± 0.033.81± 0.033.81± 0.03 3.81± 0.033.81± 0.033.81± 0.03 2.57± 0.042.57± 0.042.57± 0.04 2.69± 0.002.69± 0.002.69± 0.00
TreeQN 3.28± 0.09 3.77± 0.04 1.14± 0.11 2.64± 0.02

Table 1: Episode return in Navigation 5x5 and Pushing 7x7 tasks at 3M and 10M environment steps of the state-value model training. The
results of the best baseline are in bold. The results of our models, which are not worse than the best baseline, are underlined

Episode return

Model Navigation 10x10 Pushing 8x8 Pushing (no-agent) 5x5
5M 20M 5M 20M 5M 20M

OOQN-Hard 6.39± 0.08 6.44± 0.06 −0.92± 0.09 −0.92± 0.70 −0.93± 0.11 −0.92± 0.13
OOQN-Soft 5.49± 0.35 6.16± 0.13 −0.91± 0.03 −0.13± 1.14 −1.43± 0.25 −0.53± 0.29
OOQN-GT 6.37± 0.08 6.45± 0.04 −1.08± 0.05 −1.04± 0.05 2.32± 0.16 2.57± 0.06
OOQN-GNN 2.58± 0.23 4.83± 0.22 −0.91± 0.08 1.66± 2.11 −1.05± 0.42 −0.09± 0.36
OOQN-None 4.78± 1.79 6.23± 0.28 −0.93± 0.03 3.30± 0.19 2.70± 0.02 2.78± 0.04

PPO 0.76± 0.150.76± 0.150.76± 0.15 6.39± 0.016.39± 0.016.39± 0.01 2.66± 0.832.66± 0.832.66± 0.83 3.54± 0.013.54± 0.013.54± 0.01 1.63± 0.16 2.63± 0.08
TreeQN −0.27± 0.08 −0.23± 0.06 −0.38± 0.49 3.15± 0.18 1.92± 0.101.92± 0.101.92± 0.10 2.77± 0.022.77± 0.022.77± 0.02

Table 2: Episode return in Navigation 10x10, Pushing 8x8 and Pushing (no-agent) 5x5 tasks at 5M and 20M environment steps of the state-
value model training. The results of the best baseline are in bold. The results of our models, which are not worse than the best baseline, are
underlined

6 Conclusion and future work

In this paper we present the preliminary results of our inves-
tigation of object-oriented model based RL. We demonstrate
that CSWM-like world models can be successfully used in
model-based RL setting for policy learning in compositional
environments. The results of experiments with OOQN in
Shapes2D show that the GNN based object-oriented world
model improves the efficiency of policy learning in tasks,
where objects have the same dynamics. In this case vari-
ants of OOQN outperform the state-of-the-art model-free al-
gorithm PPO and the model-based value-based algorithm
TreeQN and scales better to more complex tasks (more ob-
jects, increased field size).

Our plans for future research include use of object-centric
models instead of our fully convolutional Extractor. Cur-
rently our GNN-based models treat an environment state as
a complete graph of object representations, while object in-
teractions are essentially sparse. Taking this observation into
account, we consider to implement state-graph sparsification
as it was done in concurrent work [Goyal et al., 2022].

Acknowledgments This work was partially supported by
the Russian Science Foundation (Project No. 20-71-10116).

References

[Biza et al., 2022a] Ondrej Biza, Thomas Kipf, David Klee,
Robert Platt, Jan-Willem van de Meent, and Lawson L.S.
Wong. Factored world models for zero-shot generalization
in robotic manipulation, 2022.

[Biza et al., 2022b] Ondrej Biza, Robert Platt, Jan-Willem
van de Meent, Lawson L.S. Wong, and Thomas Kipf.
Binding actions to objects in world models. In ICLR2022
Workshop on the Elements of Reasoning: Objects, Struc-
ture and Causality, 2022.

[Diuk et al., 2008] Carlos Diuk, Andre Cohen, and
Michael L. Littman. An object-oriented representa-
tion for efficient reinforcement learning. In Proceedings
of the 25th International Conference on Machine Learn-
ing, ICML ’08, page 240–247, New York, NY, USA,
2008. Association for Computing Machinery.

[Farquhar et al., 2018] Gregory Farquhar, Tim Rock-
taeschel, Maximilian Igl, and Shimon Whiteson. TreeQN
and ATreec: Differentiable tree planning for deep re-
inforcement learning. In International Conference on
Learning Representations, 2018.

[Goyal et al., 2022] Anirudh Goyal, Aniket Didolkar,
Nan Rosemary Ke, Charles Blundell, Philippe Beaudoin,
Nicolas Heess, Michael Mozer, and Yoshua Bengio.
Neural production systems: Learning rule-governed
visual dynamics, 2022.

[Hafner et al., 2023] Danijar Hafner, Jurgis Pasukonis,
Jimmy Ba, and Timothy Lillicrap. Mastering diverse
domains through world models, 2023.

[Ke et al., 2021] Nan Rosemary Ke, Aniket Rajiv Didolkar,
Sarthak Mittal, Anirudh Goyal, Guillaume Lajoie, Stefan
Bauer, Danilo Jimenez Rezende, Michael Curtis Mozer,
Yoshua Bengio, and Christopher Pal. Systematic evalua-
tion of causal discovery in visual model based reinforce-
ment learning, 2021.

[Keramati et al., 2018] Ramtin Keramati, Jay Whang,
Patrick Cho, and Emma Brunskill. Fast exploration with
simplified models and approximately optimistic planning
in model based reinforcement learning, 2018.

[Kingma and Welling, 2022] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes, 2022.

[Kipf et al., 2020] Thomas Kipf, Elise van der Pol, and Max
Welling. Contrastive learning of structured world models.
In International Conference on Learning Representations,
2020.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Has-
sabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, February 2015.

[Raffin et al., 2021] Antonin Raffin, Ashley Hill, Adam
Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement
learning implementations. Journal of Machine Learning
Research, 22(268):1–8, 2021.

[Rezende et al., 2014] Danilo Jimenez Rezende, Shakir Mo-
hamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In
Eric P. Xing and Tony Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, vol-
ume 32 of Proceedings of Machine Learning Research,
pages 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR.

[Santoro et al., 2017] Adam Santoro, David Raposo, David
G. T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network
module for relational reasoning, 2017.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

[Singh et al., 2022] Gautam Singh, Fei Deng, and Sungjin
Ahn. Illiterate dall-e learns to compose, 2022.

[Stanić et al., 2022] Aleksandar Stanić, Yujin Tang, David
Ha, and Jürgen Schmidhuber. Learning to generalize

with object-centric agents in the open world survival game
crafter, 2022.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement Learning: An Introduction. A Brad-
ford Book, Cambridge, MA, USA, 2018.

[Watters et al., 2019] Nicholas Watters, Loic Matthey,
Matko Bosnjak, Christopher P. Burgess, and Alexander
Lerchner. Cobra: Data-efficient model-based rl through
unsupervised object discovery and curiosity-driven
exploration, 2019.

[Yoon et al., 2023] Jaesik Yoon, Yi-Fu Wu, Heechul Bae,
and Sungjin Ahn. An investigation into pre-training
object-centric representations for reinforcement learning,
2023.

[Zholus et al., 2022] Artem Zholus, Yaroslav Ivchenkov, and
Aleksandr Panov. Factorized world models for learning
causal relationships. In ICLR2022 Workshop on the El-
ements of Reasoning: Objects, Structure and Causality,
2022.

	Introduction
	Background and Related Work
	Object-Oriented Q-network
	Action-attention model
	Hard / Soft attention

	Transition model
	Reward model
	State-Value model

	Experiments
	Environment
	Navigation
	Pushing
	Pushing (no-agent)

	Training
	Extractor
	World model
	State-Value model

	Results

	Limitations
	Conclusion and future work

