
ISSN 1064-5624, Doklady Mathematics, 2022. © The Author(s), 2022. This article is an open access publication.
Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 508, pp. 88–93.

ADVANCED STUDIES IN ARTIFICIAL INTELLIGENCE
AND MACHINE LEARNING
Planning and Learning in Multi-Agent Path Finding
K. S. Yakovleva,b,*, A. A. Andreychuka, A. A. Skrynnika, and A. I. Panova,b

Presented by Academician of the RAS A.L. Semenov

Received October 28, 2022; revised October 31, 2022; accepted November 3, 2022

Abstract—Multi-agent path finding arises, on the one hand, in numerous applied areas. A classical example
is automated warehouses with a large number of mobile goods-sorting robots operating simultaneously. On
the other hand, for this problem, there are no universal solution methods that simultaneously satisfy numer-
ous (often contradictory) requirements. Examples of such criteria are a guarantee of finding optimal solu-
tions, high-speed operation, the possibility of operation in partially observable environments, etc. This paper
provides a survey of modern methods for multi-agent path finding. Special attention is given to various set-
tings of the problem. The differences and between learnable and nonlearnable solution methods and their
applicability are discussed. Experimental programming environments necessary for implementing learnable
approaches are analyzed separately.

Keywords: path planning, heuristic search, reinforcement learning, multi-agent systems
DOI: 10.1134/S1064562422060229
1. INTRODUCTION

In the general form, the problem of multi-agent
path finding is stated as follows. A group of mobile
agents (e.g., mobile robots or virtual persons) operates
in common space. Each agent is to move to a known
goal position, avoiding collisions with the other agents
or static and stochastic obstacles. Recently, interest in
methods for solving this problem has increased signifi-
cantly, mainly due to their applications in warehouse
and service robotics [1] and in intelligent transporta-
tion systems [2].

Various assumptions made at the stage of problem
formalization have a significant effect on the choice of
solution methods. For example, one of the most wide-
spread and actively studied formalizations is classical
multi-agent path finding (classical MAPF). In this
problem, it is assumed that there is a centralized con-
troller that has complete information on the state of
the environment and all agents (full observability).
Time is assumed to be discrete, i.e., at every time step,
an agent can perform a single action, namely, a move
action or a wait action. The space is discretized in the
form of a graph, i.e., the agents are assumed to move
only along edges of an a priori given graph and to per-
form wait actions only at its nodes. Four-connected
1

a Artificial Intelligence Research Institute, Moscow, Russia
b Federal Research Center “Computer Science and Control,”
Russian Academy of Sciences, Moscow, Russia
*e-mail: Yakovlev@airi.net
graphs (grids) are usually used in practice [3]. There
are numerous variations of this graph-based central-
ized setting of the problem. For example, a variant in
which the agents’ goals are not fixed, i.e., the distribu-
tion of agents over goal positions is part of the problem
solution is considered in [4]. In [5] it is assumed that
each agent can have several goals and has to visit them
sequentially. A lifelong problem is considered in [6],
namely, after an agent reaches its goal, it is immedi-
ately assigned another (previously unknown) goal.
Overall, despite the differences in formulation details,
centralized variants of multi-agent path finding are
usually solved by applying classical nonlearnable algo-
rithms based either on heuristic search in the state
space (in some form) [8–10] or on the reduction of the
original problem to classical ones in computer science,
for example, to the satisfiability of Boolean formulas
(SAT) [11] or a network f low problem [12].

In addition to multi-agent path finding problems
that assume full observability and centralized control,
of interest, including in applications, is an alternative
setting in which there is no centralized controller and
agents can observe the environment (including other
agents) only within a certain radius around them (so-
called partial observability). This problem is reason-
ably formalized in the form of sequential decision
making, when at every time step each agent choses to
perform a single action relying on the current observa-
tion (and, possibly, on the history of observations and
interactions with the environment). Reasonably, the
problem in this setting is solved by applying reinforce-
ment learning methods [13].

2 YAKOVLEV et al.
In what follows, methods for solving both classes of
multi-agent path finding problems are considered in
more detail.

2. NONLEARNABLE (CLASSICAL) METHODS

Nonlearnable methods for multi-agent path find-
ing are usually used in the case of full observability, a
centralized controller, and graph discretization of the
agents’ working space. The task is to construct a set of
non-conflicting trajectories, namely, paths on a
graph, including possible wait actions at vertices. It is
well known that, on the one hand, in the case of an
undirected graph, this problem can be solved in poly-
nomial time [14]. On the other hand, obtaining opti-
mal solutions is NP-hard [15]. If the graph is directed,
then even obtaining a nonoptimal solution is an NP-
hard problem [16].

There are solution methods based on reducing this
problem to other well-known problems in computer
science. For example, multi-agent path finding
(MAPF) is reduced to SAT in [11], to an integer pro-
gramming problem in [17], and to a network f low
problem in [12]. Among these methods, more wide-
spread are those reducing MAPF to SAT. Likely, the
cause is that numerous efficient solvers are available
for SAT; as a result, the speed of solving the original
problem is also fairly high. The following analogy is
worth mentioning. Under certain assumptions,
MAPF can be treated as a 15 puzzle game. This
approach is used in modern algorithms, for example,
in Push and Rotate [18], designed for fast obtaining
nonoptimal solutions.

Another approach to the solution of MAPF is
based on algorithms involving direct search on a
graph. Obviously, heuristic versions of search are used
to improve its efficiency. A classical heuristic search
algorithm is A* from [7]. With certain modifications,
it can be used to find optimal MAPF solutions [8], but
overall this approach is not very efficient, since, in
fact, it treats all agents as a single meta-agent and car-
ries out search in a combined space with a branching
coefficient depending exponentially on the number of
agents. To avoid a combinatorial explosion, various
decoupled search techniques are applied. Examples
are the algorithms CBS [9] and M* [10]. Both guaran-
tee the optimality of found solutions and have a variety
of modifications, including ones aimed at improving
computational efficiency, while preserving the opti-
mality of the solution [19, 20]; modifications that
trade off optimality against computational efficiency
[21]; and modifications solving MAPF under milder
constraints, for example, in continuous time [22].

Another approach to MAPF solution based on
heuristic search is prioritized planning [23]. In this
case, each agent is assigned a priority and then only
individual paths are sought. All earlier planned trajec-
tories are considered unchangeable (in other words,
dynamic obstacles for the current agent). Theoreti-
cally, this approach does not guarantee optimality;
moreover, it does not even guarantee that the solution
of the problem will be found if it exists. Nevertheless,
such a guarantee can be given for a certain class of
problems [24]. Moreover, in practice, prioritized algo-
rithms find close-to-optimal solutions in numerous
instances, while spending much less computational
resources. That is why algorithms of this class are often
used in robotics [25].

3. LEARNABLE METHODS
There are several variants of using machine learn-

ing methods in the context of MAPF with full observ-
ability and a centralized controller. First, these meth-
ods can be used to select an MAPF algorithm most
suitable for a particular problem (map, positions of
agents) [26, 27]. Second, machine learning methods
can be used to learn various heuristic selection rules
involved in classical MAPF-solving algorithms [28,
29]. In recent years, reinforcement learning methods
have become widespread. They are able to solve
MAPF in decentralized and partially observed set-
tings. One of the first works in this direction was [30],
where a learning strategy called PRIMAL was pre-
sented. Later, it was improved and generalized to life-
long search [31], when after reaching its goal, an agent
does not finish the current episode, but receives a new
task. Both algorithms used demonstration trajectories
generated by the ODrM* search algorithm [32]. Algo-
rithms of the PRIMAL family use a complicated
reward function and make a large number of partial
assumptions concerning specific conditions and maps
(domain knowledge), for example, additional penalty
for conflicts or the assumption that a local observation
includes not only positions of other agents, but also
their goals. Similar assumptions were used in [33],
which proposes another learnable algorithm for
MAPF, but in the case of more complicated dynamic
models of agents (e.g., such as quadcopters). Learnable
methods that use complete information on static ele-
ments of the environment (global information on the
positions of other agents is not available to them) were
proposed in [34, 35].

In addition to algorithms developed specially for
MAPF, there are universal approaches of multi-agent
reinforcement learning that can be used to solve
MAPF. Among the wide variety of classical algorithms
for single-agent learning (which is called indepen-
dent), as well-established one for partially observable
multi-agent problems is the policy gradient approach,
a popular implementation of which is known as prox-
imal policy optimization (PPO) [36–38]. Another
direction is centralized training in cooperative poli-
cies. Algorithms of this type are usually trained in a
centralized fashion, using global information on the
environment, while their testing is decentralized. For
example, QMIX [39] uses hyper-networks for training
DOKLADY MATHEMATICS 2022

PLANNING AND LEARNING IN MULTI-AGENT PATH FINDING 3

Fig. 1. Examples of environments used in learnable methods for solving multi-agent problems.

(а) (b) (c) (d) O

A

T

O

S

individual policies via a mixing utility network. In
training, each network receives only a local observa-
tion, and it is optimized by a hyper-network, to which
the global state is available. The learning algorithms
MADDPG [40] (off-policy learning) and MAPPO
[41] (on-policy learning), the critic uses a centralized
network. This is a general learning approach when the
critic uses the global state of the environment for better
training a utility function approximator. A policy-
determining actor receives, as input, only a partial
observation, but implicitly uses a general observation,
using critic’s estimates. The FACMAC algorithm [42]
is a combination of MADDPG and QMIX, so it can
be used for both discrete actions, using the Gumbel–
Softmax trick, and for continuous actions.

MARL algorithms are rather strongly optimized for
a number of environments, which have become classic
for testing, for example, SMAC [43], which uses the
StarCraft 2 game. In contrast to single-agent rein-
forcement learning, ready-for-use implementations in
open access are much fewer, and available ones are
suitable only for rather simple problems. The main
cause is that they represent slow implementations
without parallelization intended for only several mil-
lions of steps in the environment and for simple fully
connected architectures as approximators. As a result,
most researchers prefer using well-known decentral-
ized approaches. However, this leads to another
extreme, namely, the proposed algorithms exploit sub-
ject area knowledge, which limits their applicability to
a broad class of MAPF problems.

A promising direction in the development of more
advanced methods for MAPF can be model-based
reinforcement learning [44]. Prediction of the other
agents’ policies and allowance for this model in the
construction of its own agent policy can be especially
useful in a heterogeneous group of agents, where each
agent can have its own policy [45]. Another open niche
in MARL is the use of demonstrations in learning.
Indeed, demonstrations can significantly accelerate
the learning process and can also allow using modern
transformer and diffusion models. This is especially
DOKLADY MATHEMATICS 2022
important for MAPF problems, for which there are
strong planning algorithms.

4. EXPERIMENTAL ENVIRONMENTS
FOR TESTING ALGORITHMS

Experimental online environments are hardly used
in nonlearnable approaches to the solution of MAPF,
since these approaches do not assume learning via the
interaction with the environment. An opposite situa-
tion occurs in the reinforcement learning community,
where there are numerous environments, but most of
them are intended for games and are characterized by
numerous additional features that have nothing to do
with MAPF (e.g., stocks, counteracting opponents,
etc.) (see Fig. 1).

An example of a game environment is Neu-
ralMMO [46], which is a simplified version of a mul-
tiplayer network game with a group of agents solving
the task of survival and resource accumulation. A team
of eight agents competes with other 15 teams on a pro-
cedurally generated map of 128 by 128 cells. The envi-
ronment is partially observable, but the agents can
communicate with each other. Although this problem
is rather complicated, it is far from practical applica-
tion and requires mainly reactive choices of actions
based on a set of rules, rather than planning or path
finding.

A well-known environment designed specifically
for MAPF is Flatland [48], which is a simplified, yet
realistic environment for scheduling railway networks.
Here, agents are trains, which are to move from one
station to another in a single-track railway, avoiding
conflicts with each other. Within the framework of this
problem, several competitions have been conducted in
order to research reinforcement learning algorithms.
However, it turned out that access to the full state of
the environment provides a significant advantage for
planning and replanning approaches [49]. Another
shortcoming of this environment is that it works very
slowly (near 200 steps per second for small maps) in
the regime of observations intended for learnable algo-
rithms.

4 YAKOVLEV et al.
MAGENT is a set of environments from the Pet-
tingZoo library [47]. It is designed for modeling the
role behavior of agents capable of moving from one
place to another and interacting with each other in
various ways. The implementation in C++ signifi-
cantly accelerates the interaction, but this environ-
ment possesses a limited set of scenarios (map types)
and has no interface for testing solutions based on
approaches other than reinforcement learning.

The most suitable environment for MAPF prob-
lems is POGEMA [50], which was specially designed
for problems in partially observable setting on cellular
maps. The authors emphasize that agents receive
information only from a bounded space around them
and cannot transfer information to each other, which
considerably complicates the problem for both plan-
ning and learnable algorithms. The main advantages
of this environment are its f lexibility and the perfor-
mance speed. POGEMA allows for any user-created
maps of obstacles and supports three regimes deter-
mined by what happens after an agent reaches its goal:
the agent receives a new goal (lifelong path search),
agents that disappear (after reaching goals), and agents
that do not disappear until the end of an episode.

5. CONCLUSIONS

In recent years, methods for MAPF have been
actively developed as motivated by their applications
in various practical areas (warehouse robotics, trans-
portation systems, etc.). Under centralized control
and full observability, the solution approach usually
involves nonlearnable methods based on heuristic
search or on reducing MAPF to other classical prob-
lems in computer science (SAT, network f low, etc.). In
the case when centralized control is absent and/or full
information on the environment is not available to
agents, one often applies reinforcement learning
methods based on either adaptation of well-known
search strategies for individual agents or on the “cen-
tralized training–decentralized execution” paradigm.
In our view, the most promising (and least studied)
would be a combined approach involving both rein-
forcement learning and classical planning methods
(heuristic search, etc.).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of

interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made. The images
or other third party material in this article are included in the

article’s Creative Commons license, unless indicated other-

wise in a credit line to the material. If material is not included

in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. H. Ma and S. Koenig, “AI buzzwords explained: Multi-
agent path finding (MAPF),” AI Matters 3 (3), 15–19
(2017).

2. R. Morris, C. S. Păsăreanu, K. Luckow, W. Malik,
H. Ma, T. K. Satish Kumar, and S. Koenig, “Planning,
scheduling and monitoring for airport surface opera-
tions,” Workshops at the 30th AAAI Conference on Artifi-
cial Intelligence (2016).

3. P. Yap, “Grid-based path-finding,” Conference of the
Canadian Society for Computational Studies of Intelli-
gence (Springer, Berlin, 2002), pp. 44–55.

4. H. Ma and S. Koenig, “Optimal target assignment and
path finding for teams of agents,” Proceedings of the
2016 International Conference on Autonomous Agents
and Multiagent Systems (2016), pp. 1144–1152.

5. M. Liu, H. Ma, J. Li, and S. Koenig, “Task and Path
planning for multi-agent pickup and delivery,” Proceed-
ings of the 18th International Conference on Autonomous
Agents and Multiagent Systems (2019), pp. 1152–1160.

6. J. Li, A. Tinka, S. Kiesel, J. W. Durham, T. K. Satish
Kumar, and S. Koenig, “Lifelong multi-agent path
finding in large-scale warehouses,” Proceedings of the
30th AAAI Conference on Artificial Intelligence (2021),
pp. 11272–11281.

7. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Trans. Syst. Sci. Cybern. 4 (2), 100–107
(1968).

8. T. Standley, “Finding optimal solutions to cooperative
pathfinding problems,” Proceedings of the 24th AAAI
Conference on Artificial Intelligence (2010), pp. 173–178.

9. G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant,
“Conflict-based search for optimal multi-agent path-
finding,” Artif. Intell. 219, 40–66 (2015).

10. G. Wagner and H. Choset, “M*: A complete multiro-
bot path planning algorithm with performance
bounds,” Proceedings of the 2011 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(2011), pp. 3260–3267.

11. P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Ef-
ficient SAT approach to multi-agent path finding under
the sum of costs objective,” Proceedings of the 22nd
European Conference on Artificial Intelligence (2016),
pp. 810–818.

12. J. Yu and S. M. LaValle, “Multi-agent path planning and
network flow,” Algorithmic Foundations of Robotics X
(Springer, Berlin, 2013), pp. 157–173.

13. R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, 2nd ed. (Bradford Books, 2018).
DOKLADY MATHEMATICS 2022

PLANNING AND LEARNING IN MULTI-AGENT PATH FINDING 5
14. D. Kornhauser, G. Miller, and P. Spirakis, “Coordi-
nating pebble motion on graphs, the diameter of per-
mutation groups, and applications,” The 25th Annual
Symposium on Foundations of Computer Science (1984),
pp. 241–250.

15. D. Ratner and M. Warmuth, “The (n2 − 1)-puzzle and
related relocation problems,” J. Symb. Comput. 10 (2),
111–137 (1990).

16. B. Nebel, “On the computational complexity of multi-
agent pathfinding on directed graphs,” Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (2020), pp. 212–216.

17. J. Yu and S. M. LaValle, “Optimal multirobot path
planning on graphs: Complete algorithms and effective
heuristics,” IEEE Trans. Rob. 32 (5), 1163–1177
(2016).

18. B. De Wilde, A. W. Ter Mors, and C. Witteveen, “Push
and rotate: A complete multi-agent pathfinding algo-
rithm,” J. Artif. Intell. Res. 51, 443–492 (2014).

19. E. Boyarski, A. Felner, R. Stern, G. Sharon, D. Tolpin,
O. Betzalel, and E. Shimony, “ICBS: Improved con-
flict-based search algorithm for multi-agent pathfind-
ing,” Proceedings of the 24th International Conference on
Artificial Intelligence (2015), pp. 740–746.

20. J. Li, D. Harabor, P. J. Stuckey, H. Ma, and S. Koenig,
“Symmetry-breaking constraints for grid-based multi-
agent path finding,” Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence (2019), pp. 6087–6095.

21. M. Barer, G. Sharon, R. Stern, and A. Felner, “Subop-
timal variants of the conflict-based search algorithm for
the multi-agent pathfinding problem,” Proceedings of
the 7th Annual Symposium on Combinatorial Search
(2014).

22. A. Andreychuk, K. Yakovlev, P. Surynek, D. Atzmon,
and R. Stern, “Multi-agent pathfinding with continu-
ous time,” Artif. Intell. 305, 103662 (2022).

23. M. Erdmann and T. Lozano-Perez, “On multiple mov-
ing objects,” Algorithmica 2 (1), 477–521 (1987).

24. M. Cap, J. Vokrinek, and A. Kleiner, “Complete de-
centralized method for on-line multi-robot trajectory
planning in well-formed infrastructures,” Proceedings
of the 25th International Conference on Automated Plan-
ning and Scheduling (2015), pp. 324–332.

25. K. Yakovlev and A. Andreychuk, “Any-angle pathfind-
ing for multiple agents based on SIPP algorithm,” Pro-
ceedings of the 17th International Conference on Auto-
mated Planning and Scheduling (2017), pp. 586–594.

26. O. Kaduri, E. Boyarski, and R. Stern, “Algorithm se-
lection for optimal multi-agent pathfinding,” Proceed-
ings of the International Conference on Automated Plan-
ning and Scheduling (2020), pp. 161–165.

27. J. Ren, V. Sathiyanarayanan, E. Ewing, B. Senbaslar,
and N. Ayanian, “MAPFAST: A deep algorithm selec-
tor for multi agent path finding using shortest path em-
beddings,” Proceedings of the 20th International Confer-
ence on Autonomous Agents and MultiAgent Systems
(2021), pp. 1055–1063.

28. J. Li, Z. Chen, D. Harabor, P. J. Stuckey, and S. Koe-
nig, MAPF-LNS2: Fast Repairing for Multi-Agent
Path Finding via Large Neighborhood Search. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
2022.
DOKLADY MATHEMATICS 2022
29. T. Huang, S. Koenig, and B. Dilkina, “Learning to re-
solve conflicts for multi-agent path finding with con-
flict-based search,” Proceedings of the AAAI Confe-
rence on Artificial Intelligence, 2021, Vol. 35, No. 13,
pp. 11246–11253.

30. G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. Satish
Kumar, S. Koenig, and H. Choset, “PRIMAL: Path-
finding via reinforcement and imitation multi-agent
learning,” IEEE Rob. Autom. Lett. 4 (3), 2378–2385
(2019).

31. M. Damani, Z. Luo, E. Wenzel, and G. Sartoretti,
“PRIMAL2: Pathfinding via reinforcement and imita-
tion multi-agent learning-lifelong,” IEEE Rob. Autom.
Lett. 6 (2), 2666–2673 (2021).

32. C. Ferner, G. Wagner, and H. Choset, “ODrM* opti-
mal multirobot path planning in low dimensional
search spaces,” 2013 IEEE International Conference on
Robotics and Automation (2013), pp. 3854–3859.

33. B. Riviere, W. Hönig, Y. Yue, and S. J. Chung, “GLAS:
Global-to-local safe autonomy synthesis for multi-ro-
bot motion planning with end-to-end learning,” IEEE
Rob. Autom. Lett. 5 (3), 4249–4256 (2020).

34. Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and
D. Zhao, “MAPPER: Multi-agent path planning with
evolutionary reinforcement learning in mixed dynamic
environments,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2020, pp. 11748–
11754.

35. B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot
path planning in dynamic environments through glob-
ally guided reinforcement learning,” IEEE Rob. Au-
tom. Lett. 5 (4), 6932–6939 (2020).

36. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms
(2017). arXiv preprint arXiv:1707.06347

37. A. Skrynnik, A. Andreychuk, K. Yakovlev, and A. Pan-
ov, “Pathfinding in stochastic environments: Learning
vs planning,” PeerJ Comput. Sci. 8, e1056 (2022).

38. C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak,
C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse,
and R. Józefowicz, “Dota 2 with large scale deep rein-
forcement learning” (2019). arXiv preprint arX-
iv:1912.06680

39. T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar,
J. Foerster, and S. Whiteson, “QMIX: Monotonic val-
ue function factorisation for deep multi-agent rein-
forcement learning,” International Conference on Ma-
chine Learning (2018), pp. 4295–4304.

40. R. Lowe, Yi Wu, A. Tamar, J. Harb, P. Abbeel, and
I. Mordatch, “Multi-agent actor-critic for mixed coop-
erative-competitive environments,” 31st Conference on
Neural Information Processing Systems (2017).

41. C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and
Y. Wu, “The surprising effectiveness of PPO in cooper-
ative, multi-agent games” (2021). arXiv preprint arX-
iv:2103.01955

42. B. Peng, T. Rashid, C. Schroeder de Witt, P. A. Kami-
enny, P. Torr, W. Böhmer, and S. Whiteson, “Facmac:
Factored multi-agent centralised policy gradients,”
Adv. Neural Inf. Process. Syst. 34, 12208–12221
(2021).

6 YAKOVLEV et al.
43. M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar,
N. Nardelli, T. G. Rudner, C. M. Hung, P. H. Torr,
J. Foerster, and S. Whiteson, “The starcraft multi-agent
challenge” (2019). arXiv preprint arXiv:1902.04043

44. T. M. Moerland, J. Broekens, A. Plaat, and C. M. Jonker,
“Model-based reinforcement learning: A survey”
(2020). http://arxiv.org/abs/2006.16712

45. A. Skrynnik, Y. Yakovleva, D. Davydov, K. Yakovlev,
and A. I. Panov, “Hybrid policy learning for multi-
agent pathfinding,” IEEE Access 9, 126034–126047
(2021).
https://doi.org/10.1109/ACCESS.2021.3111321

46. J. Suarez, Y. Du, P. Isola, and I. Mordatch, “Neural
MMO: A massively multiagent game environment for
training and evaluating intelligent agents” (2019). arXiv
preprint arXiv:1903.00784

47. J. Terry, B. Black, N. Grammel, M. Jayakumar,
A. Hari, R. Sulliva, L. S. Santos, C. Dieffendahl,
C. Horsch, R. Perez-Vicente, and N. Williams, “Pet-
tingzoo: Gym for multi-agent reinforcement learning,”

Adv. Neural Inf. Process. Syst. 34, 15032–15043
(2021).

48. F. Laurent, M. Schneider, C. Scheller, J. Watson, J. Li,
Z. Chen, Y. Zheng, S. H. Chan, K. Makhnev, O. Svid-
chenko, and V. Egorov, “Flatland competition 2020:
MAPF and MARL for efficient train coordination on a
grid world,” NeurIPS 2020 Competition and Demonstra-
tion Track (2021), pp. 275–301.

49. J. Li, Z. Chen, Y. Zheng, S. H. Chan, D. Harabor,
P. J. Stuckey, H. Ma, and S. Koenig, “Scalable rail
planning and replanning: Winning the 2020 flatland
challenge,” Proceedings of the International Conference
on Automated Planning and Scheduling (2021), Vol. 31,
pp. 477–485.

50. A. Skrynnik, A. Andreychuk, K. Yakovlev, and
A. I. Panov, “POGEMA: Partially observable grid en-
vironment for multiple agents” (2022). arXiv preprint
arXiv:2206.10944.

Translated by I. Ruzanova
DOKLADY MATHEMATICS 2022

	1. INTRODUCTION
	2. NONLEARNABLE (CLASSICAL) METHODS
	3. LEARNABLE METHODS
	4. EXPERIMENTAL ENVIRONMENTS FOR TESTING ALGORITHMS
	5. CONCLUSIONS
	REFERENCES

