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ABSTRACT In this paper, we study the problem of visual indoor navigation to an object that is defined by
its semantic category. Recent works have shown significant achievements in the end-to-end reinforcement
learning approach and modular systems. However, both approaches need a big step forward to be robust and
practically applicable. To solve the problem of insufficient exploration of the scenes and make exploration
more semantically meaningful, we extend standard task formulation and give the agent easily accessible
landmarks in the form of the room locations and those types. The availability of landmarks allows the
agent to build a hierarchical policy structure and achieve a success rate of 63% on validation scenes in a
photo-realistic Habitat simulator. In a hierarchy, a low level consists of separately trained RL skills and a high
level deterministic policy, which decides which skill is needed at the moment. Also, in this paper, we show
the possibility of transferring a trained policy to a real robot. After a bit of training on the reconstructed real
scene, the robot shows up to 79% SPL when solving the task of navigating to an arbitrary object.

INDEX TERMS Navigation, reinforcement learning, robotics, neural networks, complex indoor environ-
ments.

I. INTRODUCTION
Autonomous navigation in a semantically extensive envi-
ronment is one of the significant components in building
intelligent robotic systems.

This article focuses our direction on indoor robots and
their ability to fulfill the user’s requests by moving in the
previously unseen environment to target objects. Classically,
navigation problems are solved with simultaneous localiza-
tion and mapping (SLAM) methods [1]. As a result, these
methods generate an obstacle map, and the planners [2], [3]
build upon it the collision-free path to the goal.

These classical approaches show convincing performance
when provided with a multimodal input [4] in an environ-
ments where signal is not blocked [5]. On the other side,
with the appearance of fast performing simulators [6]–[8],
large photo-realistic 3D datasets [9]–[11] and with the latest
progress of learned methods, training virtual robots in simu-
lation has gets a lot of interest in recent years. The learning
approaches, like Reinforcement Learning (RL) [12], could
adapt to almost any task in a simulator. The downside of RL
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FIGURE 1. Ground robot platform based on the clearpath husky chassis
with a ZED camera. We used it to evaluate our results in real-world
scenarios.

is that it needs to be specifically trained to each task setup
from scratch, and these algorithms are hard to deploy in a
real navigation scenario. [13]

This paper aims to overcome this issue and show that RL
can be practically usable in real-world conditions with sensor
noise present in a challenging navigation task of finding
objects.
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To achieve this, we first train our agent in a high framerate
simulator Habitat [8] and then smooth transfer policy on a
real robot (Fig. 1). Habitat is an open-source simulator that
consume a photo-realistic Matterport [10] dataset (and many
others) and build an environment upon it.

Habitat authors also claim that mobile operation in
three-dimensional environments is a primary topic of study
in Artificial Intelligence [14] and start a Habitat Challenge to
make progress in this field.

We choose to take ObjectNav task formulation from the
Habitat Challenge track as a test platform. ObjectNav is
defined as the task of navigating to a semantic type of object
in an unseen environment [15]. During the challenge in
2021, the end-to-endReinforcement Learning (RL) algorithm
became the state-of-the-art solution and showed a success
rate of 23% on a test-standard phase [16]. This indicates that
the ObjectNav task is far from being solved or stagnated.
Further increasing metrics is impossible due to unsolved
episodes being extensive areas that are hard to explore with-
out prior information of its semantical structure. We assume
that such information should be easy to annotate by humans
and remains unchanged in the areas with the often moving
objects. Therefore, the agent should have a hierarchical struc-
ture to use spatial understanding efficiently.

To summarize, our contribution includes:
• Task formulation with landmarks. As humans solve
indoor exploration tasks to find the object, they strongly
rely on a room’s understanding of a concrete scene and
can predict the type of objects inside. To allow the agent
to learn this concept, we gave the agent the landmarks
(G) in the form of all rooms center coordinates and their
kind (Fig. 2). This information could be easily annotated
by a human as opposed to themap. Note that the obstacle
map or objects inside any rooms are still unknown to the
agent.

• Dividing policy into a set of skills. As an agent’s policy,
we distinguished three basic skills: navigation to the
point, exploration of the nearby area, and reaching the
seen object. The agent was separately trained in all of
these skills using the policy optimization approach.

• Hierarchical structure. To efficiently use the given list
of landmarks, we have built the skill selector module
that at each time navigates the agent to the most promis-
ing landmark zone by selecting one of the presented
skills.

• Smooth policy transfer to new real-world scenes.
To make policy transfer possible and predictable,
we first 3D reconstructed our scene into a simula-
tor. After a small stage of neural networks adapta-
tion to it and being convinced that the agent navigates
safely in it, we conducted a real test and got an
agent behavior similar to the one in the simula-
tor. Since our robot relies only on an RGB image,
the depth and semantic were received by neural net
methods.

FIGURE 2. Example of the resulted agent’s trajectory with the
visualization of landmarks.

II. RELATED WORK
As the most navigational tasks, the ObjectNav task could
be solved by a SLAM and a deterministic planner meth-
ods. As a results, the agent builds an occupancy map and
a collision-free path to the goal. Despite the fact that the
goal object’s coordinates are unknown, methods such as a
Frontier-based exploration (FBE) [17] are often used. A fron-
tier is defined as the boundary between the explored free
space and the unexplored space. Frontier-based exploration
essentially samples points on this frontier as goals to explore
the space. if the agent during this exploration sees a goal type
of object it navigates to it directly. As one of our baselines
(ExploreTillSeen), we followed this strategy and builded a
two RL-based agents, one that explore the area and the other
one that navigates to a goal object when the agent sees it.

A big breakthrough of the learning approaches in naviga-
tion tasks was the DDPPOmethod [18], which as its core used
Proximal Policy Optimization [19]. Without any mapping or
planning modules, DDPPO at the PointNav task was able to
perform 2.5 billion steps in the environment and solve the
task at human-level performance. Authors achieve that by
giving the agent inputs directly from an RGB-D camera and
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a GPS+Compass sensor. To optimize the training process,
the authors investigated the most efficient neural network
architecture [20], which we also use in our approach.

Previous works have shown that at ObjectNav task, the
pure end-to-end RL algorithms that use vanilla visual and
recurrent modules perform poorly due to overfitting and
sample inefficiency. The authors of Auxiliary task RL
method [16] partialy solved that by adding auxiliary learning
tasks and an exploration reward during training phase.

Another promising approach to solve the ObjectNav task
is to mix analytic and learned components and operate on
explicit spatial maps of the environment. Such a combination
of classical and learned methods, SemExp [21] has shown
the best result at ObjectNav during Habitat Challenge 2020.
Authors use a deterministic map module and divide a policy
into a global, that by planning on a map output a short-
term subgoal, and a local policy, that pursues that subgoal.
Inspiring this work, we also build a two-level policy, but our
low level consists of several independent skills and high-level
switches between them depending on what the agent needs to
do at a given time.

The idea of using landmarks as a region of interest in
navigation tasks is also described in [22], [23]. The first
method, HIGL, also divided policy into high-level and low-
level, where the high level generates a subgoal toward land-
marks and the low level reaches it. The sample of landmarks
was based on the ‘‘coverage’’ and ‘‘novelty’’ criteria from
the previously visited states. In general, we found this idea
suitable to us, but instead of sampling from previous trajecto-
ries (the agent must navigate in previously unseen scenes),
we utilize the semantic structure of the indoor scenes and
define landmarks as the coordinates of the room’s center. The
policy of sampling from landmarks is based on the distance
to landmarks and statistics of objects relative to rooms type.

III. TASK SETUP
The indoor object navigation task is defined as the task of
navigating to an object (specified by semantic label) in a
previously unseen environment [24]. In practice, the agent is
initialized at a random pose in an environment and aims to
find an instance of an object category Igoal ∈ {c1, c2, . . . , c20}
(for example, a couch) by navigating to it.
This interaction is formally described by the Markov deci-

sion process (MDP), which is defined by sets of states S
and actions A (forward, turn left, turn right, and stop), the
distribution of the initial states p(s0), the reward function
r : S × A → R, the transition probabilities p(st+1 | st , at ),
the termination probabilities T (st , at ), and the discount fac-
tor γ ∈ [0, 1]. The agent receives a semantic mask of a
goal-type of the object through the semantic segmentation
module (Isem = 8semantic(IRGB, Igoal)).
During the evaluation process, the agent can only use the

input from the RGB-D camera (IRGBD), the GPS+Compass
sensor (IGPS ), and a list of landmarks (G) for navigation. A list
of landmarks contains all center coordinates of rooms and

their type with no information about the map, what objects
are inside, or how to navigate to those rooms.

Evaluation occurs when the agent selects the stop action.
As a metric, the Success rate weighted by Path Length (SPL)
and the Success rate are used. SPL is computed to the object
instance closest to the agent start location.

SPL =
1
N

N∑
i=1

li
max (pi, li)

(1)

where li is the length of the shortest path between the goal
and the target for an episode; pi is the length of the path taken
by the agent in an episode.

Thus, if an agent spawns very close to chair1 but stops at a
distant chair2, it will achieve 100% success (because it found
a ‘‘chair’’) but a fairly low SPL (because the path to chair2
is much longer than that to the chair1). More specifically,
an episode is deemed successful if the agent is calling the stop
action within 1.0m Euclidean distance from any instance of
the target object category, and an oracle can view the object
from that stopping position by turning the agent or looking
up/down.

IV. METHODS
We propose a landmark-based modular framework (Fig. 3)
for navigation to object goal (Igoal) – Hierarchical Land-
mark Policy Optimization (HLPO). The framework consists
of three main modules: skill selector πselector , functions for
data preprocessing 8semantic and 8depth, and skill policies
{πexplore, πreacher , πpointnav}.
The skill selector module is a deterministic strategy that

sets a subtask at each step and selects the skill required to
complete it.

The process of managing skills could be treated as a policy
and integrated into the global policy module. Typically, the
HRL methods can learn a two-level policy 51. Each level of
policy learns πi : Si,Gi → Ai where Gi is the set of possible
sub-goals. To learn these policies πi, the set of MDPsU0,U1,
in which Uk = (S,G,A,T ,R, γ ), is used. However, learning
multiple levels of policies in parallel is problematic because
learning is inherently unstable. For the object goal task, the
sequence of skills can be formulated explicitly.

During the training phase πselector analyzes all Matterport
scenes to connect the object types to the type of rooms and
makes a statistic out of it (Fig. 4). Thanks to it, we know that,
for example, a sofa is located with a probability of 70% in the
living room, and 10% each in the bedroom, living room,meet-
ing room. During the execution of the episode, it works as
follows. For each given landmark, at each step we calculate a
visit importance coefficient equal to the probability of finding
the object of the target type in the given room type, divided
by the Euclidean distance to the center of the given room.
πselector at each step chooses the Landmark with the highest
importance factor and determines which skill should be used
to complete the task. If the agent is outside the selected
landmark, then πselector chooses πpointnav to reach it. Once
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FIGURE 3. Hierarchical landmark policy optimization (HLPO) scheme. Our proposed approach
consists of three main blocks: data prepossessing, a skill selector, and skill policies.
Multicolored squares at the bottom of the elements mean what data it denotes (at the bottom
left) and consumes (at the bottom right).

Algorithm 1 HLPO
1: Given:
πselector : Skill selector,
πexplore: Explore policy,
πreacher : GoalReacher policy,
πpointnav: PointNav policy,
8semantic: Semantic segmentation model,
8depth: Depth model,

2: Input:
IRGBD: RGBD image from the camera,
IGPS : X,Y coordinates relative to the start point,
Igoal Goal type of object,
G: List of landmarks.

3: while episode not ended do
4: Iskill_type, Iroom_cord ← πselector (G, Igoal, IGPS )
5: Isem← 8semantic(IRGB, Igoal)
6: ID← 8depth(IRGB)
7: if Iskill_type = PointNav then
8: a← πpointnav(IRGBD, IGPS , Iroom_cord , aprev)
9: end if

10: if Iskill_type = Explore then
11: a← πexplore(IRGBD, aprev)
12: end if
13: if Iskill_type = GoalReacher then
14: a← πreacher (IRGBD, Isem, aprev)
15: end if
16: Execute action a in the environment
17: end while

the agent enters the Landmark zone, πselector activates πexplore
until the agent. will not leave the Landmark zone. If at any
time 8semantic sees an object of the target type, then πselector
will activate the πreacher skill to reach it. (Algorithm 1)

The data preprocessing module is two neural nets that do
semantic segmentation and depth reconstruction.

Our algorithm uses the semantic segmentationmodel to get
the mask of the goal object, which is input for policy.We have
taken the SOLOv2 [25] approach for those categories that
correspond to the Coco dataset [26] and RedNet [27] for oth-
ers. RedNet was trained on collected images from the MP3D
dataset and took as input an RGBD image. The SOLOv2
model uses weights pretrained by authors and rely only on
an RGB image. SOLOv2 output far fewer noises during our
experiments, which is crucial for our algorithm because of
skill separation. If false-positive noise appears, our approach
policy switcher fires at the wrong time.

Though we use a ground truth depth sensor for all train and
test phases at the simulator, we do not have that option at the
Husky robot, so we reconstructed it from an RGB image [28].

The skill policies module takes as input agent’s obser-
vation and outputs the action that pursues current needed
skill. For our task, we identified three skills: point naviga-
tion, exploration, and goal reacher. In our experiments, the
PointNav skill executes 50% of the time during the episode,
Explore skill 22%, and Goalreacher skill 28%.

The PointNav skill was trained to reach a landmark zone
(room of interest). The reward is proportional to the shortened
distance to the goal coordinate. As an input it takes an RGBD
image and the polar coordinates of the center of landmark
zone. It’s main goal is to perform ’stop’ action when an agent
is within 0.1m distance from the gool coordinates. (Fig. 5)

The Exploration skill determines the task’s success
more than others, especially when we have no landmarks.
We trained an RL policy that effectively explores the nearby
area (Fig. 7), so it fits perfectly to explore the room com-
pletely but has lower percentage coverage at big scenes. As a
reward, we give +1 each time the agent steps into the new
square meter zone.

The GoalReacher skill was trained to reach the goal-type
object when the semantic sensor sees it (Fig. 6). It’s main
goal is to perform ’stop’ action when an agent is within
1m distance from the goal-type object. To avoid overfitting,
we generate episodes by initializing agents to a random place
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FIGURE 4. Statistics on the distribution of objects by rooms, obtained
during the training of the skill selector module.

FIGURE 5. Success rate vs. steps on a training phase of PointNav skill.
Higher is better.

and then ask them to reach the farthest seen object type. The
reward is also proportional to the shortened distance to the
seen goal-type object.

The agent’s goal is to find the policy π that maximizes the
expected return Eπ [R0 | s0]). The expectation is taken over

FIGURE 6. Explored area (m2) vs. steps on a training phase of Exploration
skill. Higher is better.

FIGURE 7. Distance to the goal type object (m) vs. steps on a training
phase of GoalReacher skill. Closer to 1.0m is better.

the initial state distribution, the policy, and the environment
transitions according to the dynamics specified above. The
action-value function (Q-function) of a given policy π is
defined as Qπ (st , at ) = Eπ [Rt | st , at ]. The state-value
function (V -function) is defined as V π (st ) = Eπ [Rt | st ].
The advantage is defined as Aπ (st , at ) = Qπ (st , at − V π (st )
and informs if action at is better than the average action the
policy π takes in the state st .

De facto, the policy and the value functions are represented
as two neural networks. The first represents the current policy
π , and the value network approximates the current policy’s
value function V ≈ V π .
A policy neural network is a two-head network, one for

the action distribution (actor) and the other for the action
value estimation (critic). The actor stream is one FC layer that
outputs logits for each out of the four actions. An action to
execute is picked as a categorical distribution of that logit.
The critic stream is an FC layer that outputs value for the
given state.

To compute the return, we use a generalized advantage
estimator (GAE) with γ = 0.99 and τ = 0.95.
For the policy loss function, we use the proximal policy

optimization (PPO) [19], which still remains the SOTA solu-
tion in RL for the vast quantity of tasks. In our method,
for training an RL agent, we use a gradient descent over a
policy agent. Given a θ -parameterized policy πθ and a set
of trajectories collected with it (commonly referred to as a
‘‘rollout’’), the agent updates πθ as follows. Let Ât = Rt−V̂t ,
be the estimate of the advantage, where Rt =

∑T
i=t γ

i−tri
and V̂t is the expected value of Rt , and rt (θ ) be the ratio of
the probability of the action under the current policy and the
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FIGURE 8. Top row is the agent view in a simulator. The middle image is the ground truth depth that was clamp to five meters. The bottom row is
the real robot view. The second image is the depth obtained by the depth reconstruction module. The third image is shown to compare the quality
of the neural net depth versus ZED camera depth. Both right images are the semantic mask of the couch class obtained by the semantic
reconstruction module.

policy used to collect the rollout. The parameters are then
updated by maximizing

JPPO(θ ) = Et
[
min(rt (θ )Ât , clip(rt (θ ), 1− ε, 1+ ε)Ât )

]
.

(2)

As the parallelization method, we utilize the decentral-
ized distributed proximal policy optimization (DD-PPO)
way [18]. The synchronous method differs from the asyn-
chronous method in that in the synchronous one, each worker
collects experience from the environment and simultaneously
updates its weights for the general model with all workers.
The workers that take too long time to step at the simulator
are interrupted so that the rest do not wait for them. As a
general abstraction, this method implements the following: at
step k , worker n has a copy of the parameters, θkn , calculates
the gradient, ∂θkn , and updates θ via

θk+1n = PU
(
θkn ,AR(OθJ

PPO(θk1 ), . . . ,OθJ
PPO(θkN ))

)
,

(3)

where PU is any first-order optimization technique (gradient
descent), and AR performs a reduction (mean) over all copies
of a variable and returns the result to all workers.

V. EXPERIMENTAL SETUP
A. SETUP
To show the performance of our HLPO method at a Habitat
simulator, we have singled out two datasets: test and valida-
tion. For the test dataset, we manually picked 100 episodes
from 11 scenes that are complex and large enough to show
that exploring them without landmark information results in
low performance. These episodes have a medium geodesic
distance to the closest goal, no less than 5m. As for indoor
object categories, we took 10 to our experiments: a bed,

TABLE 1. Comparison of the different agents on training episodes.

a cabinet, a chair, a chest of drawers, a counter, a cushion,
a sink, a sofa, a table, and a toilet. We ran all experiments
three times and got the dispersion of the results no more than
0.05.

To demonstrate that our method outperforms the current
techniques, we selected five baselines that are not use land-
mark information, but at the training phase, they had a goal
to learn the semantical structure of the scenes natively.

• DDPPO - We trained an end-to-end DDPPO [18] algo-
rithm with the input as the depth+ GPS+ GT semantic
sensors with the reward proportional to the geodesic
distance to the goal object closest to the start. As a
backbone, ResNet50 and LSTM layer were used.

• SemExp - The SemExp [21] is the SOTA algorithm
with the module structure that incorporates both RL
and planning, which showed the best performance at
Habitat challenge 2020. We use the author’s weights,
but because of the differences in goal objects’ classes,
we give the agent only the goal class and set the others
as zero.

• Planning - A combination of planning modules that,
at every step, update the obstacle map and explore it.
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TABLE 2. Comparison of the different agents on validation episodes.

When the semantic module sees the goal object, it gets
spotted on a map, and the agent navigates to it through
planning.

• Auxiliary RL - The generic learned policy [16] with the
auxiliary learning tasks and an exploration reward. It is
the SOTA end-to-end algorithm, which showed the best
performance at Habitat challenge 2021.

• ExploreTillSeen - A combination of two RL skills:
one explores the area (Explore skill) until the semantic
sensor sees the target and the other RL follows the seen
goal object (GoalReacher skill).

As a result, using only the Explore and GoalReacher skills
approach showed similar performance to the SOTA methods,
and the HLPO almost doubled the performance, which indi-
cates that our choice of landmark information was right, and
the agent itself could not learn it.

To prove that sensor and action noises do not spoil the
performance, we added them at a training phase, so they
are not a problem during validation (HLPO (Noise) row in
Table 1), either. The HLPO (Map) showed that additional
performance could be squeezed if the agent had access to a
full map of the scene. But the gain is not that noticeable as
the hardness of collecting the map.

At the validation phase, we take 1,126 episodes out of
2,195 from all 11 scenes. We filter episodes that do not
contain at least three goal-type objects at the same floor level
as the agent start (Table 2).

To prove the need for landmarks, we gave an example of
the ExploreTillSeen versus HLPO trajectories (Fig. 12). The
ExploreTillSeen example shows that it explores capabilities
on a high level, and we can not squeeze more out of it,
but its trajectories are far from optimal. If, for example, the
real robot every time navigated through every room of the
apartment to search the sink, we do not want that behav-
ior. The HLPO trajectories are also not optimal. We could
improve them by giving the entire map, but it is hard to
collect, and it will need to be recollected after each scene
changes. Considering all of it, we think landmarks are the
right tradeoff.

There are several ways to train agents to navigate, from
training in real-world scenarios to fully simulated environ-
ments. The former is too inefficient as it needs a lot of
resources and could bring a lot of harm while the policy
is not optimal. The latter is comfortable working with, and
outstanding results could be squeezed out, but our overall
task is to navigate in real-world scenes. In this case, the
transfer process from a simulated environment to an actual
robot could be even more challenging than the training itself.
In the simulator, the agent does not suffer from many real-
world sensors’ imperfections.

FIGURE 9. Comparison of the HLPO agent before and after adaptation.

FIGURE 10. Success rate during scene adaptation.

As an intermediate approach, we use a photo-realistic envi-
ronment where the scene is the one that was reconstructed by
lidars and cameras.

We train our agent on a maximum number of scenes as
we get from the Matterport dataset. But scene differences are
too big across all datasets, and 60 of them are not enough to
take into account all the properties of any scene. That is what
happened in our case in the laboratory area. Long identical
corridors turned out to be underrepresented in the dataset,
and the agent showed far from optimal behavior inside them
(Fig. 9). Since we can’t capture many of these kinds of
scenes, we chose to overfit our agent on our reconstructed
scene before the real tests. For indoor navigation, we found
it suitable in cases like ours because such a calibration needs
one time for each type of scene, and the user of our system
could download the suitable weights for its kind of scene.

To reconstruct the scene, we first looked at how it was done
at themp3d dataset. Dataset creators used theMatterport Pro2
camera (134 megapixels with no lidar) and the Matterport
proprietary soft, where one can upload photos, and they are
automatically processed to the final.obj file. That could be
formatted to.glb and be used by the Habitat simulator with
no effort. This works fine unless the scene contains small
details. The mp3d dataset itself had a lot of holes and texture
inconsistencies. We wanted higher quality, especially more
precise depth reconstruction, so the agent can predictively
navigate in a narrow room space. Our solution was to use a
professional laser scanner, Leica RTC360 3D. An additional
upside is that we can manually edit our shots, delete back-
ground people, and manually check the quality of assembling
the entire scene. To texture the final point cloud, we use a
RealityCapture program (Fig. 11).
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FIGURE 11. The bottom image is how the point cloud looks before texturing. The upper image is after texturing at RealityCapture.

FIGURE 12. Comparison of ExploreTillSeen (up row) vs HLPO agent (down row).

TABLE 3. Comparison of the HLPO before and after the adaptation stage
in our reconstructed scene.

Also, our laboratory reconstructed scene allowed us to
calibrate the depth net (instead of simulator depth during the
training phase, Fig. 8) and set proper clamps. Thus, the depth
net is very close to the simulator depth. Then we collected
episodes and retrained the agent on it during one million steps
(Fig. 10)). Through this, we took into account the peculiarities
of the scene.

After these adaptations, the success rate increased from
0.6 to 0.9 (Table 3). And at the real test on our robot Husky,
we get 0.79 SPL, which indicates that our HLPO method
performs equally well at the simulator and real-world tests.

VI. DISCUSSION AND CONCLUSION
We propose a novel approach to the ObjectGoal navigational
task.With the standard formulation of the task, existingmeth-
ods are limited to the point where, at large scenes, exploration
with no information about the scene takes unreasonablymuch
time. To solve this, we propose landmarks as a list of rooms’
coordinates and their type.

With our updated task formulation, we have built a novel
hierarchical policy that uses skills that could be stacked and
reused in various navigational tasks with no changes. The
success rate for our method doubles from 20% for the state-
of-the-art method to 46%with the learned semantic, and from
51% to 86% for the ground truth semantic from the simulator.
To accomplish the ObjectGoal task, we trained the agent three
skills: PointNav, Exploration, and GoalReacher.

To make the transfer to reality process possible and pre-
dictable, we described how to reconstruct a scene into a
simulator with a decent photo-realistic reconstruction quality
using a professional Leica RTC360 scanner.
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Our future work involves planning to build a global policy
that would automatically select skills for a more complex task
and move from discrete actions to continuous ones to control
wheel-based robots more effectively.
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