IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON COLLABORATIVE INTELLIGENCE FOR INTERNET OF VEHICLES

Received September 2, 2021, accepted September 5, 2021, date of publication September 9, 2021,
date of current version September 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111321

Hybrid Policy Learning for
Multi-Agent Pathfinding

ALEXEY SKRYNNIK"“1, ALEXANDRA YAKOVLEVA"“2, VASILII DAVYDOV?2,
KONSTANTIN YAKOVLEV “12, AND ALEKSANDR I. PANOV 12

!Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333 Moscow, Russia
2Moscow Institute of Physics and Technology, Moscow Region, 141700 Dolgoprudny, Russia

Corresponding author: Alexey Skrynnik (skrynnik @isa.ru)
This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2020-799.

ABSTRACT In this work we study the behavior of groups of autonomous vehicles, which are the part of the
Internet of Vehicles systems. One of the challenging modes of operation of such systems is the case when the
observability of each vehicle is limited and the global/local communication is unstable, e.g. in the crowded
parking lots. In such scenarios the vehicles have to rely on the local observations and exhibit cooperative
behavior to ensure safe and efficient trips. This type of problems can be abstracted to the so-called multi-
agent pathfinding when a group of agents, confined to a graph, have to find collision-free paths to their
goals (ideally, minimizing an objective function e.g. travel time). Widely used algorithms for solving this
problem rely on the assumption that a central controller exists for which the full state of the environment
(i.e. the agents current positions, their targets, configuration of the static obstacles etc.) is known and they
cannot be straightforwardly be adapted to the partially-observable setups. To this end, we suggest a novel
approach which is based on the decomposition of the problem into the two sub-tasks: reaching the goal and
avoiding the collisions. To accomplish each of this task we utilize reinforcement learning methods such as
Deep Monte Carlo Tree Search, Q-mixing networks, and policy gradients methods to design the policies that
map the agents’ observations to actions. Next, we introduce the policy-mixing mechanism to end up with a
single hybrid policy that allows each agent to exhibit both types of behavior — the individual one (reaching the
goal) and the cooperative one (avoiding the collisions with other agents). We conduct an extensive empirical
evaluation that shows that the suggested hybrid-policy outperforms standalone stat-of-the-art reinforcement
learning methods for this kind of problems by a notable margin.

INDEX TERMS Multiagent systems, path planning, machine learning, intelligent transportation systems,
reinforcement learning, Monte-Carlo Tree Search.

I. INTRODUCTION In addition to questions about what data to collect and how

The number of commercial and personal vehicles steadily
grows causing pressure on the existing transportation net-
works. One of the ways to mitigate this issue to a certain
extent is to increase the autonomy of the vehicles. The expec-
tation is that autonomous vehicles inter-connected to the
Internet of vehicles will use the shared resources (transporta-
tion networks) in a smarter way [1], [2], reducing the risk
of accidents, traffic congestion and increasing the safety and
comfort for their passengers. The Internet of Vehicles (IoV)
in a smart city is already beginning to be practically imple-
mented through the introduction of V2X technologies [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Celimuge Wu

126034

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to organize the communication for building an Internet of
vehicles, the role of tasks related to how to use this data to
improve the efficiency of each autonomous vehicle working
in connection with others is increasing [4], [5].

According to the Society of Automotive Engineers (SAE),
6 levels of vehicle autonomy exist,! with 0 being conventional
vehicle lacking any systems that might control any aspects of
vehicle’s motion and 6 correspondings to a fully-autonomous
vehicle capable of operating without any guidance by a
human driver. In this work, we are focusing on the vehicles
of higher degrees of autonomy.

1 https://saaq.gouv.qc.ca/fileadmin/documents/publications/classification-
society-automotive-sngineers-en.pdf

VOLUME 9, 2021

https://orcid.org/0000-0001-9243-1622
https://orcid.org/0000-0003-4231-5839
https://orcid.org/0000-0002-4377-321X
https://orcid.org/0000-0002-9747-3837
https://orcid.org/0000-0001-6853-5878

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

a) © O o
0] o
0 g: @)
0O O 000

FIGURE 1. Example of the cooperative behavior in the multi-agent
partially observable environment. a) The agents move to their goals
relying on partial observations of the grid world (vertexes shaded with
light gray are no visible to the agents at the current time step). b) Then
agents see each other, and one of them lets the other pass by stepping

aside. c) After resolving the conflict, the agents continue moving towards
their goals.

One of the challenging scenarios for such vehicles is mov-
ing in a heterogeneous environment with numerous other
moving entities such as pedestrians, autonomous vehicles,
non-autonomous vehicles, etc. A characteristic example is a
navigation on a parking lot. This setup is challenging for the
following reasons. First, conventional means of organizing
traffic such as traffic lights, road lanes, road signs, etc. are
absent and vehicles have to safely navigate to their goals
without them. Second, the connection to the IoV (and peer-
to-peer connection as well) may suffer significantly, thus the
centralized or semi-centralized (like in [6]) coordination of
vehicles movements is limited. Consequently, in this setting,
vehicles have to predict the behavior of other vehicles in the
environment to avoid conflicts and deadlocks. An example of
such scenario is presented in Figure 1.

The described problem can be abstracted to the so-called
Multi-agent Pathfinding (MAPF) [7], a well-studied problem
with a range of different algorithms tailored to solve it. These
algorithms differ in assumptions they make on how mobile
agents may move through the workspace, how the collisions
are defined etc. Still, most of those algorithms assume full
knowledge of the environment. I.e. they accept as input not
only the map of the environment but also locations of all
the agents and their goals. Under such assumption MAPF
algorithms are capable to produce collision-free plans for all
the agents. This approach is hard to implement in the consid-
ered scenario when numerous vehicles constantly enter and
leave the parking lot, perfect localization and mapping are
burdensome, and connection to the Internet of vehicles may
be unstable. In the presence of such disturbances, it is reason-
able for each vehicle (agent) to operate individually, relying
on the local observations. The approaches to such partially-
observable multi-agent navigation are, indeed, known, see
the seminal work on ORCA [8] for example. However, they
often suffer from the deadlocks as they do not take the
cooperative aspect of the problem into account (i.e. some
agents have to stop progressing towards the goals in certain
cases in order to let the other agents go). To overcome this
problem in this work we suggest utilizing machine learning,
and more specifically — reinforcement learning (RL) [9]. We
are inspired by the successful experience of colleagues who
have already used machine learning methods for the IoV
related problems [10], [11].

VOLUME 9, 2021

In this paper, we propose to use reinforcement learning
[9], [12] to generate the behavior of each autonomous agent
in a multi-agent partially-observable environment, which
in our case is an abstraction for the Internet of vehicles.
Model-free reinforcement learning methods have shown
excellent results in behavior generation tasks for single
agents [13]-[15] and cooperative environments [16], [17].
Modern deep reinforcement learning algorithms cope well
with complex observation space (visual environments) [18]
and stochastic environmental conditions [19]. Nevertheless,
some cases in multi-agent environments, in which long-term
prediction of the purposeful behavior of other agents is essen-
tial, are hardly tackled by most of the model-free approaches.
To account for the purposeful actions of the other agents,
the so-called model-based approaches play an important role.
They have shown impressive results in such environments
as chess and Go [20], [21] where planning ahead is much
needed. On the other hand, model-based approaches are very
demanding on the quality of the model of the environmental
dynamics and often require access to an unlimited launch of
the environment simulator.

In this paper, we suggest utilizing both model-free and
model-based RL in the following fashion. We decompose
partially-observable MAPF into two subtasks: reaching the
goal and avoiding collisions with other agents and deadlocks.
The first one is handled by the model-free RL module which
outputs the suggestion on which action to take (i.e. actions’
probability distribution) provided with the current observa-
tion of the agent. The second subtask is handled by either the
model-based RL module or another model-free RL module.
All modules are trained separately and then are integrated into
aresultant hybrid policy (either model-free + model-based or
model-free + model-free) via the mixing mechanism. Such
an approach leads to very promising results as our experi-
mental studies suggest.

The main contributions of our work can be summarized as
follows:

« we present a variant of the MAPF problem which is
an abstraction of the challenging IoV setting when the
communication and observation are limited,

« we decompose the pathfinding problem into the two
subproblems: avoiding static obstacles and resolving
inter-agent conflicts in the local neighborhood,

o we suggest an original hybrid model-free + model-
based/model-free RL method that handles both prob-
lems in the integrated way,

« we develop an original simulator - POGEMA (Partially
Observable Grid Environment for Multi-Agent scenar-
ios) that allows generating MAPF problems of different
levels of complexity for further empirical evaluation,

« we show empirically that the suggested hybrid is an
efficient tool to solving the considered tasks and it out-
performs pure model-free/model-based RL approaches.

The rest of the paper is organized as follows. Section II
provides an overview of the related works from the MAPF

126035

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

domain. The problem statement is presented in section III
followed by the description of the suggested method in
section IV. We describe the developed simulator in section V.
Empirical evaluation and results are presented in section VI.
Section VII concludes.

Il. RELATED WORK

Multi-Agent Pathfinding (MAPF) is a challenging problem
that is being actively investigated in Al and robotics commu-
nities.

The first methods for solving the problem were planning
algorithms searching for the minimum cost path in the joint
action space, e.g. A* [22]. Such algorithms are extremely
ineffective in the case of a large number of agents due to the
exponential growth of computational complexity.

Currently used classical approaches suffer less from the
curse of dimension, but are still time-consuming. Planning
algorithms can be divided into two types: centralized and
decentralized. Centralized ones rely on a control center that
accumulates information on all agent’s positions. This group
of algorithms includes conflict-based search algorithm [23]
and its enhanced versions [24], [25] guaranteeing optimality
and prioritized planning algorithms [26] that are capable to
build near-optimal solutions under conditions. Decentralized
planning considers the problem in the setting when access
to information about other agents is limited. One of the
most cited decentralized algorithms ORCA [27] modifies
agent’s velocities on the fly to prevent collisions. Combina-
tions of ORCA with centralized planning algorithms are also
known [28].

Planning via Monte Carlo Tree Search (MCTS) which
we utilize is not new for MAPF. It was recently adapted
to solve Numberlink puzzles [29]. Another MCTS-based
approach [30] showed great scalability on the benchmark
SysAdmin domain.

Many reinforcement learning approaches address MAPF
by learning separated policies or Q-functions, which means
that each of them considers only a single agent. Such methods
require the use of additional trickery to get agents to inter-
act in the desired way. In actor-critic approaches [31] the
critic network is usually trained in centralized fashion [32],
[33] to enhance cooperation. Several off-policy learning
algorithms [34]-[36] suggest to decompose optimized joint
Q-function into action-values of single agents or pairs of
them. Heuristics could be also helpful in collaboration tasks,
e.g. [37] introduces new loss functions to prevent agents
from blocking each other. The advantage of our approach is
the absence of built into training heuristic rules. There are
also some approaches additionally relying on exact agents
behavior modeling [32], [37].

Probably the most natural way of learning agents to take
into account other agents is to design observation containing
the necessary information about other agents as it was done
in [37]. Our simulator POGEMA returns complex observa-
tion that combines the location of static obstacles, positions
of agents, and their targets in the area of visibility.

126036

IlIl. PROBLEM STATEMENT

Consider n homogeneous agents, e.g. representing driverless
vehicles, navigating the shared environment which is dis-
cretized to a 4-connected grid. The task of each agent is
to reach the given goal position (grid cell) from the start
one. To do this at each time step the agent can either stay
at its current position or move to a neighboring one. The
sequence of move/wait actions is called a plan and denoted
pi = (a1, ay, ..., ax), where i is the agent’s index. The cost
of the plan is defined by the time step by which the plan ends,
cost(p;) = k. Lower-cost plans correspond to faster ways of
reaching the goal.

Two plans are said to be conflict-free if the agents fol-
lowing them never collide. We consider the two common
types of collisions: vertex collision and edge collision. Vertex
collision occurs when two agents occupy the same grid cell
at the same time step (e.g. the first agent waits in the cell and
the second agent moves to it). Edge collision occurs when two
agents swap vertices using the same edge at the same time
step. In general, a few more collision types can be defined,
see [38], but for the sake of clarity, we limit ourselves to the
vertex and edge collisions in this work. Still, the method we
are presenting is agnostic to the collision definition and can
support other collision types provided that the corresponding
collision detection mechanism is implemented.

Unlike numerous works on multi-agent pathfinding,
we assume that the global state of the environment, i.e. the
global grid-map, the positions of all agents, their goals, etc.,
is not known. Instead, each agent possess only a local obser-
vation at each time step. This observation includes:

o the local map of size /, i.e. the patch of the global
grid-map centered at agent’s position, where [is the
predefined parameter,

« the positions of the other agents if they fall within the
local map (positions of the other agents are unknown),

« global information about the agent’s goal in the form of
a position (xg, yg), if it falls within the local map, or in
the form of its direction (projection on the edge of the
local map).

The problem now is to design a common individual policy
7 (s) for an agent that maps observations to actions, s.t. when
each agent executes this policy it reaches its goal and no
collisions happen along the way. The cost of the resulting set
of plans can be defined as the sum of costs of the individual
plans, or the maximum over such costs. In this work we are
not aiming at designing the policy that guarantees to produce
the set of plans of the least possible cost, however producing
lower-cost joint plans is, obviously, preferable.

In contrast to the standard MAPF problem statement,
we suggest that it is enough for an agent to learn a policy
due to interaction with the environment for a certain number
of episodes. Furthermore, we enable the agent to simulate its
actions with a copy of the environment, thus giving it access
to an ideal model of transitions in the observation space, thus
not violating the conditions of partial observability.

VOLUME 9, 2021

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

Formally, the interaction of an agent with the envi-
ronment is described as Markov decision process (MDP)
(S,A, P, r, y)where S is the set of environment states, a € A
is the set of agent’s actions preformed in the environment,
r(s, a):S x A — R is areward function, and y is the discount
factor. The agent chooses its action based on the policy w
which is a function 7 (a|s):A xS — [0, 1] that is the main part
of the actor. In value-based approaches, the policy is formed
by estimation of the value of action-state pairs: Q(ay, s;) =
r(se, ar) + EQ 2, ¥'r(Seti, ari)). The optimal policy 7 is
then 7 (s;) = argmaxg,ca Q(s;, a).

In the partially observable Markov decision process
(POMDP), it is assumed that a state of the environment is
not fully known to the agent. Instead it is able to receive only
a partial observation o € O of the state. Thus POMDP is a
tuple (S, O, A, P, r, y). The policy now is a mapping from
observations to actions: 7w (alo):A x O — [0, 1]. Q-function
in this setting is also dependent on observation rather than
on state: Q(dy, 0r) = r(s¢, ar) + B2, ¥ r(se+i, ar+i))- The
estimation of the value of the state V(s) is then V(s;) =
maxaeaQ(S:, a).

In model-based reinforcement learning, it is assumed that
the agent explicitly has access to the transition function of the
environment P or to some approximation of it P. This function
is usually used to generate additional experience for effective
training of the critic and the actor. In our case, when solving
the MAPF problem, only a certain approximation of the true
model P is available to the agent since the actions of other
agents cannot be predicted entirely and are replaced only by
some approximating policy, for example, a random one.

IV. METHOD

To solve the stated problem we suggest to decompose the
partially-observable MAPF into the two sub-problems: pro-
gressive movement of each agent towards the goal with the
avoidance of static obstacles and avoiding conflicts with other
agents. Accordingly, we develop two learnable policies for
the agent: a policy for reaching the goal and a policy for
resolving the conflicts.

We chose Proximal Policy Optimization (PPO) to learn a
goal-reaching policy as one of the most versatile methods for
solving a wide range of RL problems [14], [39], including
procedurally-generated navigation tasks [40]. To learn the
collision avoidance policy we have tried both model-free
and model-based approaches, QMIX and MCTS respectively.
QMIX is one of the widely used off-policy algorithms for
multi-agent learning [35]. MCTS is known to show great
results in highly complex antagonistic games [41] (Chess,
Go, etc) and we chose to adapt it to our challenging prob-
lem, i.e. to multi-agent cooperative path-finding with limited
observations. As our experimental results show this choice
was worthwhile.

Both modules are learned in parallel. After learning, at the
inference phase we apply a mixing mechanism to end up
with the hybrid policy that combines both types of behavior
(goal-reaching and collision-avoidance). The general scheme

VOLUME 9, 2021

of the proposed approach is shown in Figure 2. Please note,
that MCTS conflict-avoidance module is depicted, while it
is interchangeable by the QMIX one. Overall, the suggested
architecture of the hybrid policy is flexible and one can plug
any other RL policy for goal reaching or collision avoidance,
with only minor changes.

Next, we describe both learnable policies and the mixing
mechanism in more detail.

A. GOAL REACHING MODULE

The Proximal Policy Optimization (PPO) [42] approach
has proven effective in many RL problems, especially in
large-scale learning setups [39]. PPO is a variant of advan-
tage actor-critic, which relies on specialized clipping in the
objective function to penalize the new policy for getting far
from the old one. PPO uses Generalized Advantage Estima-
tion [43], a well-known approach for variance reduction.

The pathfinding problem in a partially observable environ-
ment is quite complex, even for a single agent. The agent
needs to master several tasks: avoiding obstacles (sometimes
dynamic), exploring the environment, and moving towards
the target. The reward signal in such an environment is sparse;
the agent receives it only at the end of the episode. If one trains
an agent in such scenarios, then even accidentally getting
to the target will be almost impossible. To overcome this
problem, we suggest using curriculum learning.

Curriculum learning in RL aims to order tasks to provide
curricula for training an agent, improving its performance on
the target task. We can design training curricula for POGEMA
using parameters of the environment (e.g. max distance to the
target, obstacle density). In Figure 3, we show an example of
the progressively increasing complexity of the tasks. In this
work, we use human expert knowledge to provide such a
curriculum plan. We denote PPO trained using that plan as
cPPO.

B. CONFLICT RESOLUTION MODULE

1) MODEL-BASED APPROACH

The central mechanism of the Conflict resolution module is
the Monte-Carlo Tree Search mechanism. Monte-Carlo Tree
Search (MCTY) is a powerful technique widely used to solve
decision-making problems when an agent has to decide which
action to take next observing the current state of the world.
Most often MCTS-based methods are used in the context
of the adversarial two-player games and they show great
success in solving this type of problems [44], [45]. Even
bigger popularity came to MCTS in 2016 when AlphaGo [20]
showed super-human performance in Go (which is a very
challenging game to computers). AlphaGo was a mixture of
human-designed game heuristics, MCTS, and deep learning.
Its enhanced successor, AlphaZero [41], did not require any
human knowledge and mastered not only Go but a range
of other board games like chess and shogi. Inspired by the
success of these model-based approaches we adopted the idea
of mixing together planning (search) and deep learning to
the considered conflict resolution problem. Next, we describe

126037

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

Goal Reaching Module: PPO

Environment . .
Hybrid Policy

ey \'%
» Critic ~
Feature

observation extractor

—»ﬂ O =

Ve
Actdr

action

® i

LV
_» Critic -

Feature

V¥V extractor _ -
O , N\ A
‘ \ Actor -~]
state N \
[®) @‘\ ~ - IV, =
7

/

= -l)
o J/‘ T~ C8 —--

~~
X y >

training = — p
Conflict Resolution Module: MCTS both >

FIGURE 2. The hybrid policy approach. Three main modules are identified: Goal Reaching Module, Conflict Resolution Module, and the Hybrid Policy
module. The latter receives the distributions over the actions and combines them so the agent demonstrates both types of behavior: reaching the goal

and avoiding conflicts with other agents.

g QO h Q@ o @
00000 (@) 000 *
(@) © 000 © O
00 (@)
00 QOO

FIGURE 3. Example of progressively increasing difficulty of the scenario.
a) The target is in the agent’s field of vision, and the path to it is open.

b) The target is out of the agent’s field of vision, but the path to it is quite
simple and is in the same direction. c) The target is out of observation of
the agent and it's difficult to reach. The agent must properly explore the
environment to find it.

the necessary background of MCTS and its combination with
deep learning and finally propose our variant of model-based
learning algorithm to address the partially-observable multi-
agent pathfinding.

Basic MCTS: MCTS solves the problem of choosing an
action (game move) provided with the current state of the
world/game (vanilla MCTS assumes a fully observable envi-
ronment, where states and observations are equivalents).
It does so by virtue of simulating the most promising variants
of how the game develops in the future. This process can
be thought of as planning (i.e. MCTS reasons about the
actions and their consequences). Technically this planning
is realized as a tree-search process. The node in the tree
corresponds to a game state, the outgoing edges correspond
to the actions applicable in that state. At each iteration of the
search the four following steps are made: 1) descending the

126038

tree to a leaf along the most promising path, 2) adding the
successor, 3) simulating the game from the successor using a
default policy (usually random) to get the reward (e.g. 1 if we
win, 0 if we lose), 4) propagating the reward backward. The
notion of promising states/actions is formalized via a range
of numeric variables that are assigned to each node/edge. For
each node, we store the average reward that was achieved
from the corresponding game-state, V. For each edge we
store the average reward achieved when the corresponding
action was chosen from the source state of that edge, Q.
Initially, these variables are zeroes and they are updated
at each back-propagation step. They are decreased in case
the current simulation ends with a loss, and increased if the
game ends with a win. Intuitively we want to penalize the
states/actions that are likely to lead to losing the game and do
the opposite for the states/actions that are likely to lead to a
win. V; is also used at step 1 of a search iteration when we are
descending the current tree. Here we start at the root and for
a node pick the children according to the UCT [46] formula:

UCT =V, + ¢/InNy5)/N; (1)

Here N is the number of times the (child) node was vis-
ited before and N is the same for the parent node (these
counters are stored within the nodes and are incremented
at the back-propagation step). The rationale behind this for-
mula is the following. On the one hand, we want to better
explore the game variants that are achieved by the moves that
promise good outcomes (to be sure that current promises are
consistent). On the other hand, we want also to invest time

VOLUME 9, 2021

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

in evaluating the under-explored states/actions (as they may
potentially lead to good results as well). Parameter c is the
one that controls this exploitation-exploration trade-off (the
higher it is the more we are likely to explore). In practice,
¢ is chosen empirically.

After a dedicated number of search iterations (usually
defined by the allotted time budget) MCTS stops. The prin-
cipal result of MCTS is the partially-built game tree that
contains collected statistics (node/edge visits counters, Vi,
and Qy, values). This output is utilized now to finally decide
which action to choose from the current game state (the root
of the node). Typically the action that leads to the most visited
child (of the root) is chosen. In other words, we greedily pick
an action that leads to the promising and sufficiently explored
state of the game (the state from which we know how to win).
A more general approach is to construct a stochastic policy
out of the gained data, e.g. by distributing the probabilities
of picking the actions proportionally to the numbers of visits
of the root child nodes. Thus, the action that leads to the
most visited node will have a higher chance of being selected,
while other actions still have a chance to be applied.

MCTS With Deep Learning: Applying MCTS every time
an agent has to take action in the environment (e.g. move in
a game) might be very time-consuming, as to come up with
the consistent policy one needs thousands of thousands of
MCTS simulations. To mitigate this issue one may wish to
construct a computationally efficient still powerful (i.e. being
able to select good actions) approximator of MCTS via deep
learning. In [41] such an approximator (in the form of a deep
neural network) was proposed for a large class of adversarial
two-player games and got the name AlphaZero.

AlphaZero is made to provide both the policy (distribution
of actions probabilities) and the expected reward is given a
state s. We will denote the approximated policy and reward
as and v respectively, while the ground-truth policy and
reward (i.e. the ones that can be obtained via MCTS) as m*
and v*. Technically, the approximator is a neural network,
parameterized by a set of weights 6: fy(s) = (i, v). This
network is trained in a supervised fashion on the samples
{s, m*, v*} collected by the MCTS search with the following
loss function L:

L£=-n*"logm + (* — v)? 2)

The examples {s, T *, v*} are collected during the episodes
of self-play as follows. Consider the initial state of the game,
so. An adapted MCTS (deep MCTYS) is invoked on that state,
i.e. the MCTS tree is built from s¢. Several principle features
make this MCTS different from the vanilla one and we will
describe them shortly. After building the tree we extract the
policy, i.e. the probabilities of taking each action from sg, and
form a tuple {sg, ™, _}, here _ is the wildcard which will
be filled later when the episode finishes (the game is over)
and we get the actual reward. This tuple constitutes the first
training example. Then we choose an action sampling from
a* and transfer to the new state s;. We make s; the new
root of the MCTS tree and run the search again (technically

VOLUME 9, 2021

we re-use the data from the previous MCTS tree by keeping
the sub-tree rooted in s1 and pruning away the remaining
irrelevant part). After this search finishes we get another
training sample {s1, = *, _}. We continue collecting samples
in that way until the game ends and we get the reward v* (e.g.
1 if we win, O if we lose). This reward is used now for all the
samples collected through the self-play and the fully defined
samples are added to the training dataset which will further
be used to train the MCTS approximator.

The last ingredient to be discussed is the adapted MCTS
which is used to create a tree from which the policy sample
is extracted. The major difference is that when a node is
expanded and its child is added to the tree no (random) rollout
is performed to get the reward. Instead, the value v predicted
by fp is used as the reward and is back-propagated in the con-
ventional MCTS fashion. In other words, we do not simulate
the game until it ends but rather asks the neural network to
predict the outcome immediately. Similarly, the predictions
of fyp are used when descending the tree. More formally, deep
MCTS uses the following formula instead of (1):

VNs
14+ Ny

where Oy, is average reward (for an action a taken in the state
s), Py, 1s an action probability given by the neural network,
Nj; is a number of visits of the node s and Ny, is a number of
times move a from s was chosen.

Deep MCTS for Conflict Resolution: In this work we sug-
gest utilizing the deep MCTS approach to the problem of
resolving conflicts in partially-observable multi-agent path
planning. In our setup we adopt the egoistic paradigm, i.e.
we consider the agents as the dynamic obstacles between
which the principal agent has to maneuver. Although not
all multi-agent interactions can be reduced to this setting,
the policy that we can learn from following this approach
scales well and can solve numerous non-trivial problems,
as will be shown in Section VL.

The input to our MCTS approximator fy, which is,
indeed, a deep neural network, is the agent’s observation o
(as described in Section III). The output is the policy vector
7 = (Pup» Pdowns Pright» Pleft » Pwair) Which assigns a probabil-
ity to each of the 5 possible actions (go left/right/up/down or
wait at place).

To train fy we follow the general pipeline of deep MCTS,
i.e. we collect training samples and optimize the loss func-
tion 2. Within collecting these samples we use the tuples
((x0,¥0), - - - » (Xn, Yn), t) to identify nodes in the MCTS tree,
where (x;, y;) are the coordinates of the ith agent and ¢
is timestep. L.e. we grow the tree from the perspective of
only one agent, while assuming that the others are greedily
choosing the actions according to the currently available
policy (i.e. the one that is provided by the neural network).
Including ¢ in the state description is essential to take the
time dimension into account and to distinguish states with
the same agents’ positions but arising in different time steps
(so we can avoid cycles and propagate the reward correctly).

U= Qsa + CsPy -

3

126039

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

n: 435; q: 0.87

n: 21; q: 0.69 ~.n:312;q: 1.0

FIGURE 4. Example of subtree build by our Deep MCTS algorithm for conflict resolution for toy 3 x 3 environment with 2 agents. Positions of
agents and their goals are shown in the corresponding tree nodes. Each edge is provided with collected statistics of edge visit counter n and q
values. The green path corresponds to the most promising path in the tree. It ends up in the termination state for both agents. Another randomly

chosen path is in red.

Importantly, the input to fp, which is used to compute Py, and
v while MCTS simulations, is always the agent’s observation
o. The training episode ends if the agent reaches the goal
or takes the maximum number of steps in the environment.
The reward that the agent gets (and which is used for training
samples) takes into account both how many time steps the
agent spent before the episode ends and how far it is from
the goal (in case the latter was not reached). Intuitively,
maximum reward corresponds to the fastest way of reaching
the goal while not colliding with the obstacles (both static and
dynamic). The exact formula of reward will be given further
on.

Figure 4 illustrates subtree grown using the proposed
method.

2) MODEL-FREE APPROACH

As another way for the conflict resolution module to work,
we considered a model-free approach based on a coordinated
change in the Q-functions of different agents. This algorithm
is based on deep Q-learning that is a method to optimizes
Q-function Q(s, a|6). It uses deep Q-network as an approx-
imator for this function, which is updated with the following
formula:

b
L= 1"+ ymaxn Qs a19)) — O, a'16))°]
i=1

“

126040

For multi-agent problems, DQN can be modified into the
QMIX algorithm. QMIX uses the DQN approximator loss
function to update the agents’ weights. But instead of using
individual Q functions for each agent, it uses joint Q-function
Qo to extract additional information about other agents.
It takes all the individual agents’ Q-functions; mixes them,
using its’ mixing network, and computes single joint
Q-function Qy,;. The weights for the mixing network are
received from the hyper networks, that take the global state
as input. The loss function uses Qy,; in the DQN loss then:

L

b
D [0l = Quor(t u, 516))°])
i=1
Yior = r + ymax,i1 Qo (T w07 (6)

Here 7 is a joint agents’ action, u is a joint agents’ observa-
tion. 7!, w1, s+ are joint actions to be performed, joint
observations and state of the environment for the next step.

C. COMBINATION

The designed conflict resolution module is focused on learn-
ing the policy capable to avoid collisions with static obsta-
cles and other agents. The designed goal-reaching module
learns to choose actions that lead to the goal position. Indeed,
to solve partially observable multi-agent pathfinding prob-
lems efficiently we need a combination of both of these

VOLUME 9, 2021

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

Obstacles

: 0 0 0 0 1

1 1,00 1
oo il o |
o1 00 1

(\ Agents
oo 0|0 o0
' O ‘ ‘ e
Target
. ‘ . 0 - -
oo 0|0 o0
0| o0 - 0o 0
\ J oo 0|0 o0

FIGURE 5. An example of the agent’s observation for the agent is shown
in red. The observation is comprised of three matrices: obstacles, other
agents’ positions, agent’s goal (or its projection). If the observation spans
beyond the boundaries of the grid, then the corresponding cells in the
observation’s obstacles matrix are considered as obstacles (see top right
part of the figure), while the other matrices are filled with zeroes in these
positions.

ingredients. To this end, we suggest a non-trainable mixer of
the policies.

The mixer is initialized with several policies {m;}
It takes the observation o as an input and outputs the vector
of action probabilities 7 (0). The output is calculated as a sum
of predictions of policies, desired to be combined, according
to the formula:

N
i=1"

N
7(0) = Z 7i(0) @)
i=1

Please note, that the mixing policy does not contain a
switching rule that chooses which of the policies, goal-
reaching or avoiding collision, to apply. Instead, we mix
the action probabilities suggested by both policies and
sample action from the resultant distribution. This simple
yet effective way to combine reaching-the-goal-policy and
avoid-the-conflicts policy allowed us to improve notably
the performance compared to when only one policy (either
goal-reaching or conflict resolving) is used (see Section VI
for the details). Indeed, more involved switching mechanisms
can be designed. We leave this for future work.

V. POGEMA SIMULATOR

We designed and implemented the environment simulator that
takes all the specifics of the partially-observable multi-agent
pathfinding into account. We call this simulator - POGEMA

VOLUME 9, 2021

(Partially Observable Grid Environment for Multi-Agent
Scenarios).
The following parameters define the environment in
POGEMA:
o grid size Size > 2,
« obstacle density Density € [0, 1),
« number of agents Agents > 1,
« observation radius: agents get 1 < R < Size cells in each
direction,
« the maximum number of steps in the environment before
episode ends Horizon > 1,
« the distance to the goal for each agent Dist (is an optional
parameter, if it is not set, the distance to the goal for each
agent is generated randomly).

The observation space O of each agent is a multidimen-
sional matrix: 0 : 3 x (2 x R+ 1) x (2 x R + 1),
that represents information about the environment around the
agent within radius R. It includes the following 3 matrices.

Obstacle matrix: 1 encodes an obstacle, and 0 encodes its
absence. If any cell of the agent’s field of view is outside the
environment, then it is encoded 1.

Agents’ positions matrix: 1 encodes other agent in the cell,
and 0 encodes his absence.

Self agent’s target matrix: if the agent’s goal is inside
the observation field, then there is 1 in the cell, where it is
located, and O in other cells. If the target does not fall into the
field of view, then it is projected onto the nearest cell of the
observation field. As a cell for projection, a cell is selected
on the border of the visibility area, which either has the same
coordinate along with one of the axes as the target cell or
if there are no such cells, then the nearest corner cell of the
visibility area is selected.

Figure 5 show an example of the observation for an agent
(the one highlighted in red). Overall, the agent observes only a
fraction of the environment, has access to the global map and
states of the other agents (unless they fall within the agent’s
visibility range).

At any time step each agent has 5 actions available: stay
in place, move vertically (up or down), or move horizontally
(right or left). An agent can move to any free cell that is not
occupied by an obstacle or other agent. If an agent moves to a
cell with his own goal, then he is removed from the map and
the episode is over for him.

A. REWARD

One of the natural (and general) ways to encode the reward is
to assign each agent either 1 or 0 depending on whether it was
able to reach its goal before the episode ended. We, however,
choose to design a more informative continuous reward that
gives a hint on how well the agent copes with its task. This
reward is computed by the following formula.

Ch, h
V= est_pat (8)

Ceurrent _path + Cpath_goal

Here Cpess_parn is the cost of the agent’s individual optimal
path, i.e. the number of time steps needed for the agent to

126041

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

TABLE 1. Hyperparameters of the cPPO, QMIX, and MCTS algorithms.

Curriculum PPO

QMIX

MCTS

feature extractor

MLP: 256 x 512

agent network

MLP: 64 x 64 X 5

feature extractor

actor network
critic network
activation function

4 blocks:

[Conv2D (64,3, 1),
BatchNorm2D (64),
ReLU],

Dropout

MLP: 128 x 64 x 5
MLP: 128 x 64 x 1
ReLU

x512 mixing network MLP: 256 x 256 x 1
actor network MLP: 64 x 64 hyper network MLP: 256 x 256 X 256
critic network MLP: 64 x 64 activation function ReLU
activation function ~ Tanh .
optimizer RMSprop
optimizer Adam learning rate Se-4
learning rate 3e-4 optimizer epsilon le-5
rollout size 2048 optimizer alpha 0.99
batch size 64 batch size 128
update epochs 10 buffer size 1000
gamma 0.99 gamma 0.99
clip range 0.02 target update interval 100
GAE A 095 epsilon start 1
entropy coefficient 0.0 . .
V func coefficient 0.5 eps%lon finish . 0.05
epsilon anneal time 100000

optimizer Adam
learning rate le-3
batch size 16
gamma 1
dropout probability 0.3
self-play episodes 100
self-play steps 5000

reach the goal along the shortest path that does not take other
agents into account; Ceyrrent_parh 18 the cost of the path actually
undertaken by the agent in the episode; cpam_goal 1s the cost
of the optimal path between the agent’s current location (the
one in which agent resides at the end of the episode) and
its goal. The reward is given to the agent at the end of the
episode. That is, if the agent managed to reach its goal via the
optimal individual path then the reward is maximal. In any
other case we penalize agent (via lower reward) for both i)
not reaching the goal, ii) reaching the goal in a non-optimal
way.

We compared the designed reward with other variants
(the conventional 0-or-1 reward and the other one known
from the literature on MAPF. This comparison was in
favor of our reward. The details are presented in the next
section.

VI. EXPERIMENTAL EVALUATION

We implemented, trained, and evaluated the performance of
the suggested hybrid policies MCTS + cPPO, QMIX +
cPPO and compared them to the standalone goal-reaching
and conflict resolution policies (cPPO and MCTS, QMIX,
QMIX + MCTS respectively) on a wide range of setups.
We used PPO implementation from StableBaselines3 [47],
QMIX implementation from PyMARL [48] and deep MCTS
implementation of our own. Hyperparameters of the neural
networks used within cPPO, QMIX, and Deep MCTS are
presented in Table 1.

A. TRAINING SETUP

Each policy (cPPO, QMIX, MCTS) was trained on a range
of multi-agent pathfinding problems using our POGEMA
simulator. Obstacle density was set to 0.3 and observation
radius to 5 for training. Training configurations are presented
in Table 2. As one can note we used different sizes of the
environment while training. The number of agents never
exceeded 2. The maximum number of time steps before the
training episode ended is shown in the 4th column of the table

126042

TABLE 2. Training set configurations for cPPO, Deep MCTS, and QMIX
algorithms. In contrast to cPPO and MCTS, QMIX was trained only on a
single configuration setting because mixing network Q;,; is trained on a
full environment state. Each stage of curriculum learning (PPO and MCTS)
and training of QMIX was performed until the convergence curve reached
a plateau, which corresponds to the steps column.ISR metric shows
convergence results for each stage.

Curriculum PPO

size agents horizon distance steps ISR (zstd)
I. 6x6 1 50 3 IM 0.98 (+0.0)
2. 10x10 1 50 5 2M 0.89 (£0.01)
3. 15x15 1 50 8 3M 0.79 (x0.01)
4. 17x17 1 50 11 5M 0.76 (+0.02)
5. 32x32 1 100 20 M 0.44 (+0.01)
6. 8x8 2 50 8 IM 0.88 (£0.01)
Deep MCTS
size agents horizon distance steps ISR (&std)
. 6x6 2 10 5 30K 0.54 (+0.03)
2. 10x10 2 10 5 30K 0.40 (+0.03)
3. 16x16 2 10 8 10K 0.22 (+0.0)
QMIX
size agents horizon distance steps ISR (#std)
. 15x15 2 100 8 2M 0.57 (£0.01)

(named horizon). The 5th column, distance, shows how far
the goal was located from the start. I.e. for each problem
instance, we generated the start location for an agent ran-
domly and then picked a goal location randomly but condi-
tioned that the cost of the individual optimal path from start
to a goal does not exceed the given threshold. We also report
the number of environment steps for each algorithm, on a
particular configuration, in the last column of the table.

We utilized curriculum learning for PPO (thus — cPPO)
starting from the smaller environments and closer targets and
then gradually increasing both the environment size and the
distance to the goal. A similar approach was adopted for
MCTS training. QMIX, however, was trained on a single
configuration as it trains Qy,; network on a full environment
state.

VOLUME 9, 2021

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

@0 00 ©
0000000
00000000 o
© oo
000 000
00 000 © o0o00O0O0O
000 000 0 O ©O

000 © O
00 000
00000
0 O 0o O
Ooo00c00 O
@0 00
00 00 O

FIGURE 6. Examples of random configs from id2-rnd8 x 8-4 configuration. The a average cooperative
hardness for this set is 0.0, which means with the right interactions, agents will not interfere each other.

B. TEST SETUP AND EVALUATION METRICS

After training policies on the setups described above we
tested and evaluated them (and their combinations) on a range
of specifically created previously unseen instances. Indeed,
the agent’s visibility range and obstacle density were the same
for test scenarios (5 and 0.3 respectively).

The first portion of the test scenarios was created randomly.
These problems vary in environment’s size (from 8 x 8§
to 32 x 32) and number of agents (from 2 to 16). Start
and goal locations for each agent in each problem instance
were chosen randomly. Some examples of these setups are
shown in Figure 6. In total 400 random problem instances
with the specifications indicated in Table 3 were created
(100 instances per each specification). The 4th column in
the table shows the length of the evaluation episode (in time
steps). The last column indicates the hardness of the problem.
This indicator was computed as follows:

n -
hardness = cyapPF _solution — C;,l;,h)
i=1

Here cpapr_solurion 18 the cost of the conflict-free solution
obtained by the off-the-shelf multi-agent path planner (which
relied on the full knowledge of the environment); c‘f:;th is
the cost of the individual path for the ith agent (constructed
without taking other agents into account). Intuitively this
indicator shows how much cooperation is needed from the
agents to successfully solve the problem instance. Indeed,
the higher it is the harder the instance is (as it requires more
involved cooperation from the agents). Indeed, different other
indicators can be suggested to measure the complexity of
the pathfinding problems, e.g. the total number of the graph
vertices considered by the conventional systematic/heuristic
search algorithm (the higher the number — the harder the
problem is). In this work we were especially interested in the
complexity arising from the need of the agents to cooperate,
which explains the rationale behind defining the hardness
indicator in the way described above.

Besides random problem instances, we evaluated the
trained policies on the challenging problems where a high
degree of cooperation is expected from the agents. To this
end, we created a separate dataset called cooperative in the
following way. For each specification of the random dataset,
we generated 10,000 different problems and computed the

VOLUME 9, 2021

TABLE 3. Test configurations: random and cooperative. Random
configurations are much easier to solve (as indicated in the hardness
column) as they do not require involved cooperative behavior.

Random set
config size agents horizon hardness
id5-rnd8x8-2 8 x 8 2 32 0.0
id6-rnd8x8-4 8x8 4 32 1.5
id7-rnd16x16-8 16 x16 8 64 2.0
id8-rnd32x32-16 32x32 16 128 6.5
Cooperative set

config size agents horizon hardness
id1-coop8x8-2 8 X8 2 32 6.07
id2-coop8x8-4 8 x 8 4 32 15.19
id3-coop16x16-8 16 x16 8 64 31.26
id4-coop32x32-16 32 x 32 16 128 48.05

hardness indicator for each of them. We then select the top-
100 hard instances to form the cooperative dataset. Exam-
ples are shown in Figure 7. Indeed, these problems are much
harder to solve than the random ones.

We used the following metrics for evaluating the policies
on the aforementioned datasets:

o Individual success rate (ISR), which is the ratio of agents
that have reached their goals before the imposed step
limit. E.g. 0.8 means that 80% of agents managed to
arrive to their target locations (while 20% do not) before
the episode ends.

o Cooperative success rate (CSR), which is the ratio of
the successfully accomplished episodes, i.e. the episodes
with ISR of 1. In other words, it is the percentage of
problem instances that were successfully solved in a
strong sense (all agents successfully reached their goals
within the allotted time limit).

Indeed, CSR is a more demanding indicator and is expected
to be lower compared to ISR (which is confirmed by our
experimental results).

C. RESULTS

The results for each metric are divided into modules. First,
we report the performance of the Conflict Resolution Module
MCTS, QMIX, MCTS + QMIX). Second, we show the
results of the Goal Reaching Module, which is presented
by cPPO. Third, we report the results of hybrid policies

126043

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

00 O
0000
©@ 0000 O 00000
000 00 000 0000000000 ©

@ ©¢ 0000 O0OO0CO0COCO O
© 0000 00

FIGURE 7. Examples of cooperative configs from id2-coop8 x 8-4 configuration. The average cooperative
hardness for this set is 6.07.

TABLE 4. Final results for all algorithms on eight configurations for ISR metric. Hybrid policies outperform other algorithms in all cooperative cases. All
metrics are averaged over three runs.

Individual Success Rate (std)

Conflict resolution Goal reaching Hybrid Policy
config ‘ QMIX MCTS QMIX+MCTS ‘ cPPO ‘ QMIX+cPPO MCTS+cPPO
id1-coop08x08-02 | 0.397 (x0.015) 0.377 (20.027) 0.517 (£0.006) | 0.532 (x£0.021) | 0.607 (£0.012) 0.607 (x0.01)
id2-coop08x08-04 | 0.428 (x0.019) 0.307 (£0.004) 0.527 (x0.005) | 0.497 (£0.022) | 0.578 (x0.008) 0.559 (x0.014)
id3-coop16x16-08 | 0.330 (£0.003) 0.248 (£0.004) 0.358 (x0.004) | 0.421 (£0.004) | 0.450 (0.008) 0.443 (£0.005)
id4-coop32x32-16 | 0.220 (£0.002) 0.173 (x0.002) 0.271 (£0.001) | 0.364 (+0.004) | 0.367 (£0.001) 0.381 (+0.005)
1d5-rnd08x08-02 0.780 (£0.018) 0.715(x0.011) 0.855 (£0.007) | 0.893 (x0.008) | 0.883 (+0.002) 0.880 (£0.004)
1d6-rnd08x08-04 0.768 (£0.011) 0.655 (£0.011) 0.837 (£0.007) | 0.852 (+0.007) | 0.885 (x0.005) 0.852 (+0.001)
id7-rnd16x16-08 0.565 (£0.011) 0.486 (x0.006) 0.640 (£0.001) | 0.718 (x0.004) | 0.735 (£0.007) 0.730 (£0.003)
id8-rnd32x32-16 0.329 (£0.002) 0.246 (£0.005) 0.416 (£0.003) | 0.565 (£0.004) | 0.562 (+0.001) 0.586 (x0.008)
Success rate Path length o id8-rnd32x32 a0 id3-coop32x32
\ o ——————
1 05 \ :
0.8 = primal 04\ L O MCTS+cPPO
0.25 QMIX+cPPO
0.6 T e e — Fo20 QMIX+MCTS
cPPO
0.4 02 T ———— o QMIX
— v* (ours) 010 mers
0.2 o1 0.05
0 step step . N

500k 1M 1.5M 2M 500k 1M 1.5M 2M

FIGURE 8. Comparison of reward functions with PPO algorithm trained
on random 8 x 8 single-agent maps. v* show better convergence and
better path lengths than PRIMAL [37] and natural reward functions.
Curves are averaged over 10 runs on unseen seeds from the same
distribution. Shaded area reports standard deviation.

(QMIX + cPPO, MCTS + cPPO), which combine the mod-
ules. During testing, we used stochastic versions of the algo-
rithms, so for each configuration, we ran several experiments
and averaged them.

We report results for ISR metric in Table 4. Hybrid policies,
in all cooperative cases, show significantly better results than
any other algorithms. The best of the single algorithms is
cPPO, but in comparison, for example, to MCTS + cPPO it
outperforms hybrid policy only on one of the eight config-
urations. Moreover, cPPO outperforms other approaches on
id5-rnd8x8-2 since this configuration doesn’t require cooper-
ative interaction at all.

The results for CSR metric are presented in Table 5.
Both options of the Hybrid Policy significantly outper-
forms other approaches on the following configurations:

126044

o 2 4 0 12 14 16 o 2 4 & 8
number of slow-moving agents

10 12 14 16
number of slow-moving agents

FIGURE 9. The performance of the algorithms in different vehicle
velocities. The number of slow-moving agents indicates the number of
agents which perform actions two times slower. Hybrid policy
outperforms other approaches only for the low number of slow-moving
agents on id8-rnd32 x 32 configuration. The case when most of the
agents are slowed down is similar to the case when the Horizon is
halved, which is consistent with the experimental results for different
horizons. In the case of id8-coop32 x 32 configuration, increasing the
number of slow-moving agents does not affect the results, which shows
the dominance of the cooperative component of the environment.

idl-coop08 x 08-02, d2-coop08 x 08-04, id6-rnd08 x
08-04, id7-rnd16 x 16-08. None of the algorithms show
results greater than 2% in configurations: d3-coopl6 X
16-0, id4-coop32 x 32-16,id8-rnd32 x 32-16. As in the case
of the ISR metric, cPPO performs significantly better, only
in a scenario where cooperative interaction is not required:
id5-rnd8 x 8-2.

Figure 10 shows the impact of the density, the horizon,
the number of agents on the performance of the algorithms.
We used id8-rnd32 x 32 configuration for the all experiments
of this figure. Hybrid policies and cPPO succeed in configu-
ration with density € {0.0, 0.1}, since these are fairly simple

VOLUME 9, 2021

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

TABLE 5. Final results for all algorithms on eight configurations for CSR metric. Hybrid policies outperform other algorithms in most cases. All metrics are

averaged over three runs.

Cooperative Success Rate (+std)

Conflict resolution Goal reaching Hybrid Policy
config ‘ QMIX MCTS QMIX+MCTS ‘ cPPO ‘ QMIX+cPPO MCTS+cPPO
id1-coop08x08-02 | 0.243 (+0.012) 0.217 (#0.009) 0.323 (£0.012) | 0.370 (x0.024) | 0.430 (£0.008) 0.427 (x0.026)
id2-coop08x08-04 | 0.020 (£0.008) 0.003 (+0.005) 0.083 (£0.005) | 0.103 (x0.024) | 0.113 (£0.017) 0.127 (x0.009)
id3-coop16x16-08 | 0.000 (+0.0) 0.000 (0.0) 0.000 (0.0) 0.017 (+0.005) | 0.003 (+0.005) 0.003 (+0.005)
id4-coop32x32-16 | 0.000 (+0.0) 0.000 (0.0) 0.000 (+0.0) 0.000 (0.0) 0.000 (0.0) 0.000 (0.0)
1d5-rnd08x08-02 0.610 (+0.029) 0.537 (x0.009) 0.737 (£0.005) | 0.807 (x0.017) | 0.787 (£0.005) 0.783 (x0.012)
id6-rnd08x08-04 0.357 (20.029) 0.203 (£0.021) 0.513 (0.005) | 0.590 (¥0.014) | 0.647 (x0.017) 0.593 (+0.009)
id7-rnd16x16-08 0.017 (+0.012) 0.000 (x0.0) 0.043 (0.009) | 0.113 (#0.017) | 0.150 (x0.016) 0.147 (+0.005)
1d8-rnd32x32-16 0.000 (0.0) 0.000 (0.0) 0.000 (+0.0) 0.003 (x0.005) | 0.000 (+0.0) 0.003 (x0.005)
id8-rnd32x32-16 id8-rnd32x32-16 id8-rnd32x32-16

"7 1 o.e—m

0.6 _—— T ——

0.8 0.5

0.5+
~_/\——§~—

0.6 0.4 O MCTS+cPPO
. XS « QMIX-+cPPO
[} [} 2 03——/__/-"’_—/_ QMIX+MCTS

04 031 = cPPO

0.2-| 021 QMIX
0.24 MCTS
014 0.1
0.0 ————————————— 0.0 ; : : ; : 0.0 ‘ ‘ ‘ ‘ ‘ : ‘
00 01 02 03 04 05 06 07 08 0 100 200 300 400 500 2 4 6 8 10 12 14 16

obstacle density

id8-rnd32x32-16

1.0 0.014

0.012-
0.8
0.010-

061 0.008-|
o«

CSR
S|

o
0.4 0.006 -

0.004 -

0.2+
0.002 -

0.0

horizon

id8-rnd32x32-16

\

agents

id8-rnd32x32-16

O MCTS+cPPO
QMIX+cPPO
QMIX+MCTS
cPPO
QMIX
MCTS

T y Y T T T 1 0.000
00 01 02 03 04 05 06

obstacle density

T T T T
0.7 0.8 0 100 200 300
horizon

400 500 2 4 6 8 10 12 14 16
agents

FIGURE 10. Evaluation results for different parameters of id8-rnd32 x 32 configuration. We study how each parameter (density, horizon,
and the number of agents) affect the final results. In most cases, MCTS + cPPO shows better performance than other algorithms. The
results of each curve are averaged over 5 runs. Obstacle density diagrams show that the most difficult densities are 0.3 and 0.4. The
growth of the graph after the density of 0.4 is explained by the fact that with an increase in the number of obstacles, the environment is
divided into several components of connectivity, the distance to the targets in which is less. Increasing of the Horizon, as expected,
increases the performance of the algorithms. Changing the number of the agents for ISR metric has almost no effect on the results but

significantly reduces the CSR metric results.

tasks for the agents. Also, hybrid policies show high perfor-
mance on the configurations with density € {0.6,07,0.8}.
Then the number of obstacles increasing, the environment
breaks up into several connected components, reducing the
whole problem to solving several independent ones. The split
into such small tasks, on the one hand, shortens the path
length, and on the other, simplifies the task for the conflict
resolution module. It can be seen that the cPPO results fall
heavily for the CSR metric. This diagram also shows that the
most difficult densities for agents are density € {0.3, 0.4}.
Increasing the horizon parameter, as expected, allows
agents to solve more environments. Increasing the number
of agents has an insignificant effect on the ISR metric, but
significantly reduces results for the CSR. Adding a new agent,

VOLUME 9, 2021

on the one hand, reduces the chance of completing the whole
task, but on the other hand, it increases the chance of getting
an agent with a close distance to the target, which increases
the result.

We present a comparison of reward function designs
in Figure 8. Proposed v* show faster convergence in compar-
ison with natural (1 for success and 0 otherwise) and reward
functions from PRIMAL [37]. The main advantages of the
function are: It provides a positive reward signal, even if the
agent didn’t reach the target; It penalizes the agent (in addi-
tion to the discount factor) for choosing a non-optimal path.

Additionally, we report the results of experiments for
agents with different speeds in Figure 9. We have modified
the environment so that some of the agents perform actions

126045

IEEE Access

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

twice as slow. The slow-moving agent needs two steps to
move to an adjacent cell. The ISR metric decreases slightly
as the number of such agents increases on random configura-
tions. In contrast, adding slow-moving agents in cooperative
configurations does not affect the results. It emphasizes the
reactive nature of RL algorithms, which allows RL agents not
to worsen the performance even in environments with new
dynamics.

VIi. CONCLUSION AND DISCUSSION

In this work, we considered the challenging navigation prob-
lem arising in the context of autonomous vehicles lacking a
stable connection to the Internet of Vehicles and having to
rely on local observations to arrive to their goals. We sug-
gested a novel method (a hybrid policy) that is based on
the combination of two learnable modules: the one which
is in charge of generating target-driven behavior and the
one which generates cooperative behavior. These modules
are based on state-of-art model-based and model-free rein-
forcement learning algorithms. They compliment each other
and the hybrid policy exploiting them, indeed, outperforms
individual policies, as results of our comparative empirical
evaluation shows.

There are several avenues for future work. One of
them is going beyond the 4-connected grid setup. Indeed,
4-connected grids are the most widely used graph models in
the context of multi-agent pathfinding, however, it is known
that allowing diagonal or any-angle moves results is much
shorter and faster trips for the agents. Thus it will be ben-
eficial to study partially-observable multi-agent pathfinding
on general graphs. A further step along this line of research
is taking the kinematic constraints of the agents (vehicles,
robots, etc.) into account. Classical approaches that rely on
an explicit model of agents’ dynamics are computationally
burdensome, while learnable ones may prove to be more
efficient and to scale well to a large number of agents.

REFERENCES

[1] X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis,
“Age of information aware radio resource management in vehicular net-
works: A proactive deep reinforcement learning perspective,” IEEE Trans.
Wireless Commun., vol. 19, no. 4, pp. 2268-2281, Apr. 2020.

[2] X. Chen, C. Wu, Z. Liu, N. Zhang, and Y. Ji, “Computation offloading in
beyond 5G networks: A distributed learning framework and applications,”
IEEE Wireless Commun., vol. 28, no. 2, pp. 56-62, Apr. 2021.

[3] H.Zhou, W. Xu, J. Chen, and W. Wang, “Evolutionary V2X technologies
toward the Internet of vehicles: Challenges and opportunities,” Proc. IEEE,
vol. 108, no. 2, pp. 308-323, Feb. 2020.

[4] D. R. Aleko and S. Djahel, “An IoT enabled traffic light controllers
synchronization method for road traffic congestion mitigation,” in Proc.
IEEE Int. Smart Cities Conf. (ISC), Oct. 2019, pp. 709-715.

[S] A.Lissac, S. Djahel, and J. Hodgkiss, “Infrastructure assisted automation
of lane change manoeuvre for connected and autonomous vehicles,” in
Proc. IEEE Int. Smart Cities Conf. (ISC), Oct. 2019, pp. 173-180.

[6] Y. Yang, H. Modares, K. G. Vamvoudakis, Y. Yin, and D. C. Wunsch,
“Dynamic intermittent feedback design for Hy, containment control on
a directed graph,” IEEE Trans. Cybern., vol. 50, no. 8, pp. 3752-3765,
Aug. 2019.

[71 R. Stern, NR Sturtevant, A Felner, S Koenig, H. Ma, T. T. Walker,
J. Li, D. Atzmon, L. Cohen, T. S. Kumar, and R. Bartak, “Multi-agent
pathfinding: Definitions, variants, and benchmarks,” in Proc. 12th Annu.
Symp. Combinat. Search (SoCS), 2019, pp. 151-158.

126046

[8]

[9]
(10]

(11]

[12]

(13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles
for real-time multi-agent navigation,” in Proc. IEEE Int. Conf. Robot.
Automat., May 2008, pp. 1928-1935.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Bradford Books, 2018, p. 552.

C. Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li, “Collaborative learning
of communication routes in edge-enabled multi-access vehicular environ-
ment,” [EEE Trans. Cognit. Commun. Netw., vol. 6, no. 4, pp. 1155-1165,
Dec. 2020.

F. Rasheed, K.-L.-A. Yau, R. M. Noor, C. Wu, and Y.-C. Low, “Deep
reinforcement learning for traffic signal control: A review,” IEEE Access,
vol. 8, pp. 208016-208044, 2020.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artif. Intell., vol. 101,
nos. 1-2, pp. 99-134, May 1998.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘“Playing atari with deep
reinforcement learning,” 2013, arXiv:1312.5602. [Online]. Available:
https://arxiv.org/abs/1312.5602

M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider,
S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning
dexterous in-hand manipulation,” Int. J. Robot. Res., vol 39, pp. 1-27,
Aug. 2018.

A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, and
A. 1. Panov, “Forgetful experience replay in hierarchical reinforcement
learning from expert demonstrations,” Knowl.-Based Syst., vol. 218,
Apr. 2021, Art. no. 106844.

T. Bansal, J. Pachocki, S. Sidor, 1. Sutskever, and I. Mordatch, “Emer-
gent complexity via multi-agent competition,” 2017, arXiv:1710.03748.
[Online]. Available: https://arxiv.org/abs/1710.03748

X. Xu, T. Huang, P. Wei, A. Narayan, and T.-Y. Leong, ‘“Hierar-
chial reinforcement learning in StarCraft II with human expertise in
subgoals selection,” in Proc. AAAI Conf., 2019. [Online]. Available:
https://arxiv.org/abs/2008.03444

D. S. Chaplot, D. P. Gandhi, A. Gupta, and R. R. Salakhutdinov, “Object
goal navigation using goal-oriented semantic exploration,” in Advances
in Neural Information Processing Systems, vol. 33, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds. Red
Hook, NY, USA: Curran Associates, 2020, pp. 4247-4258.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
2c¢75cf2681788adaca63aa95ae028b22-Paper.pdf

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. 34th Int. Conf. Mach.
Learn., PMLR, vol. 70, 2017, pp. 2778-2787.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484-503, 2016.

J. Schrittwieser, 1. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, and T. Lillicrap,
“Mastering atari, go, chess and shogi by planning with a learned model,”
Nature, vol. 588, no. 7839, pp. 604-609, 2020.

P. E. Hart, N. J. Nilsson, and B. Raphael, ‘A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100-107, Jul. 1968.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, ‘“Conflict-based
search for optimal multiagent path finding,” Artif. Intell. J., vol. 218,
pp. 40-66, Feb. 2015.

E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and
E. Shimony, “ICBS: Improved conflict-based search algorithm for multi-
agent pathfinding,” in Proc. 24th Int. Joint Conf. Artif. Intell. (IJCAI),
2015, pp. 740-746.

A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. S. Kumar, and S. Koenig,
“Adding heuristics to conflict-based search for multi-agent path finding,”
in Proc. 28th Int. Conf. Automated Planning Scheduling (ICAPS), 2018,
pp. 83-87.

K. Yakovlev, A. Andreychuk, and V. Vorobyev, “Prioritized multi-agent
path finding for differential drive robots,” in Proc. Eur. Conf. Mobile
Robots (ECMR), Sep. 2019, pp. 1-6.

J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body
collision avoidance,” in Robotics Research (Springer Tracts in Advanced
Robotics), vol. 70, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds. Berlin,
Germany: Springer, 2011, doi: 10.1007/978-3-642-19457-3_1.

VOLUME 9, 2021

http://dx.doi.org/10.1007/978-3-642-19457-3_1

A. Skrynnik et al.: Hybrid Policy Learning for MAPF

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

S. Dergachev, K. Yakovlev, and R. Prakapovich, “A combination of theta*,
ORCA and push and rotate for multi-agent navigation,” in Interactive
Collaborative Robotics (Lecture Notes in Computer Science), vol. 12336,
A. Ronzhin, G. Rigoll, and R. Meshcheryakov, Eds. Cham, Switzerland:
Springer, 2020, doi: 10.1007/978-3-030-60337-3_6.

M. S. Kiarostami, M. R. Daneshvaramoli, S. K. Monfared, D. Rahmati, and
S. Gorgin, “Multi-agent non-overlapping pathfinding with Monte-Carlo
tree search,” in Proc. IEEE Conf. Games (CoG), Aug. 2019, pp. 1-4.

S. Choudhury, J. K. Gupta, P. Morales, and M. J. Kochenderfer, ““Scalable
anytime planning for multi-agent MDPs,” in Proc. 20th Int. Conf. Auton.
Agents MultiAgent Syst. (AAMAS), May 2021, pp. 341-349.

V. R. Konda and J. N. Tsitsiklis, ““‘Actor-critic algorithms,” in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008-1014.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Advances in Neural Information Processing Systems, vol. 30, 1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates,
2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
68a9750337a418a86fe06c1991ald64c-Paper.pdf

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and
Multiagent Systems (Lecture Notes in Computer Science), vol. 10642,
G. Sukthankar and J. Rodriguez-Aguilar, Eds. Cham, Switzerland:
Springer, 2017, doi: 10.1007/978-3-319-71682-4_5.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ““Value-decomposition networks for cooperative multi-agent
learning,” in Proc. 17th Int. Conf. Auton. Agents MultiAgent Syst.
(AAMAS), Jul. 2018, pp. 2085-2087.

T. Rashid, M. Samvelyan, C. S. de Witt, G. Farquhar,
J. N. Foerster, and S. Whiteson, “Qmix: Monotonic value function
factorisation for deep multi-agent reinforcement learning,” in Proc.
ICML, 2018, pp. 4292-4301.

W. Bohmer, V. Kurin, and S. Whiteson, “Deep coordination graphs,” in
Proc. 37th Int. Conf. Mach. Learn., PMLR, vol. 119, 2020, pp. 980-991.

G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig,
and H. Choset, “PRIMAL: Pathfinding via reinforcement and imita-
tion multi-Agent learning,” IEEE Robot. Autom. Lett., vol. 4, no. 3,
pp. 2378-2385, Jul. 2019.

R. Stern, “Multi-agent path finding—An overview,” in Artificial Intel-
ligence (Lecture Notes in Computer Science), vol. 11866, G. Osipov,
A. Panov, and K. Yakovlev, Eds. Cham, Switzerland: Springer, 2019, doi:
10.1007/978-3-030-33274-7_6.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, and R. J6zefowicz, “Dota 2
with large scale deep reinforcement learning,” 2019, arXiv:1912.06680.
[Online]. Available: https://arxiv.org/abs/1912.06680

K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “‘Leveraging procedural
generation to benchmark reinforcement learning,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 2048-2056.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm,” 2017, arXiv:1712.01815. [Online].
Available: https://arxiv.org/abs/1712.01815

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “‘Prox-
imal policy optimization algorithms,” 2017, arXiv:1707.06347. [Online].
Available: http://arxiv.org/abs/1707.06347

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage
estimation,” 2015, arXiv:1506.02438. [Online]. Available:
https://arxiv.org/abs/1506.02438

C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Teytaud,
S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, “The computational intelligence
of MoGo revealed in Taiwan’s computer go tournaments,” [EEE Trans.
Comput. Intell. AI Games, vol. 1, no. 1, pp. 73-89, Mar. 2009.

M. Enzenberger, M. Muller, B. Arneson, and R. Segal, “Fuego—An
open-source framework for board games and go engine based on Monte
Carlo tree search,” IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 4,
pp- 259-270, Dec. 2010.

L. Kocsis and C. Szepesvari, “Bandit based monte-carlo planning,” in
Proc. 17th Eur. Conf. Mach. Learn. Berlin, Germany: Springer-Verlag,
2006, pp. 282-293.

VOLUME 9, 2021

(47]

(48]

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dormann.
(2019). Stable Baselines3. [Online]. Available: https://github.com/DLR-
RM/stable-baselines3

M. Samvelyan, T. Rashid, C. S. de Witt, G. Farquhar, N. Nardelli,
T. G. J. Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson,
“The StarCraft multi-agent challenge,” 2019, arXiv:1902.04043. [Online].
Available: https://arxiv.org/abs/1902.04043

ALEXEY SKRYNNIK received the M.S. degree
in computer science from Rybinsk State Aviation
Technical University, Rybinsk, Russia, in 2017.
He is currently pursuing the Ph.D. degree with the
Federal Research Center “Computer Science and
Control,” Artificial Intelligence Research Insti-
tute, Russian Academy of Sciences, under the
supervision of A. I. Panov.

Since 2018, he has been a Researcher with the
Federal Research Center “Computer Science and

Control,” Artificial Intelligence Research Institute, Russian Academy of Sci-
ences. His current research interests include reinforcement learning, learning
and planning, and machine learning.

V/

ALEXANDRA YAKOVLEVA received the B.S.
degree in applied mathematics and physics from
Moscow Institute of Physics and Technology
(MIPT), Moscow, Russia, in 2020, where she is
currently pursuing the M.S. degree.

Since 2020, she has been a Research Engineer
in multi-agent reinforcement learning with the
Cognitive Dynamic System Laboratory, MIPT.

VASILII DAVYDOV received the M.S. degree
in fundamental informatics and information
technologies from Moscow Aviation Institute,
Moscow, Russia, in 2021.

Since 2020, he has been a Research Engineer
with the Cognitive Dynamic System Laboratory,
Moscow Institute of Physics and Technology.

KONSTANTIN YAKOVLEV received the Ph.D.
degree in computer science from the Institute for
Systems Analysis, Russian Academy of Sciences,
Moscow, Russia, in 2010.

He is currently a Leading Researcher with the
Federal Research Center “Computer Science and
Control,” Russian Academy of Sciences, and also
affiliated with Moscow Institute of Physics and
Technology and HSE University. His research
interests include heuristic search, single and multi-

agent pathfinding, motion planning, multi-agent systems, and robotics.

ALEKSANDR L. PANOV received the M.S. degree
in computer science from Moscow Institute of
Physics and Technology, Moscow, Russia, in 2011,
and the Ph.D. degree in theoretical computer sci-
ence from the Institute for Systems Analysis,
Moscow, in 2015.

Since 2010, he has been a Research Fellow
with the Federal Research Center “Computer Sci-
ence and Control,” Russian Academy of Sciences.
Since 2018, he has been the Head of the Cognitive

Dynamic System Laboratory, Moscow Institute of Physics and Technology.
He is the author of three books and more than 90 articles. His research
interests include behavior planning, reinforcement learning, semiotics, and
robotics.

126047

http://dx.doi.org/10.1007/978-3-030-60337-3_6
http://dx.doi.org/10.1007/978-3-319-71682-4_5
http://dx.doi.org/10.1007/978-3-030-33274-7_6

