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A B S T R A C T

Biologically plausible neural networks have demonstrated efficiency in learning and recognizing patterns in
data. This paper proposes a general online unsupervised algorithm for spatial data encoding using fast Hebbian
learning. Inspired by the Hierarchical Temporal Memory (HTM) framework, we introduce the SpatialEncoder
algorithm, which learns the spatial specialization of neurons’ receptive fields through Hebbian plasticity and
k-WTA (k winners take all) inhibition. A key component of our model is a two-part synaptogenesis algorithm
that enables the network to maintain a sparse connection matrix while adapting to non-stationary input data
distributions. In the MNIST digit classification task, our model outperforms the HTM SpatialPooler in terms
of classification accuracy and encoding stability. Compared to another baseline, a two-layer artificial neural
network (ANN), our model achieves competitive classification accuracy with fewer iterations required for
convergence. The proposed model offers a promising direction for future research on sparse neural networks
with adaptive neural connectivity.
1. Introduction

Data encoding is fundamental to any AI algorithm. A well-designed
feature space can transform a computationally intensive task into a
series of simple linear operations (Menache, Mannor, & Shimkin, 2005;
Musavi, Ahmed, Chan, Faris, & Hummels, 1992). Supervised algo-
rithms based on deep learning typically build features implicitly tai-
lored to specific datasets. By integrating domain-specific knowledge
into the processing system, it is possible to design more versatile
feature spaces that are suitable for a variety of downstream tasks in an
unsupervised manner. Examples of such versatile feature spaces include
embeddings from language models (Su et al., 2019), convolutional
filters (Hussain, Bird, & Faria, 2019), and latent spaces of autoen-
coders (Leeb, Bauer, Besserve, & Schölkopf, 2022), which can be ap-
plied in tasks ranging from classification (Keraghel, Morbieu, & Nadif,
2024) to world modeling for reinforcement learning algorithms (Mat-
suo et al., 2022). However, mainstream state-of-the-art deep learning
methods for data representation are not always sample- and computa-
tionally efficient (Menghani, 2023), posing challenges for applications
that require fully online learning, such as real-world robotics (Ibarz
et al., 2021; Liu, Nageotte, Zanne, de Mathelin, & Dresp-Langley,
2021). Despite significant attention to this issue and various attempts to
address it, current methods still struggle to optimally incorporate new
information at test time (Dulac-Arnold, Mankowitz, & Hester, 2019).
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Therefore, exploring new learning and data representation frameworks
remains crucial.

A more classical approach to data encoding involves the use of
classifiers or autoencoders trained via error backpropagation. For in-
stance, classifier-based encoding typically requires labeled data, pro-
viding meaningful features such as those found in Convolutional Net-
works (Zeiler & Fergus, 2014). Variational Autoencoders (VAEs) offer
unsupervised learning that often results in interpretable feature spaces,
making them effective for learning world models alongside RNN-like
architectures (Hafner et al., 2019; Kingma & Welling, 2022). However,
backpropagation-based models, despite their depth and data encoding
power, often face challenges related to sample and computational in-
efficiencies, particularly in applications requiring test-time adaptation,
such as Reinforcement Learning (Padakandla, 2022).

A promising alternative approach is found in biologically inspired
learning algorithms and architectures (Hassabis, Kumaran, Summer-
field, & Botvinick, 2017), which we investigate in this work. There is
evidence that combining biologically inspired methods with established
techniques can lead to more efficient and robust learning algorithms
and architectures for AI (Amato, Carrara, Falchi, Gennaro, & Lagani,
2019; Ba, Hinton, Mnih, Leibo, & Ionescu, 2016; Iyer et al., 2022;
Krithivasan, Sen, Venkataramani, & Raghunathan, 2022). One such
model is the Hierarchical Temporal Memory (HTM) framework, which
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models pyramidal neurons with active dendrites in the cerebral cortex
and hippocampus (Dzhivelikian, Latyshev, Kuderov, & Panov, 2022;
Hawkins, Ahmad, & Cui, 2017). The HTM model is utilized in various
applications, including anomaly detection and time-series predictive
analytics (Cui, Ahmad, & Hawkins, 2016). The HTM Spatial Pooler is
a neural network algorithm that encodes input stimulus patterns using
the local Hebbian rule (Mnatzaganian, Fokoué, & Kudithipudi, 2017).
Its primary function is to specialize the spatial aspects of neurons’
receptive fields through k-WTA (k winners take all) inhibition (Oster,
Douglas, & Liu, 2009). The output activity of the Spatial Pooler is a
sparse binary vector, meaning that only a small fraction of neurons are
active at any given time. This type of representation is referred to as
Sparse Distributed Representation (SDR) (see Section 2).

Beyond HTM, other models like SoftHebb and Krotov have also
explored the use of Hebbian learning and sparse representations. The
SoftHebb model employs a softmax activation function instead of a
strict k-WTA rule, allowing the network to specialize in inferring spe-
cific clusters of input data (Moraitis, Toichkin, Journé, Chua, & Guo,
2022). The authors show that their network can be viewed as genera-
tive model optimization, with theoretical guarantees on convergence
and optimality if the dataset contains distinguishable clusters. Soft-
Hebb’s learning is based on the Oja rule (Oja, 1982) – a variant of
Hebbian learning rule, – which forces weight vectors to approach a unit
𝐿2 sphere during learning. The SoftHebb model is mainly contrasted
with backpropagation algorithms, demonstrating that it can achieve
competitive results as a spatial data encoder with significantly fewer it-
erations. In follow-up work (Journé, Rodriguez, Guo, & Moraitis, 2022),
the authors extend their model to convolutional networks, showing that
it benefits from deeper architectures. They also explore improvements
to the learning mechanism, such as adaptive learning rates (based on
the norm of weights) and anti-Hebbian learning. The SoftHebb model
is also compared to hard WTA networks, as it can be considered a soft
version of these networks.

Krotov et al. extended the Oja rule to accommodate arbitrary
Lebesgue p-norms (𝑝 ≥ 2), demonstrating benefits for encoding image
data, especially in the context of image classification tasks (Krotov &
Hopfield, 2019). Competition in the layer is simulated using global
inhibition. While this method can be slow, as it requires several
iterations to converge for each presented pattern, the authors also
proposed a faster approximation of this competition using the k-WTA
with anti-Hebbian plasticity. The key differences from the common
k-WTA Hebbian learning are that only the strongest activation is
reinforced, and also that the K-th strongest activation is inhibited via
the anti-Hebbian rule to support stronger competitive specialization.
Furthermore, the activation function is not a strict binary k-WTA but
rather a soft counterpart — a non-linear Restricted Polynomial Unit
(RePU).

Recent advancements in self-supervised learning and blockwise
training offer valuable insights for neural network training, particularly
in scenarios where backpropagation may not be feasible or desirable.
Siddiqui et al. demonstrate that blockwise pretraining using methods
like Barlow Twins can achieve comparable performance to end-to-end
backpropagation on large datasets like ImageNet (Siddiqui, Krueger,
LeCun, & Deny, 2023). This approach, which trains different network
parts independently, supports the notion that intermediate layers can
learn useful representations autonomously, aligning with the emphasis
on local learning rules and reducing the need for a full backpropagation
path.

A non-equilibrium memory approach for contrastive learning, up-
dating synaptic weights without explicit memory storage or switching
modes, is introduced in Falk, Strupp, Scellier, and Murugan (2023).
This method, based on a dynamic feedback mechanism, offers a bio-
logically plausible learning model that links physical dissipation costs
to learning processes, highlighting the potential for energy-efficient,
neuromorphic systems.
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The use of predictive coding in associative memory models, as ex-
plored by Salvatori et al. provides a framework for storing and retriev-
ing data even when inputs are incomplete or corrupted (Salvatori et al.,
2021). This model, outperforming traditional autoencoders and modern
Hopfield networks, demonstrates the effectiveness of gradient descent
on a global energy function for error-driven learning, akin to processes
in the visual cortex. Ororbia et al.’s Neural Generative Coding (NGC)
framework introduces local prediction and parameter adjustment based
on prediction errors, a concept inspired by predictive processing in the
brain Ororbia and Kifer (2022). This framework addresses limitations
of traditional backpropagation, such as the weight-transport problem,
and shows promise in both generative and unsupervised learning tasks,
suggesting a pathway toward more brain-like artificial neural systems.

In this paper, we further investigate biologically plausible neural
networks with local learning rules, which have demonstrated the ability
to learn and recognize patterns in data (Moraitis et al., 2022; O’Reilly,
Russin, Zolfaghar, & Rohrlich, 2021). We propose a SpatialEncoder
model, a general online unsupervised algorithm for spatial data en-
coding based on fast Hebbian learning (see Fig. 1). In summary, our
SpatialEncoder model shares some conceptual foundations with the
HTM Spatial Pooler, SoftHebb, and Krotov models, particularly in its
use of Hebbian learning principles. However, it distinguishes itself in
several key ways (see detailed discussion in Section 5):

• Non-Binary Connections and SDRs: Our model uses non-binary
connections and Sparse Distributed Representation (SDR) encod-
ing, contrasting with the binary nature of the HTM Spatial Pooler.
This feature allows for a more fine-grained encoding scheme.

• Sparse Connectivity: Our model utilizes sparse connectivity,
significantly reducing the number of active connections in the
network. This property is crucial for efficient processing of high-
dimensional data.

• Linear Competition Mechanisms: Unlike the strict binary com-
petition mechanisms in the HTM Spatial Pooler and the softer
but still strict mechanisms in the SoftHebb and Krotov models,
our model employs much softer linear mechanisms for synap-
tic and neuronal competition. This approach is complemented
by enforcing sparse connectivity, which inherently drives high
competition among neurons. As a result, neuron clustering is
supported by sparse connectivity, while intra-cluster competi-
tion remains soft, reducing sensitivity to learning regimes and
initialization parameters.

• Adaptability: Our model features a dynamically adaptable sparse
connection matrix, contrasting with the dense connectivity in the
Krotov and SoftHebb models. This adaptability allows our model
to efficiently handle non-stationary data distributions. Addition-
ally, the explicit boosting mechanism, similar to that in the HTM
Spatial Pooler but with dynamic strength depending on the synap-
tic weights’ norm, prevents the occurrence of non-specialized
‘‘dead’’ neurons.

• Anti-Hebbian Learning: The incorporation of anti-Hebbian
learning, akin to the approach used in the Krotov model, fur-
ther enhances the competitive specialization among neurons,
providing nuanced control over the learning dynamics.

• Scalability and Efficiency: By leveraging these mechanisms, our
model achieves a balance between computational efficiency and
robustness in learning, making it suitable for applications that
require adaptive and efficient data encoding, such as real-time
systems.

The main contributions of our work are as follows:

1. We propose a general online unsupervised algorithm for spatial
data encoding using fast Hebbian learning.

2. We introduce a synaptogenesis algorithm that allows the net-
work to maintain a sparse connection matrix and adapt to non-

stationary input data distributions.
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Fig. 1. Schematic representation of the SpatialEncoder algorithm. The network learns using a modified Hebb rule, supporting both excitatory and inhibitory weights, and ensuring
neurons have weight vectors of unit 𝐿1 norm. The SpatialEncoder’s activation function combines k-WTA and ReLU with 𝐿1 normalization. We employ weight pruning as part of
synaptogenesis, which gradually sparsifies the connection matrix during the early phase of training. This process encourages high specialization of neurons while reducing the
number of simultaneous competitors, thereby relaxing competition among them. Additional synaptogenesis mechanisms complement the pruning, allowing further adaptability of
network connections.
In the following sections, we will provide a detailed explanation
of our algorithm, discuss related work in the field, and present the
background and methods used in our study.

2. Background

A key characteristic of our model is that all its components interact
and function using Sparse Distributed Representations (SDRs). Evidence
suggests that mammalian brains may employ a similar coding strat-
egy (Graham & Field, 2007). SDRs offer several advantages in neural
network models compared to the dense representations typically used
in traditional artificial neural networks (ANNs):

• Efficiency: SDRs enable efficient use of computational resources,
as only a small percentage of neurons are active at any given time.

• Noise Resistance: SDRs are inherently noise-tolerant. Even if
some neurons are incorrectly activated or deactivated, the overall
pattern can still be recognized due to the distributed nature of the
representation.

• Semantic Similarity: SDRs preserve semantic similarity, meaning
similar inputs produce similar outputs. This property is useful in
tasks such as anomaly detection, where the goal is to identify
inputs that deviate from known patterns, or in classification tasks,
where the goal is to group similar inputs together.

• Capacity and Robustness: SDRs have a high exponential capac-
ity for storing patterns and are robust to failures. The network
can continue to function correctly even if some neurons are lost,
thanks to the distributed nature of the representation.

Since our model operates in discrete time, SDRs are represented as
sparse vectors corresponding to the discrete-time activity of neurons,
with each vector element indicating the activity of a specific neuron in
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a layer. In HTM literature, SDRs are typically binary vectors, as this
model uses binary activations. Our model, however, can work with
both binary and real-valued activations. For clarity, we refer to binary
SDRs as BinSDR and real-valued SDRs as Rate SDR (RateSDR), the latter
reflecting the rate of neuron activations.

The Hebbian learning rule is a biological principle believed to
underlie synaptic plasticity in the brain. It posits that if two neurons on
either side of a synapse are activated simultaneously, the strength of the
synapse between them increases. This can be mathematically expressed
as:

𝛥𝑤𝑖𝑗 = 𝜂𝑥𝑗𝑦𝑖, (1)

where 𝛥𝑤𝑖𝑗 represents the change in the synaptic weight between
the 𝑗th presynaptic neuron and the 𝑖th postsynaptic neuron, 𝜂 is the
learning rate, 𝑥𝑗 is the activation of the presynaptic neuron, and 𝑦𝑖 is
the activation of the postsynaptic neuron.

The Hebbian-like rule is considered fundamental to learning and
memory formation in the brain Rolls (2021). Unlike the backpropaga-
tion method commonly used in Artificial Neural Networks (ANNs), Heb-
bian learning allows for much faster adaptation in terms of learning it-
eration. It is inherently local, enabling fast parallel processing and does
not impose additional memory requirements, which can be particularly
advantageous for implementation on neuromorphic hardware.

However, there are several variations of the Hebbian learning rule.
One of the most well-known is the Oja rule (Oja, 1982), which contains
an additional term that forces the synaptic weights of each neuron to
have unit 𝐿2 norm. The Oja rule can be expressed as:

𝛥𝑤 = 𝜂𝑦 (𝑥 − 𝑦 𝑤 ). (2)
𝑖𝑗 𝑖 𝑗 𝑖 𝑖𝑗
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Another popular variation of the Hebbian learning rule is known from
works by Willshaw and von der Malsburg (Willshaw & Von Der Mals-
burg, 1976):

𝛥𝑤𝑖𝑗 = 𝜂𝑦𝑖(𝑥𝑗 −𝑤𝑖𝑗 ). (3)

This rule utilizes heterosynaptic long-term depression (LTD) to main-
tain synaptic weights on each dendrite to be very similar. When com-
plemented with input 𝐿1 normalization, it also forces unit sum of the

eights.

. Methods

In this work, we propose SpatialEncoder, an online unsupervised
lgorithm for spatial data encoding based on a biologically plausi-
le neural network model (see Fig. 1). SpatialEncoder functions as a
lustering algorithm, converting input patterns into RateSDRs while
reserving pairwise similarity among the inputs. The algorithm learns
he spatial specialization of neurons’ receptive fields using the local
ebbian rule and k-WTA (k winners take all) inhibition (Oster et al.,

2009).
The SpatialEncoder maintains a sparse connection matrix 𝑊 by

storing the indices of existing connections, which define the neurons’
receptive fields (RF). This approach allows us to store only the slice
𝑊 [RF] = 𝑊𝑖𝑗 |(𝑖, 𝑗) ∈ RF instead of the entire matrix 𝑊 . For clarity, we
will use the dense version with the full matrix 𝑊 in our calculations.

3.1. Connection matrix initialization

The connection matrix 𝑊 is initialized dense, with random non-
negative connections sampled from a zero-mean normal distribution
(absolute values are taken to ensure non-negativity). The standard
deviation is chosen based on the desired initial norm of the weights,
following the method described in Journé et al. (2022).

Our model supports both excitatory and inhibitory connections;
therefore, a small portion (5%–15%) of the connections are made in-
hibitory by switching their sign to negative. Compared to SoftHebb and
Krotov models (discussed in Section 5), which also employ inhibitory
connections, we adapt the learning rule to explicitly support and main-
tain the sign of connections. This approach allows us to control the
balance between excitatory and inhibitory connections, and also make
the inhibitory connections to support the competition among neurons.

Additionally, a portion (0%–40%) of connections can be safely
zeroed out to help initial specialization of neurons. However, our
experiments showed that it is not necessary.

3.2. Potentiation and activation

We define the potentiation of SpatialEncoder neurons as:

𝑢𝑖 = 𝛽𝑖𝑊𝑖𝑥, (4)

where 𝑥 is the input vector, 𝑊𝑖 is a row vector representing the
connection weights of the 𝑖th neuron, 𝑢𝑖 is the value indicating the
strength of the match between the input pattern and neuron 𝑖, and 𝛽𝑖
s the boosting value for the 𝑖th neuron.

Interestingly, in Krotov and Hopfield (2019), potentiation utilizes
on-linearity over weights 𝑢𝑖 = 𝑊 𝑝−1

𝑖 𝑥 for 𝑝 ≥ 2. In similar fashion,
e tested sublinear potentiation 𝑢𝑖 =

√

𝑊𝑖𝑥 for our model, which
also worked well in practice suggesting that even sublinear synaptic
competition may be considered too.

The boosting term is an idea inherited from the HTM SpatialPooler
algorithm. It defines an innate homeostatic plasticity mechanism that
encourages inactive neurons to increase their sensitivity and find suit-
able specialization, thereby becoming more useful. Boosting depends
on the neuron’s output popularity, defined as relative output rate:

OP𝑖 =
i-th neuron avg output rate

, (5)
avg layer output rate

4 
which makes it a non-local measure. However, with input and output
activity normalizations, it can be made entirely local. The boosting term
𝛽 is calculated as following:

𝑎 = − log(OP𝑖), (6)

𝑞 = tanh( 𝑎
𝜇
), (7)

𝛽 = 𝐵𝑞 , (8)

where 𝐵 is the maximum strength constant for boosting and 𝜇 defines
the boosting responsiveness. As 𝑞 approaches to −1 for extremely active
and to 1 for extremely inactive neurons, the boosting term 𝛽 approaches
o 1

𝐵 and to 𝐵, respectively. This regulates the neuron’s responsiveness
o input signals, promoting balanced activity across the network. In
ontrast to the HTM SpatialPooler, where a similar parameter to 𝐵
s used as a fixed hyperparameter, our model employs a dynamically
dapted boosting strength, 𝐵 = log2

(
∑

𝑖 |𝑤𝑖|
)

. This dynamic adaptation
eans that the effects of the boosting mechanism gradually decay
uring the learning process, as weights approach unit sphere.

The activation function is a k-WTA ReLU activation followed by 𝐿1

ormalization:

𝑖 =

{

𝑢𝑖 if 𝑢𝑖 > 0 and 𝑖 ∈ kWTA(𝑢)
0 otherwise,

(9)

𝑧𝑖 = 𝑧𝑖 − min(𝑧𝑗 |𝑗 ∈ kWTA(𝑢)), (10)

𝑦𝑖 =
�̃�𝑖

∑

𝑗 |�̃�𝑗 |
, (11)

where 𝑦𝑖 is the resulting activation of the 𝑖th postsynaptic neuron. The
function kWTA refers to a 𝑘-winners-take-all activation, returning the
indices of the neurons with the highest matching values. In Eq. (9), we
define the set of active neurons through k-WTA activation. In Eq. (10),
the response of the active neurons is shifted relative to the minimum
value among them, analogous to a threshold-shifted ReLU. Finally, the
resulting values are 𝐿1-normalized to obtain the output activations 𝑦𝑖
in Eq. (11).

Our model supports both binary and real-valued activations. In the
case of binary activations, we use the same activation function but set
the output activations to 1 for all top K active neurons.

3.3. Learning

In our model, we use an analogy where each neuron has a fixed
capacity to produce neurotransmitter receptors, which are distributed
among its synaptic connections. Consequently, the sum of synaptic
weights should tend to be constant or unit after normalization. This
balance can be achieved through various forms of heterosynaptic plas-
ticity. We employ the Willshaw rule (Eq. (3)), a variant of the Hebbian
rule, to update the connection weights between neurons. The key
modification in our application of the Willshaw rule is that it supports
both excitatory and inhibitory connections:

𝛥𝑤𝑖𝑗 = 𝜂𝑦𝑖 ⋅ sign(𝑤𝑖𝑗 )(𝑥𝑗 − |𝑤𝑖𝑗 |). (12)

This learning rule forces synaptic weights close to the simplex defined
by 𝐿1 norm of the input pattern, which in our model is also subject to
𝐿1 normalization (Eq. (11)). As the result, the synaptic weight vector
of each neuron converges to the unit absolute sum during the learning
process.

To prove convergence of our learning rule to the unit 𝐿1 sphere, we
should take the derivative of a neuron weights’ norm and substitute 𝑑𝑤
term with the learning rule:
𝑑
𝑑𝑡

∑

𝑖
|𝑤𝑖| =

∑

𝑖

𝑑
𝑑𝑡

|𝑤𝑖| =
∑

𝑖
sign(𝑤𝑖)

𝑑
𝑑𝑡

𝑤𝑖 (13)

=
∑

𝑖
𝜂𝑦 ⋅ sign2(𝑤𝑖)(𝑥𝑖 − |𝑤𝑖|) (14)

= 𝜂𝑦(
∑

𝑥𝑖 −
∑

|𝑤𝑖|). (15)

𝑖 𝑖
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where ∑

𝑖 |𝑤𝑖| is the 𝐿1 norm of a single neuron’s synaptic weights, 𝑦 is
the neuron’s activation. As we see, each update an 𝐿1 norm of weights
tends to the sum of input if 𝑦 > 0. Adding a non-negativity constraint
to the input 𝑥𝑖 and output 𝑦, and apply 𝐿1 normalization to 𝑥, we can
ensure the convergence of weights to the 𝐿1 unit sphere.

To support better specialization and competition between neurons,
we optionally apply anti-Hebbian learning similar to Journé et al.
(2022), Krotov and Hopfield (2019) by introducing additional pair of
hyperparameters 𝑀 and 𝛼𝑎ℎ, where 𝑀 defines the number of neurons
affected by anti-Hebbian learning and 𝛼𝑎ℎ is the scale of the anti-
Hebbian learning rate. Anti-Hebbian learning is applied to 𝑀 least
active neurons within the top 𝐾, that is the neurons having ranks from
the 𝐾 −𝑀 +1 to the 𝐾. For them, we employ the same rule (Eq. (12)),
but with the opposite sign of the learning rate and an additional scaling
factor 𝛼𝑎ℎ. As the result, the SpatialEncoder is enforced to have 𝐾 −𝑀
neurons specialized to any single pattern.

3.4. Newborn phase

The original HTM SpatialPooler algorithm has several drawbacks,
including encoding instability caused by boosting. While boosting helps
neurons specialize and increases overall adaptability, it can lead to
unstable encoding. Additionally, the HTM SpatialPooler can suffer from
slow processing on high-dimensional inputs, such as images. As a result,
for models utilizing it to encode image inputs, the encoding overhead
becomes significant relative to the overall model processing time. One
approach to mitigating this issue is by setting a higher sparsity level
for the Spatial Pooler’s potential connection matrix. However, this
can result in highly sparse random initialization, which may lead to
suboptimal neuron specialization.

To address these issues, we introduce the ‘‘newborn stage’’, an idea
broadly inspired by concepts proposed in Dobric, Pech, Ghita, and
Wennekers (2022). The newborn stage in the SpatialEncoder occurs
during the initial phase of the learning process, where rough special-
ization of neurons into pattern-matching clusters is expected. Initially,
neuronal connections may have a relatively safe level of sparsity, but
they become significantly more sparse during the newborn phase. In
this stage, we gradually prune the majority of the weakest connections,
resulting in neurons that are highly specialized due to their small
receptive fields.

The final receptive field size is typically configured in relation to
the average input pattern size, usually ranging from 25% to 200% of
it, resulting in a connection sparsity of 0.1% to 10%. For instance, if
binary input patterns have an average of 100 active bits out of 1000,
we might set the target receptive field size to 25, which is 25% of
the active input size and corresponds to a 2.5% connection matrix
sparsity. Consequently, the instability of the spatial pooler – and thus
its adaptability – is further constrained in the adult stage.

The newborn stage is divided into several identical pruning steps.
During each step, we sample which connections should survive pruning,
using 𝐿2-normalized weights to determine the probabilities in the sam-
pling process. There are two supported strategies for the newborn stage
– linear and power-law – that define how the number of connections
decays with each pruning step. In our experiments, we employ the
power-law strategy, as it prunes the majority of weak connections
during the early steps, thereby accelerating the experiments.

In summary, the newborn stage serves as the initial synaptogenesis
mechanism that promotes neural specialization during the early stages
of learning. For many offline tasks, this mechanism may suffice to
ensure satisfactory encoding quality. However, in the context of on-
line learning, an additional synaptogenesis mechanism is necessary to
maintain the useful specialization of neurons over time.
5 
3.5. Synaptogenesis

For the SpatialEncoder, we track several activation metrics in both
fast and slow manners: input and output activation rates. These metrics
are aggregated using an exponential moving average. The Input Rate
(IR) measures the average activation rate of each presynaptic neuron
over time, while the Output Rate (OR) measures the same for the
postsynaptic neurons.

Synaptogenesis in our model is divided into two main actions:
synaptogenesis score recalculation and synaptogenesis event applica-
tion. The score recalculation occurs periodically at a constant rate,
determined by a specific hyperparameter. The application of synapto-
genesis events, on the other hand, occurs probabilistically after each
processing timestep.

Given the current fast Input Rate (IR) and Output Rate (OR), we
first normalize these rates with their corresponding average values
to make them relative. These normalized values are referred to as
Input Popularity (IP) and Output Popularity (OP), as they represent
the relative frequency of activity for each presynaptic and postsynaptic
neuron, respectively:

IP𝑖 =
IR𝑖

avg(IR) , (16)

OP𝑖 =
OR𝑖

avg(OR) , (17)

Next, we define Receptive Field Efficiency for matching input
RFEin) and its normalized version:

RFEin = 𝑊 ⋅ IP, (18)

NRFEin = RFEin

avg(RFEin)
, (19)

and Receptive Field Efficiency for activating neuron (RFEout) and its
normalized version:

RFEout = OP
NRFEin , (20)

NRFEout = RFEout

avg(RFEout)
. (21)

RFEin measures how well each neuron’s receptive field is tuned to the
input distribution, while RFEout assesses how effectively each neuron’s
receptive field tuning translates into the neuron’s activation. The nor-
malized versions of these metrics facilitate calculations by maintaining
a more stable range. A value of NRFEin ≪ 1 indicates that the neuron
has a poorly tuned receptive field relative to the input distribution (for
example, due to unsuccessful initialization or changes in the input dis-
tribution that make this part of the input weak). Conversely, NRFEout ≪
1 suggests that the neuron’s receptive field is not competitive enough
to activate the neuron.

Both NRFEin and NRFEout values contribute to defining the synap-
ogenesis score SS of a neuron, using the higher of the two. This score
s then transformed into the probability of a synaptogenesis event for

neuron, with the probability being clipped to ensure that non-zero
robabilities are assigned only to highly underperforming neurons:

𝑖 = clip[
− log(SS𝑖) − low

high − low , 0.001, 1.0], (22)

where low and high are hyperparameters defining the range for the
synaptogenesis score to grow log-linearly. In our experiments, low =
log(1.5) and high = log(20).

After calculating the synaptogenesis event probability for each neu-
ron, we utilize it at each step when learning is enabled. We combine
𝑝𝑖 with the current relative potential 𝑢𝑖

avg(𝑢𝑖)
for the neurons with non-

negative potential 𝑢𝑖 to get the probability of a synaptogenesis event at
the current timestep �̂�𝑖 = 𝑝𝑖

𝑢𝑖
avg(𝑢𝑖)

. Finally, we sample from a Binomial
distribution for each neuron to determine which ones can participate
(if any), and select the neuron with the maximum probability �̂� among
the winners.
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Once the winner neuron for the synaptogenesis event is selected,
we randomly sample from non-zero presynaptic neurons to determine
where a new connection should be established. The sign of the synapse
is sampled with the same probabilities as for the initial weights distri-
bution. The weakest existing connection of the neuron is then replaced
with the new one, and the probability of the synaptogenesis event is
reset to zero.

4. Experiments

We tested our SpatialEncoder model implementation on both classi-
fication and regression tasks. In all tests, our model successfully learned
to encode images for use with a linear classifier or regressor. For
the classification tasks, we selected the MNIST handwritten digits and
CIFAR-10 datasets, while for the regression task, we used the outdoor
DVS camera dataset.

In our experiments, we compared our model with several unsu-
pervised spatial encoding baselines, including the HTM SpatialPooler
(Mnatzaganian et al., 2017), SoftHebb (Moraitis et al., 2022), and
Krotov (Krotov & Hopfield, 2019) models. Additionally, we compared
the performance with that of a two-layer MLP used as a supervised
encoder.

For our experiments, we did not specifically optimize hyperparam-
eters for each model and dataset. Instead, we used fixed hyperparame-
ters for each baseline, unless explicitly stated otherwise. This approach
allowed us to assess the models’ sensitivity to hyperparameters and
compare their general performance. For the SoftHebb and Krotov mod-
els, we used the same hyperparameters as specified in the original
papers. For the HTM SpatialPooler, we used the default parameters
from the Numenta implementation.

4.1. MNIST digits classification

To test the MNIST handwritten digits, all images were normalized
to values in the range [0, 1]. For binary networks, we further binarized
the images using a binary threshold equal to the mean activation value
in each frame. We followed an evaluation protocol similar to that used
in Moraitis et al. (2022). In our experiments, the SpatialEncoder model
consisted of 2000 neurons with an activation size of 25 neurons. As
SpatialEncoder converges faster, we trained the network for 30 epochs,
compared to the 100 epochs used in Moraitis et al. (2022). Each epoch,
the network was presented with the training set of 60,000 randomly
ordered digit images. After each training epoch, we evaluated the
network using the test set containing 10,000 images.

For the classification of images, unsupervised encoders were evalu-
ated by training a linear classifier on the encoded representations. After
each training epoch, the encoder was frozen, and a linear classifier was
trained on top of it for 30 epochs from scratch. For the MLP baseline, we
used a fully connected network with a single hidden layer using SiLU
activation and a linear output layer. Both the MLP and linear classifier
networks were trained using backpropagation with cross-entropy loss,
the Adam optimizer with a learning rate of 0.003, and a batch size of
64.

Fig. 2 shows the classification accuracy on the test dataset. The
reported metrics are averaged over 5 runs with different random seeds,
and the shaded area represents the standard deviation.

Fig. 2 also shows the performance for two versions of the two-
layer MLP, with 2000 neurons (ANN 2k) and 125 neurons (ANN) in
he hidden layer. The MLP with 2000 neurons matches the hidden
ize of the unsupervised encoders. However, given the connection
parsity of the best-performing SpatialEncoder, it is appropriate to
lso evaluate an MLP with a size that matches the total number of
patialEncoder’s weights (approximately 100k). This corresponds to
n MLP with 125 neurons in the hidden layer. Both MLP versions
utperform the SpatialEncoder in terms of achieved accuracy. However,
he SpatialEncoder converges within a single epoch and exhibits the
6 
Fig. 2. Classification performance on the MNIST dataset.

est performance during the first 5 epochs. This suggests that the
patialEncoder with rate activations can be effectively used as a fast
nline learning algorithm for spatial data encoding.

We also compared the performance of the SpatialEncoder with
ifferent receptive field sizes (see Fig. 3(a)). The best accuracy of 93%
as achieved with a receptive field size (RF) of 0.3, which corresponds

to 30% of the input pattern size. For the MNIST dataset, with an
average active pattern size of 133, this means the receptive field size
is 40, resulting in a connection sparsity of 5%. The results for the
SpatialEncoder with RF=0.3 for different output types – SE bin for
binary SDRs and SE rate for rate SDRs – also highlight the benefits of
using rate sparse encoding over binary encoding, as it provides richer
information in the activation space.

We also examined the performance of the binary SpatialEncoder
with a receptive field size (RF) of 1.5 to assess the implications of using
a larger receptive field size. The results in Fig. 3(a) indicate that a larger
receptive field size is not beneficial for this task. It is important to note
that performance distribution typically exhibits two modes, depending
on whether RF is greater or less than 1. The choice of RF depends
on whether the input data possesses pronounced features. While a
larger receptive field size does not prevent the network from learning
sub-pattern features, having RF less than 1 provides a regularization
effect, promoting feature-wise competition and specialization rather
than pattern-wise specialization in k-WTA networks. For the MNIST
dataset, which features distinctive handwritten digit characteristics, the
SpatialEncoder with highly sparse connectivity (RF < 1) performs well.
Testing the HTM SpatialPooler with varying potential sparsity levels
corroborated our findings with the SpatialEncoder, showing that high
sparsity benefits the SpatialPooler as well.

To evaluate the ease with which a linear classifier can learn data
encoded by different unsupervised encoders, we trained an additional
classifier fully online during the first three epochs and plotted the
training losses. As shown in Fig. 3(b), the HTM SpatialPooler con-
verges significantly faster than the other encoders, although it does not
achieve the highest classification accuracy. In all our experiments, we
observed a similar pattern: the HTM SpatialPooler exhibits faster con-
vergence, while the other three encoders have comparable convergence
speeds. We found no significant correlation between the online training
loss curves and the final classification accuracy, although the majority
of the classification accuracy is attained within the first three epochs.

4.2. CIFAR-10 classification

To test our model on the CIFAR-10 dataset, we employed the
same protocol as with MNIST. For easier computational handling, we
additionally transformed the RGB images to grayscale. Consequently,
the results for the SoftHebb and Krotov baselines are lower than those
reported in their respective papers (Journé et al., 2022; Krotov & Hop-

field, 2019). Selective experiments with the full-RGB dataset showed an



P. Kuderov et al. Cognitive Systems Research 88 (2024) 101277 
Fig. 3. (a) Performance of the SpatialEncoder (SE) on the MNIST classification task, depending on output binarization and receptive field size. (b) Training losses for the first
three epochs of online training of a linear classifier on top of the unsupervised encoders for the MNIST classification experiment.
Fig. 4. Classification performance on the CIFAR-10 dataset.
approximately 6%–8% increase in classification accuracy. The dataset
was randomly split into 50,000 training images and 10,000 test images.
Fig. 4 shows the classification accuracy on the test dataset and the
relative entropy with online loss during training. The reported metrics
are averaged over 5 runs with different random seeds, with the shaded
area representing the standard deviation.

As shown in Fig. 4(a), the SpatialEncoder outperforms the other
unsupervised encoders, achieving the highest classification accuracy.
While the Krotov model initially shows comparable performance, its ac-

curacy decays over time. This is consistent with the findings in (Krotov

7 
& Hopfield, 2019), where the Krotov model exhibited an early decline
in performance before beginning to recover. In our experiments, the
SpatialEncoder occasionally displayed a similar pattern, but the decline
was less pronounced. The SoftHebb model performs poorly on this task.

The results in Fig. 4(b) show the relative entropy of the activation
patterns for the baselines. Relative entropy measures neuron utilization
in the layer and is calculated as the ratio of the entropy of activation
rates in a layer to the maximum entropy of uniform activations, ranging
from 0 to 1. Lower relative entropy values suggest that some neurons

may dominate the activation patterns, while higher values indicate
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Fig. 5. Example of aggregated DVS camera frames from an outdoor walking dataset.
that the neurons are highly specialized with more distinct activation
patterns. The results show that the SpatialEncoder has the highest
relative entropy, indicating that it produces the most specialized activa-
tion patterns and effectively prevents the occurrence of inactive ‘‘dead
neurons.’’

The online training loss for the first three epochs is shown in
Fig. 4(c). We observed a pattern similar to that seen with the MNIST
dataset, where the HTM SpatialPooler converges significantly faster
than the other encoders, while the other three encoders have compara-
ble convergence speeds.

4.3. DVS pose estimation

To evaluate our model on a regression task, we used a dataset con-
taining outdoor walking scenes recorded with an event-based Dynamic
Vision Sensor (DVS) camera (Mueggler, Rebecq, Gallego, Delbruck, &
Scaramuzza, 2017), which closely simulates the working regime we aim
for with the SpatialEncoder (see examples in Fig. 5).

We preprocessed the data to transform the stream of camera events
into a RateSDR dataset. This involved aggregating events into 1.0 ms
frames, downsampling the resulting images from 240 × 180 to 40 × 30,
and averaging out the polarity for each pixel. For each image, we
formed two RateSDR channels corresponding to each polarity sign.
First, we created binary SDRs using threshold binarization, and then
used the actual rate values for the SDRs to generate the RateSDRs. Fi-
nally, we concatenated the two channels into a single flattened RateSDR
vector.

The results in Fig. 6(a) show the mean squared error (MSE) of
the pose estimate on the test dataset, while Fig. 6(b) presents the
online training MSE loss for the first three epochs. As shown, the
SpatialEncoder outperforms the other unsupervised encoders, achieving
the lowest MSE, with the Krotov model being the closest competitor.
Interestingly, the SoftHebb model’s performance on this task is even
worse than that of the HTM SpatialPooler binary model, for which we
have not found an explanation.

4.4. Equal weight tests for encoders

Finally, we repeated the tests on the CIFAR-10 and DVS datasets
to compare the performance of the SpatialEncoder with the HTM Spa-
tialPooler, SoftHebb, and Krotov models, ensuring a fair comparison by
using the same number of weights for all models. For the SoftHebb and
Krotov models, this involved reducing the number of neurons to 125,
while for the HTM SpatialPooler, we increased the potential sparsity to
0.05.

The results presented in Figs. 7 and 8 show that on the CIFAR-
10 dataset, the SpatialEncoder outperforms all baseline models. As
8 
expected, reduced-size models exhibit significantly degraded perfor-
mance compared to the full-size models. Interestingly, on the DVS
dataset, size reduction does not affect the models’ performance, with
the Krotov model even slightly outperforming the SpatialEncoder. We
believe this is due to the DVS dataset being more challenging, requiring
more hyperparameter fine-tuning and slower learning. Consequently,
all unsupervised models tend to show better performance before the
learning process fully starts. Since the Krotov model learns much more
slowly than the others (as each learning step affects only two neurons),
it ultimately achieves better performance.

5. Comparative overview of key features with related models

Our SpatialEncoder model draws inspiration from the HTM frame-
work, particularly the HTM Spatial Pooler (Mnatzaganian et al., 2017),
but introduces significant innovations. While the HTM Spatial Pooler
uses binary connections and representations, our model employs non-
binary connections and representations to enhance its ability to repre-
sent patterns in high-dimensional spaces.

In the HTM Spatial Pooler, the connection matrix is divided into
two types: potential and active connections. Potential connections are
randomly initialized and define the potential connectivity of each
neuron, remaining fixed throughout the learning process. Active con-
nections, on the other hand, define the actual connectivity of the
network used for inference. During learning, both types of connections
are updated based on input patterns, allowing potential connections to
become active or inactive. While this approach maintains sparse active
connectivity and allows for adaptation to non-stationary data, it poses
challenges in balancing adaptability, stability, and memory require-
ments. If the potential connectivity is too dense, the network requires
significant additional memory to store these connections and may
become unstable due to the boosting mechanism (Dobric et al., 2022).
Conversely, if the potential connections are too sparse, the network’s
performance is largely constrained by the initialization, potentially
leading to suboptimal results. Our model addresses these issues with a
two-part synaptogenesis algorithm, enabling a sparse connection matrix
that adapts to non-stationary input distributions, providing a more
balanced approach to adaptability, stability, and memory requirements.

The SoftHebb and Krotov models are closely related to our ap-
proach. The SoftHebb model (Journé et al., 2022; Moraitis et al., 2022)
replaces the strict k-WTA rule with a softmax activation function,
resulting in computations that resemble Bayesian inference. This model
is grounded in the Oja rule, which promotes weight vectors toward
a unit 𝐿2 sphere during learning. Krotov et al.’s model (Krotov &
Hopfield, 2019) extends the Oja rule to higher p-norms (with 𝑝 =
3.5 in the original work), introducing global inhibition to simulate
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Fig. 6. Pose estimation performance on the DVS outdoor walking dataset.
Fig. 7. Performance on CIFAR-10 classification and DVS pose estimation tasks compared to the baselines, using a similar number of weights for each model.
Fig. 8. Activation relative entropy for the baselines on CIFAR-10 classification and DVS pose estimation tasks, using a similar number of weights for each model.
ompetition. Both models use strict activation functions (e.g., low-
emperature softmax for SoftHebb and a polynomial with 𝑛 = 4.5 for the

Krotov model) and hypothesize that increasing strictness – while not
approaching k-WTA extremity – enhances pattern separability. While
effective, these approaches can be sensitive to the learning regime,
initialization, and hyperparameters, potentially resulting in suboptimal
performance and may not be ideal for generating rich, distributed
k-WTA representations in high-dimensional spaces.

The SpatialEncoder takes a different approach by splitting both
synaptic and neuronal competitions into two parts: extra- and intra-
cluster. While extra-cluster competition remains strict via sparse con-
nectivity, intra-cluster competition is largely softened to be linear.

Linear synaptic competition is inspired by the concept of a fixed total

9 
number of receptors distributed among a neuron’s dendrites, maintain-
ing the sum of synaptic weights. Analogously to the biological neurons,
neurons in our model start with an excess number of connections
and receptors. During maturation, due to learning, unused connections
are pruned, and the total number of receptors converges. With linear
competition among the remaining synapses, we avoid strong synaptic
dominance and maintain sensitivity across synapses, a common issue
with higher p-norms. For instance, with higher p-norms, balancing
competition among ‘‘active’’ synapses becomes challenging. In the ex-
treme case, when a neuron repeatedly tunes to a specific pattern, high
enough p-norms may cause the synaptic weight vector to converge
to a one-hot encoding, matching a single presynaptic neuron. This
results in minimal information transmission about the input and high

sensitivity to noise. In contrast, our model allows synaptic weights to
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mirror the pattern, maintaining sensitivity to patterns within a broad
range. The piecewise-linear activation function was similarly chosen
to ease competition within clusters of active neurons, promoting bal-
anced specialization. The idea of linearizing strict activation functions
is not new; for example, Martins and Astudillo (2016) proposes a
piecewise linear variant of softmax for high-dimensional classification
tasks to address similar issues. Additionally, the incorporation of anti-
Hebbian learning, similar to Krotov’s approach, enhances competitive
specialization among neurons, providing nuanced control over learning
dynamics.

There is also a noteworthy analogy between our model and the
SoftHebb and Krotov models. In Journé et al. (2022), the authors of
SoftHebb explore the implications of the initial weights’ norm, con-
cluding that it should be significantly greater than 1 (ranging from 5
to 10). This observation parallels the role of boosting in our model.
The norm-converging property in all three models limits the ‘‘radius’’
of neuron specialization, meaning that each learning step not only
reinforces a neuron’s specialization to a specific pattern but also inhibits
its specialization to other patterns. This allows space for other neurons
to specialize. Since inactive neurons have their norms unchanged, a
high initial norm increases the likelihood that even these neurons can
successfully participate at some point (when others have relatively
lower norms) and find their own specialization. This is similar to the
effect provided by boosting in our model. Therefore, the initial norm in
these models needs to be sufficiently high to support the specialization
of as many neurons as possible. Otherwise, excessive competition may
lead to a large number of highly suppressed, non-specialized ‘‘dead’’
neurons. In our model, this process is further supported by the explicit
boosting mechanism, making the initial norm of the weights less critical
compared to the SoftHebb and Krotov models.

Another key difference between the SpatialEncoder and the Soft-
Hebb and Krotov models is the explicit handling of negative weights.
In our model, connections maintain their assigned sign throughout the
learning process, as specified in our learning rule (see Eq. (12)). This
differs from the SoftHebb and Krotov models, where negative weights
can turn positive through Hebbian learning and positive weights can
turn negative through anti-Hebbian learning. During our experiments
with these models, we noticed that anti-Hebbian learning could cause
instability, requiring careful adjustment of the anti-Hebbian scale pa-
rameter. This instability often showed up as the divergence of weights’
absolute values toward infinity. In contrast, our model did not exhibit
these issues, potentially due to its consistent handling of negative
weights.

In summary, while our model shares foundational concepts with
HTM Spatial Pooler, SoftHebb, and Krotov models, it introduces unique
features like non-binary SDRs, sparse connectivity, and softer compe-
tition mechanisms. These innovations make the SpatialEncoder model
particularly suited for applications requiring efficient and adaptive data
encoding.

6. Conclusion and discussion

In this work, we proposed an online unsupervised algorithm for
spatial data encoding based on fast Hebbian learning, called Spatia-
lEncoder. Inspired by the HTM model framework, SpatialEncoder aims
to achieve spatial specialization of neurons’ receptive fields through
Hebbian plasticity and k-WTA inhibition. A key feature of our model
is the two-part synaptogenesis algorithm, which allows the network
to maintain a sparse connection matrix and adapt to non-stationary
input data distributions. The model also shares similarities with the
SoftHebb and Krotov models, using similar innate weight normalization
through a modified Hebbian learning rule, but employing more linear
normalization and activation functions. We hypothesize that, combined
with sparse connectivity, our model serves as a locally linearized ap-
proximation of these models, providing granular encoding of the input
while maintaining sufficient pattern separability.
10 
We demonstrated through MNIST and CIFAR-10 classification tasks
that our model outperforms the HTM SpatialPooler, owing to its richer
rate-based encoding and enhanced ability to establish sparser connec-
tions. Compared to a two-layer ANN baseline, our model achieves
competitive classification accuracy while requiring fewer iterations
for convergence when matched for the total number of weights. The
SpatialEncoder also shows comparable results with the SoftHebb and
Krotov models, although further analysis is needed to fully understand
the differences in learning behavior between these models and ours.

The SpatialEncoder model’s design, leveraging sparse distributed
representations and adaptable synaptogenesis mechanisms, offers sig-
nificant potential for real-world applications that require efficient and
adaptive data encoding. One of the key practical implications is its
suitability for online learning environments, such as robotics and au-
tonomous systems, where the ability to adapt to non-stationary data
in real-time is crucial. The model’s fast convergence and capacity to
maintain rich, rate-based encoding make it an attractive choice for
systems needing to quickly respond to changing conditions and inputs.
Additionally, the model’s sparse connectivity reduces computational
and memory overhead, enabling deployment in resource-constrained
settings such as edge devices or low-power hardware. This makes the
SpatialEncoder particularly useful in applications like real-time video
processing, sensor data analysis, and other domains where efficient and
adaptive processing of high-dimensional data is essential. The exper-
iments on the DVS camera dataset further demonstrate the model’s
potential for such applications.

6.1. Limitations and future work

However, the SpatialEncoder model has several limitations that
could impact its performance and applicability.

Scalability and Computational Efficiency: The use of a large
number of neurons (1000–4000) can challenge scalability, especially
with large datasets or high-dimensional input spaces. The initial dense
connection matrix requires time to prune connections and benefit
from sparse connectivity, limiting early processing performance during
the newborn stage. This phase incurs significant memory and com-
putational overhead. Although initializing with a sparse connection
matrix could mitigate these issues, it slows convergence due to the
synaptogenesis mechanism requiring some pre-specialization. Future
improvements could include a dual matrix system akin to the HTM
SpatialPooler’s active/potential connections approach, where potential
connections are tracked separately and activated as needed, reducing
computational overhead.

Hyperparameter Sensitivity: The model relies on several hyperpa-
rameters, including the number of neurons, output sparsity, receptive
field size, and synaptogenesis settings. While defaults are provided to
cover a broad range of tasks, some critical hyperparameters, particu-
larly receptive field size and 𝑘 for k-WTA activation, require careful
tuning. The balance between competition and specialization among
neurons hinges on these settings. The synaptogenesis cycle duration is
also crucial; too short a cycle can cause instability, while too long a
cycle reduces adaptability to non-stationary data.

Training Complexity and Hardware Utilization: Incorporating
biologically inspired components like Hebbian and anti-Hebbian learn-
ing, k-WTA activation, and sparse connectivity adds complexity to
the training process. This complexity makes it challenging to leverage
modern processing accelerators like GPUs and TPUs, as the model’s
online learning approach favors sequential processing over parallel
batch computations. However, for offline learning, the model can be
adapted to support batch processing.

Comparative Performance and Understanding: Although the
SpatialEncoder shows competitive performance, its specific advantages
over other state-of-the-art models, particularly in efficiency and ac-
curacy, need more exploration. The benefits of linear competition

mechanisms and sparse connectivity are not fully understood and may
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vary across more complex datasets and tasks. Future work could ex-
plore adaptive activation functions and sparse connectivity to balance
pattern separability and computational efficiency. However, the success
of linear activation functions in various domains suggests that they
may suffice for many tasks (Agarap, 2019; Razzhigaev et al., 2024;
Schlag, Irie, & Schmidhuber, 2021; Yue et al., 2024). The same applies
to connection sparsity, which has shown promise in improving neural
network efficiency (Gale, Elsen, & Hooker, 2019; Hoefler, Alistarh,
Ben-Nun, Dryden, & Peste, 2021).

In summary, while the SpatialEncoder offers a promising approach
to spatial data encoding, addressing these limitations will be crucial
for broader applicability and practical deployment. Future research
could focus on enhancing training methods, optimizing hyperparameter
tuning, and improving the model’s adaptability to non-stationary envi-
ronments. Further exploration of the trade-offs associated with linear
competition mechanisms and sparse connectivity could also provide
valuable insights, positioning the SpatialEncoder for a wider range of
applications.
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