
Artificial Intelligence 338 (2025) 104238

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Generative models for grid-based and image-based pathfinding
Daniil Kirilenko d, Anton Andreychuk b, Aleksandr I. Panov a,b,c,
Konstantin Yakovlev a,b,∗

a FRC CSC RAS, Vavilova st., 44-2, Moscow, Russia
b AIRI, Kutuzovsky pr. 32-1, Moscow, Russia
c MIPT, Instituskiy per. 9, Dolgoprudny, Russia
d Università della Svizzera italiana, Via Buffi 13, Lugano, Switzerland

A R T I C L E I N F O A B S T R A C T

Keywords:

Path planning
Pathfinding
A*
Transformer
Learning heuristics
Planning on images

Pathfinding is a challenging problem which generally asks to find a sequence of valid moves for
an agent provided with a representation of the environment, i.e. a map, in which it operates. In
this work, we consider pathfinding on binary grids and on image representations of the digital
elevation models. In the former case, the transition costs are known, while in latter scenario,
they are not. A widespread method to solve the first problem is to utilize a search algorithm that
systematically explores the search space to obtain a solution. Ideally, the search should also be
complemented with an informative heuristic to focus on the goal and prune the unpromising
regions of the search space, thus decreasing the number of search iterations. Unfortunately,
the widespread heuristic functions for grid-based pathfinding, such as Manhattan distance or
Chebyshev distance, do not take the obstacles into account and in obstacle-rich environments
demonstrate inefficient performance. As for pathfinding with image inputs, the heuristic search
cannot be applied straightforwardly as the transition costs, i.e. the costs of moving from one
pixel to the other, are not known. To tackle both challenges, we suggest utilizing modern deep
neural networks to infer the instance-dependent heuristic functions at the pre-processing step and
further use them for pathfinding with standard heuristic search algorithms. The principal heuristic
function that we suggest learning is the path probability, which indicates how likely the grid cell
(pixel) is lying on the shortest path (for binary grids with known transition costs, we also suggest
another variant of the heuristic function that can speed up the search). Learning is performed in
a supervised fashion (while we have also explored the possibilities of end-to-end learning that
includes a planner in the learning pipeline). At the test time, path probability is used as the
secondary heuristic for the Focal Search, a specific heuristic search algorithm that provides the
theoretical guarantees on the cost bound of the resultant solution. Empirically, we show that the
suggested approach significantly outperforms state-of-the-art competitors in a variety of different
tasks (including out-of-the distribution instances).

* Corresponding author.
Available online 8 November 2024
0004-3702/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

E-mail address: yakovlev@isa.ru (K. Yakovlev).

https://doi.org/10.1016/j.artint.2024.104238
Received 1 September 2023; Received in revised form 1 July 2024; Accepted 18 October 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:yakovlev@isa.ru
https://doi.org/10.1016/j.artint.2024.104238
https://doi.org/10.1016/j.artint.2024.104238

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 1. Rows show two different problem setups investigated in this work: path planning on binary grids with known transition costs (top row) and path planning on
images representing uneven terrain, when the transition costs are not known and convectional planning methods are not straightforwardly applicable (bottom row).
Columns show the steps suggested to solve the problem. The left column depicts the input, where ‘S’, ‘G’ stands for the start and goal location, respectively. This input
is processed with the transformer-based neural network and a path probability map is predicted (middle column). The latter is used within a heuristic search algorithm
to find a resultant path (right column).

1. Introduction

Path planning for a mobile agent in the static environment is a fundamental problem in AI that is often framed as a graph search
problem. Within this approach, first, an agent’s workspace is discretized to a graph. Second, a search algorithm is invoked on this
graph to find a path from start to goal. Arguably, 2𝑘-connected grids [1] are the most widely used graphs for path planning in a variety
of applications (robotics, video games, etc.) [2–7]. These grids are composed of the free cells and the occupied cells, corresponding to
the obstacles. Indeed, it is allowed to move only from one free cell to the other and the cost of the move (edge in a graph) commonly
equals (or is proportional to) the Euclidean distance between the (centers of the) cells.

Sometimes the available information about the initial map does not allow one to differentiate between the blocked and unblocked
cells and in general to estimate the costs of the transitions between the grid elements. Consider, for example, a satellite image of the
hilly outdoor terrain. Here each pixel (grid cell) corresponds to an area that lies at a certain elevation above the sea level. Thus, the
transitions between the cells (pixels that form the map) of different heights should be penalized compared to when the move does
not involve the change of elevation. Indeed, if the heights are known, which can be the case when not only a satellite image but also
a digital elevation model is available, the costs can be assigned to being proportional to a change in elevation. However, if only the
image is available, the costs cannot be assigned directly and path planning becomes challenging. Such or similar setups arise in costly
planetary exploration missions [8], construction [9], search and rescue [10] and other applications (Fig. 1).

Generally, path planning on a grid (with known transition costs) is accomplished by a heuristic search algorithm, e.g. A* [11]
or one of its numerous modifications. Performance of such algorithms is heavily dependent on the input heuristic that comes in the
form of a function that estimates the cost of the path to the goal for each node of the graph (cost-to-go heuristic). If the heuristic is
perfect, i.e. for every node its value equals the cost of the shortest path, a search algorithm explores only the nodes that lie on one of
the minimum-cost paths. However, such a perfect heuristic is instance-dependent and cannot be encoded in the closed-loop form. In
practice, instance-independent heuristics, e.g. Manhattan distance, are typically used for grid-based path planning. These heuristics
do not take obstacles into account and, consequently, perform poorly in obstacle-rich environments.

One of the recent and promising approaches to automated construction of the instance-dependent heuristics (and for path planning,
in general) is utilizing machine learning, specifically, deep learning [12,13]. As grids can be viewed as the binary images, it is appealing
to employ the recent advances in convolutional neural networks (CNNs) [14,15] to extract the informative features from the image
representations of the pathfinding problems and embed these features into the heuristic search algorithm. For example, [16] suggests
learning a perfect cost-to-go heuristic in a supervised fashion. In a more recent study [17], a more involved approach is introduced
when a matrix-based A* is proposed and used for learning. Consequently, the deep neural network model is trained end-to-end. That
paper does not predict the conventional cost-to-go heuristic, but rather assigns an additional cost to each grid cell with the intuition
that unpromising nodes would be assigned a high cost by the neural network. Thus, at the planning phase, the search would avoid
the cells with the high costs.

In this work, we follow the described paradigm and further examine the ways in which heuristic search can benefit from state-of-
the-art deep learning techniques in the context of the grid-based path planning. We consider two settings: with known and unknown
2

transition costs. To deal with both setups, we introduce a novel heuristic proxy, path probability map, that i) can be successfully

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

learned from data, ii) can be embedded into the powerful search framework of Focal Search [18], that is not only tailored at finding
the valid solutions quicker (compared to regular heuristic search) but is also able to preserve strong theoretical guarantees on the
cost of these solutions under certain conditions. Intuitively, path probability map tells us which grid cells are more likely to lie on
the path from start to goal on the given grid. This information can be utilized as a secondary heuristic for the case when the cost
transitions are known (complementing the conventional instance-independent heuristic function like Manhattan distance) or as a
primary heuristic for planning in the absence of transition costs (planning on images). Additionally, for the case of path planning on
grids with known costs we suggest another heuristic, i.e. the correction factor, which is the ratio between the instance-independent
heuristic (Manhattan distance, Euclidean distance etc.) and the perfect heuristic. The correction factor can be embedded into the
Weighted A* [19] framework to speed up the search.

To learn the correction factor and path probabilities, we utilize supervised deep learning. In doing so, we employ a neural net-
work model that is a combination of the convolutional encoder-decoder with the attention blocks [20] (the so-called transformer
architecture). Such a combination allows the neural network to capture and “reason” about both the local features of a given map
(corners of obstacles, passages etc.) and the distant relations between them, e.g. “there is a passage between the two regions of in-
terest”, keeping the number of trainable parameters relatively low. We also study how the more involved architectures (generative
adversarial networks, diffusion models) perform in the context of image-based path planning. Indeed, utilizing these models leads to
a better performance; however, this increase in performance is not substantial. The ablation study shows that the major factor that
influences the performance of deep learning models is the presence of attention blocks, as without them, the model seems to lack
reasoning about the relations of the local features of the input maps that are crucial to path planning.

To evaluate the suggested techniques, we create two comprehensive datasets of planning instances. For path planning with known
costs, we extend the dataset previously used in closely related works [17]. For path planning on images, we create a novel dataset,
which is composed of the satellite images and the corresponding digital elevation models (that contain the elevation data). Our
dataset is based on the NOAA: Data Access Viewer1 collection that contains up-to-date geospatial data on various regions of the
Earth’s surface. We believe, we are the first to compound and publicly release such kind of dataset (i.e. images with the corresponding
elevation data) in a way that allows machine learning practitioners to readily use the data.

Using the datasets, we compare our approach to the competitors that include both the deep learning techniques and the traditional
ones, and demonstrate its superiority in terms of the computational effort and solution cost. Overall, for path planning on grids with
costs, we have been able to reduce the computational effort compared to A* up to a factor of 4x while producing the solutions, whose
costs exceed those of the optimal solutions by less than 0.3% on average. This is notably better compared to state-of-the-art learnable
competitor, i.e. Neural A* [17]. For image-based path planning, the difference between our method and Neural A* is also in our favor
both in terms of the computational effort and solution cost.

This paper extends the previously published conference paper on that topic [21] in the following aspects. First, we conduct and
report additional experiments for the grids-with-costs domain, i.e. evaluation on out-of-the-distribution dataset (which was only
briefly mentioned in the conference paper). Second, we consider planning on images setup, which was not examined in [21] at all.
Third, for this setup, we examine and evaluate three additional models that involve more complex training approaches, including
Generative Adversarial Network (StyleGAN3 [22]) and Latent Diffusion Model [23]. Forth, we create and release a novel dataset for
image-based pathfinding that is based on the real geospatial data and can be easily used by the AI community.

Finally, all source code, model weights, and data collection used in this work are publicly available at https://github .com /AIRI -
Institute /TransPath.

2. Related work

The following lines of research can be distinguished that are especially relevant to this work: i) techniques that trade off optimality
for computational efficiency when solving planning problems via heuristic search; ii) utilizing machine learning for solving problems
possessing complex combinatorial structure (including, but not limited to graph-based path planning); and iii) data-driven learnable
approaches to navigation with visual input(s). Next, we overview and discuss these strands of research in more detail.

Trading off optimality for computational efficiency in heuristic search A classical technique for such a trade-off, widely used in practice,
is running A* with the heuristic function multiplied by a constant 𝑤 ≥ 1 – the so-called weighted A* (WA*) [19]. It guarantees finding
solutions with a cost that is at most 𝑤 times the optimal solution cost. Thus, the solution is bounded sub-optimal. When time permits, a
series of searches can be performed, each one with the decreased value of 𝑤 – anytime search [24,25]. Another well-known technique
for bounded sub-optimal search is Focal Search [18], whose anytime versions are also known [26]. Focal Search leverages additional
heuristic function that complements the conventional search heuristic and is tailored to identifying the search nodes that allow rapid
progress towards the goal. More involved algorithms of the same kind include EES [27] and DPS [28], to name a few. Recent results
in bounded sub-optimal search are reported in [29].

Other variants to speed up the heuristic search include simultaneous usage of different heuristic functions [30], performing
randomized heuristic search [31], etc.

The main difference between the mentioned approaches and our work is that the former assume the heuristic function(s) to be
given as the input, while in this paper we infer the heuristics from the instance of the (pathfinding) problem.
3

1 https://coast .noaa .gov /dataviewer/.

https://github.com/AIRI-Institute/TransPath
https://github.com/AIRI-Institute/TransPath
https://coast.noaa.gov/dataviewer/

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Machine learning for enhancing combinatorial search Utilizing machine learning for solving problems with complex combinatorial
structure (including graph-based path planning) has been getting increased attention recently.

[32] considers a problem of solving combinatorial puzzles from raw visual input. To this end, the authors suggest a method
that learns to represent the environment as a latent graph and then invokes a uninformed search algorithm with duplicate states
detection. In [33] an approach was presented that allows one to combine a learnable module with a non-learnable (classic) solver
of a combinatorial problem and train the pipeline end-to-end. The approach is evaluated on several problems including pathfinding
on the grids, represented as images, where the transition costs are not known apriori. In [34] a learning-based approach for solving
certain NP-hard problems is presented that exploits a graph convolutional network to estimate the likelihood of whether a certain
vertex of the graph is a part of the optimal solution. In [35], a framework is proposed that suggests imitation learning-based heuristic
search paradigm with a learnable explored graph memory. In brief, it learns a representation that captures the structure of the so far
explored graph so that it can then better select which node to explore next. Such an approach can be viewed as solving a sequential
decision-making problem. Similar approaches are introduced in [36–38]. A special focus on the properties of the learned heuristics,
i.e. admissibility, is placed in [39]. Additionally, this work introduces a version of A* search [11] that leverages parallel execution on
graphical processing units (GPUs), which are widespread in machine learning computations. Analogous batch-handling techniques
for heuristic search are explored in [40].

The papers that are especially relevant to this one are [41,16,17] as they all suggest specific machine learning techniques tailored
to grid-based pathfinding. In the former, a generative adversarial (neural) network is proposed to generate the solutions of the
pathfinding instances. In [16], a convolutional neural network is used to predict the values of the cost-to-go heuristic. In [17] Neural
A* is introduced, which is a combination of the encoder-decoder predictor and a differentiable module that imitates A* search on
grids. The predictor is a neural network that estimates the transition costs on the grid with the intuition that transitions to unpromising
parts of the map should cost more. The presence of the differentiable A* module allows one to train the pipeline end-to-end. Neural
A* is empirically shown to consistently outperform a range of competitors for grid-based pathfinding. In this work, we use planners
from [17] (Neural A*) and [16] as baselines to compare to.

Learnable methods for navigation with visual input A large body of works exists that is dedicated to solving various navigation tasks
from image inputs via the learnable approaches (mainly with reinforcement learning) [42–46]. Most of these works study the setup
where a visual input comes from a camera mounted on an agent (robot). The navigation tasks with this type of input may vary:
exploration [47–49], navigation to a specific object [50–52], or navigation to a goal represented by an image [53]. Recently, with
the advances in large language models (LLMs), a number of works have emerged that investigate how these pre-trained LLMs can
be utilized for autonomous task and motion planning [54–56]. Differently from the mentioned papers, in this work, we investigate a
case where a visual input to a planner represents not a first-person view but rather a bird’s-eye (top-down) view of the environment.
Indeed, we are not the first to investigate such a setting. For example, [36] suggests value iteration networks that are utilized to learn a
navigation policy from Mars terrain images (however, the image size is relatively small, i.e. 16 ×16). In the previously mentioned work
of [33] that focuses on integrating deep neural networks and off-the-shelf combinatorial solvers in an end-to-end trainable pipeline,
one of the evaluated setups was path planning on top-down image representations of the agent’s environment. The learnable path
planning method introduced in [17], i.e. Neural A*, is also capable of pathfinding on image representation of the map. Our study
compares our method to Neural A* in a similar setup and shows that the former outperforms the latter.

3. Pathfinding on binary grids

In many practical applications, e.g. in robotics [5–7] or video-games [2–4], the environment in which an agent operates is rep-
resented by the so-called occupancy grid [5]. Generally, this is a tessellation of the workspace into the square cells each of which
is characterized by a vector of features. In the most basic case, the only feature that is utilized is the traversability of the terrain
corresponding to a grid cell. If the terrain is traversable (does not contain any impassable obstacle) the corresponding cell is marked
free, and if is blocked, then otherwise. Thus, the grid is binary and the cost of moving between the free cells is equal (or propor-
tional) to the Euclidean distance between them. In this section, we will consider the problem of finding a path on such grids via the
combination of the conventional search algorithms and learnable instance-dependent heuristic functions.

3.1. Problem statement

Consider a grid, 𝐺𝑟, composed of the blocked and free cells and two distinct free grid cells, 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙. Being at any free cell,
an agent is allowed to move to one of its cardinally- or diagonally-adjacent neighboring cells, provided the latter is free. The cardinal
moves incur the cost of 1, while the diagonal ones incur the cost of

√
2. This setting can be referred to as the 8-connected grid with

non-uniform costs.
A path, 𝜋(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙), is a sequence of the adjacent cells, starting with 𝑠𝑡𝑎𝑟𝑡 and ending with 𝑔𝑜𝑎𝑙: 𝜋 = (𝑐0 = 𝑠𝑡𝑎𝑟𝑡, 𝑐1, 𝑐2, … , 𝑐𝑛 =

𝑔𝑜𝑎𝑙). A path is valid iff all the cells forming this path is free. The cost of the valid path is the sum of costs associated with the
transitions between the cells comprising the path: 𝑐𝑜𝑠𝑡(𝜋) =

∑𝑖=𝑛−1
𝑖=0 𝑐𝑜𝑠𝑡(𝑐𝑖, 𝑐𝑖+1).

Denote a set of all valid paths connecting 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙 as Π. The least cost (shortest) path from 𝑠𝑡𝑎𝑟𝑡 to 𝑔𝑜𝑎𝑙 is 𝜋∗ ∈ Π, s.t.
∀𝜋 ∈Π ∶ 𝑐𝑜𝑠𝑡(𝜋 ∗) ≤ 𝑐𝑜𝑠𝑡(𝜋).

The pathfinding problem is a tuple (𝐺𝑟, 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙), which asks to find a valid path from 𝑠𝑡𝑎𝑟𝑡 to 𝑔𝑜𝑎𝑙 on 𝐺𝑟. The shortest path is
4

said to be the optimal solution. All other paths but the shortest ones are considered sub-optimal solutions. Among those, the following

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

may be of special interest. Assume that a positive real number, 𝑤 > 1, is fixed and provided as an input to a pathfinding algorithm. If
the latter guarantees that it will return a path, 𝜋𝑤 , whose cost exceeds that of the shortest path by no more than a factor of 𝑤, then
such path is deemed to be a bounded sub-optimal solution: 𝑐𝑜𝑠𝑡(𝜋𝑤) ≤𝑤 ⋅ 𝑐𝑜𝑠𝑡(𝜋∗).

In this work, we are specifically interested in obtaining i) valid paths; ii) sub-optimal paths (with special interest in bounded
sub-optimal ones). The problem of obtaining optimal solutions is beyond our scope.

3.2. Method

3.2.1. Background

A* One of the most widely used search algorithms capable of solving a large variety of problems including grid-based pathfinding
is indeed A* [11]. It is a heuristic search algorithm with provable theoretical guarantees on completeness and optimality.

In brief, A* incrementally builds a search tree of nodes, where each node corresponds to a grid cell and bears the additional
search-related data. This data includes the 𝑔-value of the node, which is the cost of the path to the node from the root of the tree.
ℎ-value of the node is the heuristic estimate of the cost of the path from the current node to the goal one. The sum of 𝑔- and ℎ-values
is referred to as the 𝑓 -value of the node.

Nodes are generated and added to the A* search tree via the iterative expansions. To expand a node means to generate all of its
valid successors, i.e., the successors that correspond to the valid moves on a grid, to compute their 𝑔-values (as the sum of the 𝑔-value
of the expanded node plus the transition cost) and to add certain successors to the tree. A successor is added to the tree only if it is
not yet present in the tree or, alternatively, if the same node (i.e. the one corresponding to the same grid cell) exists, but its 𝑔-value
is greater than the newly computed one.

A* performs expansions in a systematic fashion (starting with the 𝑠𝑡𝑎𝑟𝑡 node). It maintains a list of nodes that have been generated
but not yet expanded. This list is typically referred to as 𝑂𝑃𝐸𝑁 , while the list of the expanded nodes is designated as 𝐶𝐿𝑂𝑆𝐸𝐷. At
each iteration, a node with the minimal 𝑓 -value is chosen from 𝑂𝑃𝐸𝑁 for the expansion. A* stops when the goal node is extracted
from 𝑂𝑃𝐸𝑁 . At this point, the sought path can be reconstructed using the backpointers in the search tree.

The performance of the algorithm, i.e. the number of the iterations before termination and the guarantees on the cost of the found
path, is largely dependent on the used heuristic function ℎ that guides the search focusing the latter towards the goal.

Heuristics The heuristic (function) is called perfect, denoted as ℎ∗ , if for every node, its value equals the true cost-to-go: ℎ∗(𝑛) =
𝑐𝑜𝑠𝑡(𝜋∗(𝑛, 𝑔𝑜𝑎𝑙)). A* search guided by the perfect heuristic expands only nodes that belong to one of the optimal paths. Indeed, the
perfect heuristic is instance-dependent. This means that its value differs from one grid map to the other. In practice, the perfect
heuristic is unavailable.

The heuristic is considered admissible if it never overestimates the true cost-to-go: ℎ(𝑛) ≤ ℎ∗(𝑛). The heuristic is said to be consistent

or monotone if ∀𝑛, 𝑛′ ∶ ℎ(𝑛) ≤ ℎ(𝑛′) + 𝑐𝑜𝑠𝑡(𝜋∗(𝑛, 𝑛′)).
A range of consistent and admissible instance-independent heuristics are known for the 8-connected grids, e.g. the Chebyshev

distance, the Euclidean distance, or the Octile distance. They can all be efficiently computed in the closed-loop form for any grid cell
and their values do not vary from one grid map to the other. Without the loss of generality, in this work, we assume that the Octile
distance is used as the heuristic function:

ℎ𝑜𝑐𝑡𝑖𝑙𝑒 =
√
2 ⋅𝑚𝑖𝑛(Δ𝑥,Δ𝑦) + 1 ⋅ |Δ𝑥 −Δ𝑦| (1)

Here
√
2 and 1 are transition costs, associated with the diagonal and cardinal moves (can be arbitrary numbers in general case),

and Δ𝑥, Δ𝑦 are the absolute values of the differences in 𝑋-, 𝑌 -coordinates of the cells.
It is known that A* with an admissible heuristic is guaranteed to find the optimal solution. Moreover, if the heuristic is consistent

(as is in our case), it is not possible to find a better path to any of the expanded nodes, which infers that one can prune any generated
successor if it has already been expanded. Still, the number of expansions can be significantly large as depicted in Fig. 2 (on the left).
The reason is that the Octile distance, being an instance-independent heuristic, is unaware of the blocked cells and drives the search
towards the obstacles via the low 𝑓 -values of the nodes residing in their vicinity.

Weighted A* One of the widespread ways to trade-off optimality for the computational efficiency in grid-based pathfinding is to
employ a weighted heuristic, i.e. to order nodes in 𝑂𝑃𝐸𝑁 not by their 𝑔 + ℎ values but rather by 𝑔 +𝑤 ⋅ ℎ values, where 𝑤 ≥ 1. Such
a modification of A*, typically referred to as WA* (Weighted A*), is known to provide bounded sub-optimal solutions w.r.t. 𝑤. The
effect of weighting the heuristic is illustrated in Fig. 2. As can be noted, the search gets more focused on the goal (gets more greedy)
and, as a result, the number of the explored nodes decreases.

Focal search Focal Search (FS) [18] is another technique tailored to lower the number of search iterations while providing the bound
on the optimality of the resultant solution. In FS, an additional list of nodes is maintained, called 𝐹𝑂𝐶𝐴𝐿. It is formed of the nodes
residing in 𝑂𝑃𝐸𝑁 , whose 𝑓 -values do not exceed the minimum 𝑓 -value in 𝑂𝑃𝐸𝑁 , 𝑓𝑚𝑖𝑛, by a factor of 𝑤 (the given sub-optimality
bound). Technically, 𝐹𝑂𝐶𝐴𝐿 = {𝑛|𝑛 ∈ 𝑂𝑃𝐸𝑁, 𝑓 (𝑛) ≤ 𝑤 ⋅ 𝑓𝑚𝑖𝑛}. 𝐹𝑂𝐶𝐴𝐿 is ordered in accordance with the secondary heuristic,
ℎ𝐹𝑂𝐶𝐴𝐿, which does not need to be consistent or even admissible. The node to be expanded is chosen from 𝐹𝑂𝐶𝐴𝐿 in accordance
with the ordering imposed by ℎ𝐹𝑂𝐶𝐴𝐿 (and is removed from 𝑂𝑃𝐸𝑁 as well). In case 𝑂𝑃𝐸𝑁 is updated as a result of the expansion,
𝐹𝑂𝐶𝐴𝐿 is modified accordingly. The stop criterion is the same as in A*. FS is guaranteed to obtain bounded sub-optimal solutions.
5

Indeed, the number of search iterations and, thus, the computational efficiency of FS is strongly dependent on ℎ𝐹𝑂𝐶𝐴𝐿 .

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 2. Planning a path by A* with the Octile distance as a heuristic function with optional weighting. a) Regular A*. b), c), d) Weighted A*. Grey areas correspond
to the explored nodes (dark grey cells – expanded nodes, light grey – generated but not expanded ones).

Algorithm 1: A generic search algorithm. A* executes black parts only. WA* is shown in black and red, Focal Search in
black and brown and our variant of WA* in black and blue.

Input: Grid 𝐺𝑟, 𝑠𝑡𝑎𝑟𝑡 node, 𝑔𝑜𝑎𝑙 node, heuristic function ℎ, sub-optimality factor 𝑤, ℎ𝐹𝑂𝐶𝐴𝐿 – a secondary heuristic for Focal Search, 𝑐𝑓 – correction factor
(individual weight) for our variant of WA*

Output: path 𝜋
1 𝑔(𝑠𝑡𝑎𝑟𝑡) ← 0; ∀𝑛 ≠ 𝑠𝑡𝑎𝑟𝑡 𝑔(𝑛) ←∞
2 𝑂𝑃𝐸𝑁 ← {𝑠𝑡𝑎𝑟𝑡}; 𝐶𝐿𝑂𝑆𝐸𝐷← ∅
3 while 𝑂𝑃𝐸𝑁 ≠ ∅ do

4 𝑛 ←𝐺𝑒𝑡𝐵𝑒𝑠𝑡𝑁𝑜𝑑𝑒(𝑂𝑃𝐸𝑁 , 𝐹𝑂𝐶𝐴𝐿, ℎ𝐹𝑂𝐶𝐴𝐿)
5 remove 𝑛 from 𝑂𝑃𝐸𝑁 and 𝐹𝑂𝐶𝐴𝐿
6 insert 𝑛 into 𝐶𝐿𝑂𝑆𝐸𝐷
7 if 𝑓𝑚𝑖𝑛 has changed then

8 update 𝐹𝑂𝐶𝐴𝐿
9 if 𝑛 is 𝑔𝑜𝑎𝑙 then

10 return 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑃 𝑎𝑡ℎ(𝑛)

11 for each 𝑛′ in GetSuccessors(Gr,n) do

12 if 𝑔(𝑛′) > 𝑔(𝑛) + 𝑐𝑜𝑠𝑡(𝑛, 𝑛′) then

13 𝑔(𝑛′) ← 𝑔(𝑛) + 𝑐𝑜𝑠𝑡(𝑛, 𝑛′)
14 𝑓 (𝑛′) ← 𝑔(𝑛′)+𝑤⋅ℎ(𝑛′)∕𝑐𝑓 (𝑛′)
15 update or insert 𝑛′ in 𝑂𝑃𝐸𝑁
16 if 𝑓 (𝑛′) ≤𝑤 ⋅ 𝑓𝑚𝑖𝑛 then

17 update or insert 𝑛′ in 𝐹𝑂𝐶𝐴𝐿

18 return path not found

Pseudocode Algorithm 1 shows the pseudocode of a generic heuristic search algorithm. Different colors correspond to different
variants of the algorithm as explained in the caption.

3.2.2. Search with learned heuristic functions

The general high-level idea is to substitute the instance-independent heuristic function, i.e. the Octile distance, with the one that is
instance-dependent, i.e. takes the obstacles into account, and is able to guide the search to effectively circumnavigate these obstacles
and reach the goal earlier, thus decreasing the search effort.

Recall that we are interested in two variants of the pathfinding problem. The first one asks to find a valid path on a grid, without
specifying any constraints on the cost of the path, VP-problem. The second variant assumes that a sub-optimality bound, 𝑤 ≥ 1, is
specified and the task is to find a path whose cost does not exceed that of the optimal path by more than a factor of 𝑤, BSP-problem.

The solvers that we suggest for VP-problem and BSP-problem share their structure. Each of these is composed of the two building
blocks. First, a deep neural network is used to process the input grid and to predict the values of the heuristic function that will be
used later. Second, a heuristic search algorithm is invoked that utilizes the heuristic data from the neural network. To solve a BSP-
problem, Focal Search (FS) is used. To solve a VP-problem, two variants of the search method can be suggested. First, WA* can
be used. Second, we can set a sub-optimality bound in FS to infinity and get an (unbounded) sub-optimal solution. In this case, FS
becomes similar to the Greedy Best-First Search as it basically selects a node on each iteration based solely on the value of the focal
heuristic, ℎ𝐹𝑂𝐶𝐴𝐿 (which is predicted by the neural network in our case).

The neural network used in combination with WA* and FS (GBFS) has the same architecture; however, in each case, the output
6

heuristic function is different. Next, we describe these heuristic functions in more detail.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 3. An example of 𝑐𝑓 heuristic. Each traversable cell contains the value of the Octile distance, the perfect heuristic and the corresponding correction factor. Only
goal location is marked in this example as the start location has no influence for these heuristics.

3.2.3. Types of the heuristic functions being learned

The first type of the heuristic is the correction factor (𝑐𝑓), which is defined as the ratio of the value of the available instance-
independent heuristic, i.e. the Octile distance in the considered case, to the value of the perfect heuristic: 𝑐𝑓 (𝑛) = ℎ(𝑛)∕ℎ∗(𝑛). An
example is given in Fig. 3. We suggest plugging the predicted 𝑐𝑓 -values into the WA* algorithm as shown in Algorithm 1 (black +
blue code fragments). I.e., the 𝑓 -value of a node is computed as 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛)∕𝑐𝑓 (𝑛). This can be thought of as running WA*
that uses individual weights for the search nodes as opposed to a single constant weight. As there is no theoretical bound on the error
of predicting 𝑐𝑓 -values, the resultant search algorithm provides no guarantees on the resultant cost.

In general, predicting 𝑐𝑓 -values may seem similar to predicting the values of the perfect cost-to-go heuristic as was proposed
in [16]. However, there exists a crucial difference, which is twofold. First, when learning the cost-to-go heuristic, an additional
technical step is needed that transfers the range of the heuristic to the range typically employed in deep learning, e.g. [0, 1]. Meanwhile,
the range of the introduced correction factor is [0, 1] by design; thus, no auxiliary transformations are required. Second, the correction
factor encompasses more heuristic data as it is a combination of both instance-dependent and instance-independent heuristics. As
confirmed by our experiments, learning 𝑐𝑓 -values instead of ℎ∗-values leads to a notable boost in the performance.

The second suggested heuristic is tailored to serve as the secondary heuristic for the FS, ℎ𝐹𝑂𝐶𝐴𝐿 , which is employed to solve the
BSP-problem (and VP-problem with GBFS, as well). Intuitively, we want from ℎ𝐹𝑂𝐶𝐴𝐿 to distinguish the nodes that are likely to
yield rapid progress towards the goal. To this end, we suggest assigning (and learning to predict) a value to each grid cell that tells
us how likely it is that this cell lies on the shortest path between 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙. We call this value a path probability, 𝑝𝑝-value, and,
by design, its range is within [0, 1]. We call a set of 𝑝𝑝-values for all grid cells PPM (path probability map); an example is shown in
Fig. 4.

Learning to accurately predict 𝑝𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 may be thought of as attempting to learn to solve the pathfinding queries directly. I.e.,
if we were able to obtain such predictions for where 𝑝𝑝-values of 1 were assigned to the cells lying on the shortest path, while the
other cells were assigned 𝑝𝑝-values of 0, then we would not need to run the search algorithm at all. However, in practice, this is
unrealistic and, thus, we use the predicted 𝑝𝑝-values as ℎ𝐹𝑂𝐶𝐴𝐿 values in the FS and GBFS.

3.2.4. Learning supervision

An evident approach to learning the suggested heuristics is to create a rich dataset of pathfinding instances with the annotated
ground-truth 𝑐𝑓 - and 𝑝𝑝-values and to train the neural network to minimize the error between its predictions and the ground-truth
values. Using the techniques introduced in [33,17], one might consider another option of learning, i.e. including the search algorithm
in the learning pipeline and backpropagating the search error through it (end-to-end learning). We have experimented with both types
of learning and found that for our setting, the first option is preferable for the following reasons. First, there is no problem to create
ground-truth samples for 𝑐𝑓 - and 𝑝𝑝-values in the considered setup (technical details on this will follow shortly). Second, learning
without differentiable planner is much faster (up to 4x in our setup). Third and not least of all, our preliminary experiments have
shown that supervised learning outperforms end-to-end learning.

To create ground-truth 𝑐𝑓 -values, we utilize an uninformed search that starts backwards from the goal and computes true distances
to it from any cell (which are straightforwardly converted to the 𝑐𝑓 -values).

Creating the ground-truth PPMs is more involved. Recall that in a PPM, we are willing to have values of 1 for the cells lying on
the shortest path while all other cells should have smaller values. Meanwhile, numerous shortest paths on 8-connected grids might
exist, which differ only in the order of the cardinal/diagonal moves. Indeed, one can find all shortest paths and mark the cells on all
of them as 1. However, empirically, we find that focusing on a specific shortest path is beneficial – see Appendix for details.

To find such a path we utilize Theta* [57], an any-angle search algorithm that can be thought of as A* with online path smoothing.
Theta* paths are formed of the waypoints (cells) located at the corners of the obstacles and cells that lie along the straight-line segments
connecting the waypoints. In the resultant PPM, we assign the values of 1 for such cells. For all other cells, we compute the value
that tells how close the cost of the path through the cell 𝑛 is to the cost of the Theta* path:

𝑐𝑜𝑠𝑡(𝜋Theta*(𝑠, 𝑔))
7

𝑝𝑝(𝑛) =
𝑐𝑜𝑠𝑡(𝜋Theta*(𝑠, 𝑛)) + 𝑐𝑜𝑠𝑡(𝜋Theta*(𝑛, 𝑔))

, (2)

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 4. Path probability maps. From left to right: 1) a problem instance for which PPM is computed; 2) full PPM, the brighter the color is, the closer the 𝑝𝑝-value to
1; 3) the same PPM but with all 𝑝𝑝-values raised to the power of 10; 4) the powered PPM after clipping with a threshold of 0.95, i.e., all 𝑝𝑝-values that are below this
threshold are zeroed. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Overview of the neural network architecture. a) Design of the whole model. CNN encoder is used to produce local features which are further fed into the
transformer blocks to catch the long-range dependencies between the features. The resulting representation is passed through the CNN decoder to produce output
values. b) Architecture of the ResNet block. c) Architecture of the Transformer block.

where 𝜋Theta*(𝑎, 𝑏) is the Theta* path from 𝑎 to 𝑏.
Technically, to compute PPM, we run two Theta* searches. The one that starts at the 𝑠𝑡𝑎𝑟𝑡 cell and is not focused on a certain

goal but rather stops when all cells are explored (and the costs of Theta* paths to them are known) and the one that does the same
but in the opposite direction (i.e. starts at the 𝑔𝑜𝑎𝑙 cell). Upon completion of those two searches for any grid cell 𝑛, we know both
𝑐𝑜𝑠𝑡(𝜋Theta*(𝑠, 𝑛)) and 𝑐𝑜𝑠𝑡(𝜋Theta*(𝑛, 𝑔)) and can now compute 𝑝𝑝(𝑛) for all cells that do not belong to Theta* path itself as prescribed
above.

Moreover, during preliminary experiments, we have found out that several other techniques that make the ground-truth PPM more
focused, i.e. containing less non-zero values and grouping them around a single path, are beneficial. The first technique is powering
the 𝑝𝑝-values. Example, is shown in Fig. 4, the third pane from the left. Here all 𝑝𝑝-values are raised to the power of 10. As a result
the cells with 𝑝𝑝-values equal to 1 remain the same while the others decay to zero much intensively. The second technique is clipping
the PPM, which is setting the 𝑝𝑝-value of an element to 0 if it does not exceed a certain threshold – see Fig. 4, the rightmost pane
(here the 𝑝𝑝-values that are lower than 0.95 (after powering) are zeroed).

The empirical results showing that the application of the mentioned techniques is, indeed, beneficial are presented in Appendix.
We hypothesize that the reason why it is the case may be that “sharpening and filtering” the PPMs drives the neural network not
to waste its capacity on predicting the lower 𝑝𝑝-values that are, actually, not needed to find a path, but rather forces to predict the
𝑝𝑝-values only for the regions on the map that are the most needed to reconstruct a path. In the main experiments (reported in the
Section 4.4) we used both techniques. First, we raised the 𝑝𝑝-values to the 10th power and then zeroed all the values that do not
exceed the 0.95 threshold (these values were chosen empirically – see Appendix for details).

3.2.5. Neural network architecture

The neural network for learning 𝑐𝑓 -values and 𝑝𝑝-values has the same architecture; however, the input is slightly different. For
𝑝𝑝-values, the input contains the grid (as binary image) and the start-goal matrix of the same dimensions, which contains the values
of 1 only for start and goal, while all other pixels are zeroes. For 𝑐𝑓 -values, this matrix contains only one non-zero element: the goal
one.

The architecture has three main blocks (see Fig. 5): a convolutional encoder, a spatial transformer and a convolutional decoder.
The convolutional encoder utilizes the well-known ResNet blocks [58] and aims to extract the local features of the pathfinding instance
such as corners of the obstacles, narrow passages etc. The transformer leverages the mechanism of self-attention [20] to establish the
global relations between these features (how important is one feature w.r.t. the other). An example may be how important it is that
8

there is a narrow passage in between the start and the goal. Transformers were originally suggested for text sequences that lack 2D

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 6. Left) Examples of all types of maps (of size 32 × 32) presented in the MP dataset. Right) An example of the map in the TMP dataset. It is composed of four
(different) MP maps; as a result, the size is 64 × 64.

structure. However, in the considered case, this structure is important. To this end, we utilize the positional embedding technique
from Visual Transformers [59,60]. This technique rearranges 2D feature maps into vectors (before the transformer block) and vice
versa (afterwards), while preserving the spatial structure. Finally, the transformed feature maps are processed by the convolutional
decoder, which provides the final output.

3.3. Empirical evaluation

3.3.1. Dataset

We have adopted the TMP (Tiled Motion Planning) dataset that was used in [17] for empirical evaluation. This dataset is a
modification of the MP dataset used in [37]. The latter consists of 32 ×32 maps with various challenging topologies, such as bugtraps,
gaps etc. Each map in the TMP dataset is composed of four MP maps, see Fig. 6. In total, 4, 000 maps of size 64 × 64 are present in
TMP. We further increase the size of the dataset to 64, 000 maps via the augmentation by mirroring and rotating each of the four
parts of the TMP maps. The dataset is available online at [61] (flat folder). Examples are shown in Fig. 7. For each map, we generate
10 problem instances. The goal is chosen randomly; the start is chosen randomly out of the 1∕3 of the reachable nodes that have the
highest cost of the path from the goal. Overall, we have generated 640, 000 instances. They are divided at the ratio of 8:1:1 for train,
validation and test subsets in such a way that all augmented versions of the same map were presented only in one of the subsets.
Similarly to [16], we have excluded from the test part of the dataset the instances that are extremely easy to solve, formally, the ones
that have hardness less than 1.05. Here hardness is defined as 𝑐𝑜𝑠𝑡(𝜋∗(𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙))∕ℎ(𝑠𝑡𝑎𝑟𝑡), where ℎ is the conventional cost-to-go
heuristic. The closer this value is to 1.0, the easier the instance is, meaning that there is almost no need to bypass the obstacles and
the path resembles a straight line.

3.3.2. Planners

We denote the planners proposed in this work2 as WA*+CF (Weighted A* with the correction factor), FS+PPM (Focal Search with
Path Probability Map) and GBFS+PPM (Greedy Best-First Search that greedily selects nodes by their 𝑝𝑝-values preferring the ones
with the smaller 𝑓 -values to break ties).

The baselines that we compare against include both standard heuristic search algorithms, A* and WA*, as well as the learnable
ones. The latter are represented by the two planners. The first one is Neural A* [17], the state-of-the-art planner that was shown to
notably outperform a range of competitors including the approaches presented in [37,33] The second is the planner from [16], which
predicts the perfect cost-to-go heuristic and use it in A*. We denote it as A*+HL.

We use the official code of Neural A* and modify it to handle non-uniform move costs (originally, the costs of both diagonal and
cardinal moves have been set to 1 in Neural A*). Moreover, we have employed our neural network model in Neural A* to provide a
fairer comparison (the performance of Neural A* with the original neural network was significantly worse). Similarly, we have used
our neural network for predicting cost-to-go heuristic in A*+HL. For bounded sub-optimal planners, i.e. WA* and FS+PPM different
suboptimality factors might be used. In Appendix we report the results across a variety of them (ranging from 1.01 to 10). In the
main body of the text we report the results for 𝑤 = 2, as this value provides the most balanced trade-off between path length and
computation time for WA*.

3.3.3. Training setup

To train the neural networks predicting 𝑐𝑓 -values, 𝑝𝑝-values and cost-to-go estimates (for A*+HL), we use the same setup. We
train each model using the Adam optimizer [62] for 35 epochs with a batch size of 512 and OneCycleLR learning rate scheduler [63] at
9

2 The source code of our planners is publicly available at https://www .github .com /AIRI -Institute /TransPath.

https://www.github.com/AIRI-Institute/TransPath

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Table 1

Experimental results. Values before ± indicate the average, while values
after ± show the standard deviation.

Optimal Found
Ratio (%) ↑

Cost
Ratio (%) ↓

Expansions
Ratio (%) ↓

A* 100 100 100
WA* 40.66 103.52 ± 4.85 44.43 ± 25.92
Neural A* 29.82 104.90 ± 6.56 52.30 ± 30.47
A*+HL 79.11 100.27 ± 0.62 80.50 ± 74.40
WA*+CF 85.40 100.25 ± 1.13 36.98 ± 21.18
FS+PPM 82.97 100.24 ± 0.74 26.36 ± 21.08
GBFS+PPM 83.02 100.25 ± 0.90 23.60 ± 18.34

Fig. 7. Several examples of the pathfinding results. The expanded nodes are shown in green, and the path in red. The last column shows the predicted PPMs.

a maximum learning rate of 4 ×10−4. We use 𝐿2 loss for 𝑐𝑓 -values, 𝑝𝑝-values and 𝐿1 loss for the cost-to-go estimates following [16].
It has taken us 3.5 hours to train each model on NVIDIA A100 80 GB GPU.

We have trained Neural A* on our training data with the same training setup as in the original work. It has taken us 16 hours to
learn the model on our hardware, four times more compared to learning 𝑐𝑓 -/𝑝𝑝-values. This is expected, as Neural A* is trained with
the differentiable A* in the loop.

3.3.4. Results

We are primarily interested in the following performance measures: Expansions Ratio – the ratio of the number of expansions
performed by the planner to the number of A* expansions; Cost Ratio – the same ratio but for the solution cost; and Optimal Found
Ratio – the ratio of instances optimally solved by the planner.

Table 1 shows the average values and standard error of these indicators for the test dataset, while Fig. 7 highlights several test
instances with the solutions obtained by the evaluated algorithms and the nodes they expand. Clearly, all the learning-based planners
are able to generalize to unseen instances solving them near-optimally while reducing the search effort. In terms of Cost Ratio, the best
results have been demonstrated by FS+PPM, while the other our planner, WA*+CF, turns out to have outperformed the competitors
in terms of the number of instances solved optimally. The number of reduced expansions varied significantly for all algorithms (see
the third column after the ± sign), and, evidently, in certain cases one of the learnable planners, i.e. A*+HL, managed to expand
more nodes than A*. Still, the techniques suggested in this work, in particular, predicting 𝑝𝑝-values in combination with FS and GBFS,
managed to reduce the number of the expansions significantly (up to four times approximately) in numerous cases, as the average
value of the Expansions Ratio tells us.

A more detailed overview of the results is presented in Fig. 8. Here the box-n-whisker plots for the instances grouped together
based on their hardness are presented. As one can note, the cost ratio of WA* and NeuralA* decreases when the instances get
harder. However it is not the case for the other planners. For very hard instances (with hardness exceeding 2), WA*, NeuralA*,
A*+HL, WA*+CF demonstrate similar results. FS+PPM and GBFS+PPM are indeed the ultimate winners in terms of cost ratio. More
importantly, their performance does not seem to be tied to the hardness of the pathfinding instances they are facing.

As for the expansions ratio, the following trends can be observed. The performance of WA* and NeuralA* degrades as the hardness
grows. Contrary, the performance of the other approaches does not change or even improves with growing hardness. The notable
exception is FS+PPM which performance is very good when the hardness is lower than 2 and is inferior when the hardness exceeds
this mark. This can be explained by the nature of the Focal Search, which is provided with the sub-optimality threshold of 2 in our
experiments. FS hits the sub-optimality bound on the hard instances and is forced to expand redundant nodes with the lower 𝑓 -values
to rise the value of 𝑓𝑚𝑖𝑛 in 𝑂𝑃𝐸𝑁 (which is needed to continue to progress towards the goa)l. Indeed, if the sub-optimality factor was
10

set to a higher value, the drop of the performance would not be thus pronounced, which is confirmed by the results of GBFS+PPM.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 8. Cost and expansions ratios w.r.t. the hardness of the test instances.

Fig. 9. Maps comprising the out-of-distribution dataset.

Table 2

Experimental results on out-of-distribution dataset. Values before ± indicate
the average, while values after ± denote the standard deviation.

Optimal Found
Ratio (%) ↑

Cost
Ratio (%) ↓

Expansions
Ratio (%) ↓

A* 100 100 100
WA* 8.13 104.31 ± 4.76 57.52 ± 30.72
Neural A* 3.24 107.10 ± 6.77 63.08 ± 34.63
A*+HL 29.02 101.90 ± 2.72 148.94 ± 136.95
WA*+CF 10.61 106.10 ± 5.59 63.64 ± 36.31
FS+PPM 18.66 105.62 ± 5.61 55.06 ± 39.57
GBFS+PPM 18.59 106.12 ± 6.54 54.33 ± 47.24

3.3.5. Runtime breakdown

We have measured the runtime of the compared methods, though it is heavily dependent on the implementation and the hardware.
E.g., Neural A* is fully implemented in Python, while our planners feature both Python for neural networks’ machinery and C++ for
the search. Thus, directly comparing their runtimes would be incorrect. To this end, we do not report the runtime of Neural A*. As
for the other methods (implemented solely by us), the breakdown of their runtimes is as follows. The prediction step for the batch
size of 64 and the native torch float32 type required 9.5 ms on Tesla A100 GPU (and 40 ms on GTX 1660S). The average CPU time
required for further solving this batch of 64 tasks: A* – 155 ms, WA* – 77 ms, WA*+CF – 60 ms, A*+HL – 96 ms, FS+PPM – 37 ms
and GBFS+PPM – 31 ms.

3.3.6. Evaluation on out-of-the-distribution dataset

Besides the main dataset, we have also created an out-of-distribution dataset that consists of three different maps taken from the
MovingAI benchmark [64]: Berlin_1 (City), maze512-32-0 (Maze) and BigGameHunters (Game), see Fig. 9. Each of these maps
is scaled to two different sizes: 64 × 64 and 128 × 128. There are randomly generated 1, 000 instances per each map and size. As
before, the instances with hardness less than 1.05 have been excluded from the experiments.

We have used this dataset to evaluate how the learnable planners suggested in the paper (and their competitors) perform when
solving instances that are substantially different in topology and size from the ones used for learning. None of the maps from this
11

dataset has been used for training, i.e. these maps were presented to the planners only at the test phase.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 10. Cost and expansions ratios w.r.t. the hardness of the test instances (out-of-the-distribution dataset).

Table 3

Ablation study results. Values before ± indicate the average, while values
after ± denote the standard deviation.

FS+PPM (𝑤 = 4) w/ Trans w/o Trans

Optimal Found Ratio (%) 85.22 61.74
Average Cost Ratio (%) 100.31 ± 1.58 101.12 ± 2.19
Average Expansions Ratio (%) 16.06 ± 11.57 19.65 ± 17.03
MSE ×10−3 3.2 5.3

Fig. 11. An example showing the difference between the CNN (only) model and the one with the Transformer block.

Table 2 presents the aggregated results. As expected, the performance of all the learnable planners is worse compared to the main
experiments. Still, the best results in terms of expansion ratio are achieved by one of our planners, i.e. GBFS+PPM (the result of
FS+PPM is very close).

The detailed box-and-whiskers plots for cost and expansions ratios for this experiment are depicted in Fig. 10. As one can note,
the results for the Maze map differ significantly, especially from the expansions ratio perspective. This can be explained by the fact
that this type of maps is extremely hard to solve due to the arrangement of the blocked areas that do not form separate obstacles that
can be circumnavigated. For the two other type of maps, however, the results are similar to the ones observed on our main dataset,
i.e. FS+PPM and GBFS+PPM are able to reduce the number of expansions up to a factor of 4 while producing only a slight overhead
in terms of solution costs.

Overall, the observed results support the claim that the suggested approaches have strong generalization capabilities and perform
well on the out-of-the-distribution instances (at least until the topology of such instances is too complex, like in the case of mazes).

3.3.7. Ablation study

To demonstrate the importance of using the Transformer block in the neural network, we have created a version of the latter that
omits this block and is only composed of the convolutional layers (CNN model). We have trained this neural network similarly to the
12

baseline model. To compare them, we select tasks with the hardness exceeding 1.5 as we hypothesize that utilizing the transformer is

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Table 4

Results of the evaluation of a greedy algorithm that recon-
structs a path by iteratively picking the cell with the maximal
𝑝𝑝-value in PPM instead of a systematic search.

Success
Rate (%)

Cost
Ratio (%)

Iterations (Expansions)
Ratio (%)

87.80 143.07±72.86 27.59±34.34

Fig. 12. On path planning for Martian exploratory missions.

especially useful for non-trivial instances. Quantitative results are presented in Table 3, while qualitative results are given in Fig. 11
(for the sake of space, we only demonstrate the results for FS+PPM as the results for WA*+CF are similar).

Clearly, the usage of the Transformer block noticeably increases the performance across all of the considered metrics, as is indicated
by Table 3. The last row reports the mean squared error (MSE) between the predictions of the neural network and the ground-truth
values.

As Fig. 11 shows, the transformer allows us to capture the long-range dependencies between the regions of interest on the map
and, consequently, to form a complex and accurate PPM, which substantially aids the search algorithm. The PPM of the CNN model
is, however, fragmented and, as a result, a less natural-looking path is produced while the number of expansions is higher.

3.3.8. Pathfinding with PPMs without systematic search

We have also tried to use the PPMs, provided by the neural network, directly to reconstruct a path without running Focal Search.
That is, after feeding the problem instance into the neural network and obtaining the predicted PPM we run the following algorithm.
At each iteration we examine the neighbors of the current cell and pick the one with the maximal 𝑝𝑝-value, add it to the path and
transition to this cell. We begin with the start cell and end either when the goal cell is reached or when at some iteration we are not
able to pick a cell that has not already been added to the path. The results of such experiment are shown in Table 4.

The first column of the Table 4 shows the percentage of the successfully solved instances. As one can note 12.2% instances remained
unsolved. Moreover, as indicated in the second column, the costs of the resultant paths are significantly higher compared to both the
optimal ones and the ones obtained by running FS+PPM or GBFS+PPM (recall that the latter planners find the paths with cost ratio of
100.25% on average). The last column shows how many iterations (on average) it took the suggested greedy algorithm to reconstruct
paths compared to the number of iterations (expansions) used by A*. Indeed, the former performs notably less iterations compared
to the latter and is on par with FS+PPM, GBFS+PPM whose ratios were (recall Table 1) 26% and 23% on average respectively.

Overall, one can summarize that the straightforward approach, that does not embed the predictions of the neural network into an
involved search framework, is much less effective. This confirms that both predicting PPMs and utilizing Focal Search that leverages
these PPMs is necessary to effectively solve challenging pathfinding instances.

4. Pathfinding on image representations of digital elevation models

In various practical setups, one may need to find a path on a map encoded not as a binary grid (as before) but rather as an RGB
image. For example, in [8,65] such setup is considered for complex planetary exploration missions, more precisely – for exploring
the surface of Mars with the semi-automated rovers (wheeled mobile robots). Indeed, Mars terrain is rough and one should be very
careful when planning paths over such terrain. A general approach to path planning, according to [8] is that, first, one or more global
paths are constructed (automatically or by a specialist) based on the satellite images of the Martian terrain and additional data. Then,
the rover uses local sensing and local motion planning to follow the most preferred global path or switch to another one if necessary.
13

Fig. 12a depicts an example of the real traverse of the exploratory rover over the rough Martian terrain.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Indeed planning a path in such scenarios should respect the safety constraints. One of the major aspects to be taken into consid-
eration is avoiding the sharp difference in the elevation along the (global) path. Example (from [65]) is shown in Fig. 12b. Here the
shortest path is not the safest one as it, presumably, involves traversing a sloppy area.

If, besides the image representation, the digital elevation model (DEM) of the environment is available, one may, first, design
a (transition) cost function that takes the elevation into account and, second, run a search-based path planning algorithm, e.g. A*,
on DEM. However, DEMs are often unavailable (due to the high costs associated with their construction) and, thus, planning has to
be carried out only relying on the image map of the environment. This is especially the case for the multi-robot navigation setups,
involving unmanned ground vehicles and unmanned aerial vehicle, when the latter take images of the outdoor terrain and the former
plan their paths based on these images – see [66,10] for example.

Indeed, conventional path planning algorithms are not straightforwardly applicable here as the transition costs associated with
moving from one pixel to the other are unknown. This is exactly the setup we wish to investigate and solve with the previously
suggested approach. I.e., we wish to i) extract the valuable data from the input RGB image (conditioned on a specific start and goal
locations) and represent it in a way suitable for heuristic search algorithms; and ii) run the latter to construct the sought path.

4.1. Problem statement

Consider a robot navigating an uneven outdoor terrain and a 𝑚 × 𝑛 × 4 tensor, where the first three channels comprise an 𝑚 × 𝑛
RGB image of that terrain (top-down view) and the last channel stores the height data, i.e. the 𝑚 × 𝑛 matrix containing the elevation
values. The latter is commonly known and referred to as DEM.

Two adjacent pixels comprise a transition whose cost is defined as follows:

𝑐𝑜𝑠𝑡(𝑝1, 𝑝2) = 𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) + 𝛼|𝐷𝐸𝑀(𝑝1) −𝐷𝐸𝑀(𝑝2)| (3)

Here 𝑑𝑖𝑠𝑡 is either 1 or
√
2, depending on whether the pixels are cardinally or diagonally adjacent, 𝐷𝐸𝑀(𝑝) is the height of the

pixel 𝑝 and 𝛼 is the user-specified parameter that is used to adjust the importance of elevation change and is also needed for proper
scaling when spatial and height resolution are not aligned. Please note that the transition from a pixel to any of its eight neighbors
is possible; however, different transitions incur different associated costs. Intuitively, the transitions that result in sharp changes of
elevations are penalized more, compared to the transitions when the elevation changes slightly (the penalty can be adjusted with 𝛼).

The task is to find a path, i.e. a sequence of transitions, from the dedicated start area (pixel) to the goal one. While we do not
aim to find optimal or bounded sub-optimal paths, the lower-cost paths are, indeed, preferable. Moreover, we assume that at the test
time we do not have access to DEM, i.e. the path is to be constructed solely from the image input. Still, a representative dataset of
the aligned RGB+DEM pairs is available for training/learning beforehand.

4.2. Dataset

To solve the described problem, we need a comprehensive dataset consisting of tens of thousands of RGB images aligned with
their DEMs. Currently, there exists a very limited number of datasets of that kind. For example, in [67] a dataset of 248 samples
is presented. All these samples represent fragments of the typical agricultural landscapes. Another dataset is the dataset of Martian
landscape fragments – HiRISE DTM [68]. It is available online3 and consists of about 1,000 samples, each of which requires non
trivial processing to actually get an aligned RGD-DEM pair.

To this end we have created a novel rich dataset of the properly aligned RGB-DEM samples, that are not synthetically generated but
rather represent real landscapes. The principal source used to compile our dataset is NOAA: Data Access Viewer,4 an extensive
online toolbox for processing and visualising the geospatial data. We have used a vast region (approximately 128 × 180 kilometers)
of North Carolina characterized by a relatively hilly terrain to obtain the data. The resolution of the collected data is 10 m per pixel,
which provides a sufficiently detailed representation of the landscape’s physical features. The size of the original RGB image (and
DEM) is 12, 875 × 18.000 pixels. We have used this RGB-DEM pair to create a total of the 18, 316 accurately aligned samples. Our
dataset is available online at [61] (dem folder). Fig. 13 depicts the source RGB image and the corresponding DEM.

We process the source image as follows. First, we slice it into the tile of square pieces. We use three different tile scales, i.e.
256 ×256, 512 ×512, and 1024 ×1024 pixels; see Fig. 14. Our intent for having different scales is that we want our model to learn the
features that are robust to planar scale, but rather capture the way the elevation changes. We believe that scale diversity is needed to
encourage the model to identify and prioritize key terrain features regardless of the spatial context they appear in, thereby enhancing
its generalization capabilities.

Following the slicing, all pieces are downsampled to a size of either 128 ×128 or 64 ×64 pixels using bilinear interpolation (Fig. 14,
right). This step is undertaken to ensure compatibility with the neural network’s input size constraints and to expedite the training
process. Despite the inevitable reduction in image resolution, the downscaled images retain an acceptable level of detail necessary for
solving pathfinding tasks. In addition to downsampling, we apply a normalization procedure to each DEM. This normalization step
is needed to suit the operational requirements of the neural networks and to ensure that their training is effective. Normalization is

3 https://www .uahirise .org /dtm/.
14

4 https://coast .noaa .gov /dataviewer/.

https://www.uahirise.org/dtm/
https://coast.noaa.gov/dataviewer/

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 13. Visualization of original imagery and a corresponding elevation map. This figure presents the original high-resolution satellite imagery juxtaposed with the
corresponding DEM for a selected region in North Carolina. The left panel displays the optical imagery, while the right panel visualizes the respective terrain elevation
map, demonstrating the complexity and diversity of the landscape features captured in our dataset.

Fig. 14. Left: Examples of the map slices that form the base of our dataset (the size of each slice is either 1024 ×1024 or 512 ×512, or 256 ×256. Right: The corresponding
downscaled projections (128 × 128, 64 × 64). Despite the reduction in resolution, essential pathfinding details are preserved.

performed by subtracting the minimum value of the DEM from each pixel on the map, effectively translating the range of elevation
values to start at zero. Subsequently, we scale the resulting values by dividing each pixel by the maximum value in the DEM.

dem𝑖 = dem𝑖 − min(dem), dem𝑖 =
dem𝑖

max(dem)
(4)

As a result, we end up with the scale invariant DEMs, i.e. the height of any pixel in any DEM belongs to [0, 1] range.
To further enhance our dataset, we employ data augmentation through the rotation of image slices. This technique is applied with

the goal of expanding the quantity and diversity of our training data, thereby reducing overfitting. Image rotation is a particularly
useful augmentation method in our context as it helps bolster the model’s robustness against varying orientations, a common challenge
in real-world image-based tasks.

For each map sample of our dataset, we create ten distinct pathfinding tasks. The generation of these tasks is performed through
a uniform random sampling, where the start and goal positions for each instance are randomly assigned. By creating multiple tasks
per map, we are able to increase the size of the dataset (without requiring additional geographical data).

The resultant dataset is comprised of 18, 316 maps (pairs of the aligned RGB-images and DEMs) and 183, 160 problem instances.
We use 8-1-1 train-val-test split (as before). The dataset is publicly available in our repository. We believe this is the first dataset
of such kind that i) is based on the real geo-spatial data; ii) contains accurately aligned RGB-DEM pairs; and iii) is large enough for
learning-based methods.

4.3. Method

Our approach for the image-based pathfinding is the same as for the grid-based pathfinding, i.e. it is centered on the utilization of
the deep neural networks that take an RGB image as the input and provide an informative output that can be used by a search-based
pathfinding algorithm. We explore two options for such output. The primary option is, as before, to reconstruct the PPM, and use if
further to guide the search in GBFS. The secondary option is to reconstruct DEM and run A* on it. The problem with this variant is
15

that DEMs are scale-invariant, i.e. the minimum height in each DEM is 0 and the maximum height is 1 while the real absolute values

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

(measured in meters) are not known. Thus, one needs to properly set the 𝛼 scaling coefficient in (recall Eq. 3), which is problematic.
In other words, one needs to properly guess the absolute difference between minimal and maximal height for an input image. Please
note that in the case of reconstructing PPM and invoking GPBS on it, this problem does not arise, which points to this method being
preferable. Please also note that in both cases, i.e. PPM+GBFS and DEM+A*, the resultant paths are not guaranteed to be optimal
or bounded sub-optimal as the real transition costs are not known (this is why running FS with a fixed suboptimality bound on PPM
does not make sense and we opt for GBFS only).

To learn both elevation maps and path probability maps, as before, we rely on supervised learning. In the former case, the ground-
truth samples, i.e. DEMs, are directly available in the dataset. In the latter case, the ground-truth PPMs are constructed by us using
the DEM data.

To construct ground-truth PPMs, we generally follow the same approach as before. First, we identify a single path on each DEM
that we want to focus on, i.e. the one which is not a geometrically shortest one by rather the one with the lowest cost (that takes the
elevation change into account). Then we assign the 𝑝𝑝-values of 1 to the pixels forming this path and, to the other pixels, we assign
the values that are proportional to the costs of the least-cost paths from these pixels to the pixels of the designated path. Technically,
the implementation is as follows.

Obtaining ground-truth PPMs As before, we run one unfocused search from the 𝑠𝑡𝑎𝑟𝑡 and another one from the 𝑔𝑜𝑎𝑙 go get the costs of
the (least-cost) paths to any pixel forming the DEM. ‘Unfocused’ means that we stop the search not when reaching a particular pixel
but rather when all the pixels are explored. We use A* for the search (not Theta*, because the latter is not tailored to pathfinding on
an uneven terrain where the elevation changes from one pixel to the other). The forward pass of A* also gives us a path from 𝑠𝑡𝑎𝑟𝑡 to
𝑔𝑜𝑎𝑙, 𝜋(𝑠, 𝑔), that will be marked as the most desirable in PPM. Next, we run another unfocused A* with its OPEN list initialized with
the pixels belonging to 𝜋(𝑠, 𝑔). This gives us, for every pixel, the value that shows how far it is from the desired path, with taking the
costs associated with change in elevation into account. Finally, the 𝑝𝑝-value of every pixel 𝑛 is computed by:

𝑝𝑝(𝑛) = 𝑐𝑜𝑠𝑡(𝜋(𝑠, 𝑔))
𝑐𝑜𝑠𝑡(𝜋(𝑠, 𝑛)) + 𝑐𝑜𝑠𝑡(𝜋(𝑛, 𝑔)) + 𝑐𝑜𝑠𝑡(𝜋(𝑛,𝜋(𝑠, 𝑔)))

(5)

Consequently, all the values of PPM are in (0, 1] range, 1 are assigned to the pixels forming a single least-cost path and the higher
the 𝑝𝑝 value is, the closer (in terms of cost) it lies to this path. Notably, we do not use clipping for PPMs (as experimentally this did
not provide any gain). In Appendix we elaborate on this phenomenon in more details.

4.3.1. Models

To learn PPMs and DEMs, we rely on supervised learning. Primarily, we use the same autoencoder model as before (see Sec-
tion 3.2.5), but augmented with two additional transformer layers (so the number of parameters raises from 1M to 1.2M). The
training setup is identical to the one used before (see Section 3.3.3).

Moreover, we also examine how the more advanced image-to-image translation methods [69] may perform when solving the prob-
lem at hand. Specifically, we examine StyleGAN3 [22] and Latent Diffusion [23]. These models are recognized for their effectiveness
in handling high-resolution and complex images. Fig. 15 offers a schematic overview of these models compared to the autoencoder
baseline.

StyleGAN3 Generative Adversarial Networks (GANs) are a class of machine learning models designed to produce new data that mimic
the distribution of a given training dataset. GANs are composed of two primary components: a Generator (G) and a Discriminator
(D). The generator’s role is to create new data instances, while the discriminator’s role is to differentiate between instances from
the real dataset and the ones created by the generator. The ultimate goal is to have a generator capable of producing data that the
discriminator cannot differentiate from the real dataset.

The training process of a GAN involves an adversarial game, where the generator and the discriminator are trained simultaneously.
The discriminator is updated to better distinguish between real (𝑥) and noise (𝑧) generated data, while the generator is updated based
on how well the discriminator was able to classify its output as real or fake. This simultaneous training process is often likened to
a two-player min-max game, where the discriminator aims to maximize its accuracy (minimize its loss), while the generator aims
to maximize the discriminator’s error (maximize its gain). Over time, this adversarial process leads the generator to producing
increasingly realistic data.

Formally, such a minimax problem can be written as follows:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = 𝔼𝑥∼𝑝data(𝑥)[log𝐷(𝑥)] + 𝔼𝑧∼𝑝𝑧(𝑧)[log(1 −𝐷(𝐺(𝑧)))], (6)

where the 𝑝𝑑𝑎𝑡𝑎 is the distribution of a given training dataset and 𝑧 ∼ 𝑝𝑧(𝑧) are the Gaussian noise samples.
In the context of our work, we use StyleGAN3 [22], a state-of-the-art GAN, to perform a complex image-to-image translation task.

Our goal is to generate elevation and path probability maps from satellite imagery. This task can be considered as mapping one data
distribution (satellite imagery) to another (elevation and path probability maps). The inherent capability of GANs to learn and mimic
complex data distributions makes them suitable for this task. The advanced features of StyleGAN3, such as an alias-free generator and
improved conditioning schemes, offer us the potential to generate high-quality output maps that can effectively aid in the pathfinding
16

process.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 15. Comparative overview of the three image translation approaches used in our work. Each method exhibits unique processing structures and mechanisms. (a) The
Autoencoder transforms input RGB satellite imagery into predicted elevation maps and PPMs through an encode-decode process. (b) The StyleGAN3, a representative
of Generative Adversarial Networks, leverages a noise vector and an adversarial training process to generate the outputs. (c) The Latent Diffusion Model uses a forward
and reverse diffusion process for the generation task.

Latent diffusion Latent Diffusion Models (LDMs) belong to a class of probabilistic models that have recently yielded significant
progress in high-resolution image synthesis. These models are a variant of Diffusion Models (DMs) designed to learn data distribution
𝑝(𝑥) by gradual denoising a normally distributed variable. The training process of diffusion models involves a series of steps, each
of which attempts to denoise the data slightly using timestamp-conditioned autoencoder 𝜖𝜃 (𝑥𝑡, 𝑡), moving it closer to the true data
distribution.

LDMs enhance this process by introducing a latent space 𝑧 and specific encoder (𝑧 = (𝑥)) and decoder (𝑥 =(𝑧)), which allows
for a more efficient representation of the data. The training process of LDMs is divided into two stages. The first one, the universal
autoencoding stage, involves training the encoder and decoder models, which are trained only once and can be reused for multiple
DM training or to explore possibly completely different tasks. The second stage involves training the actual generative model 𝜖𝜃 ,
which learns the semantic and conceptual components of the data.

The objective function for LDMs, derived from the Evidence Lower Bound (ELBO), involves a sum over the timesteps of the
diffusion process. It aims to minimize the Kullback-Leibler divergence between the posterior distribution and the prior distribution,
effectively making the posterior distribution as close as possible to the prior. This is achieved by minimizing the reconstruction error
between the original data and the generated data, weighted by the change in the signal-to-noise ratio from one-time step to the next.
The simplified version of this objective looks as follows:

𝐿LDM = 𝔼(𝑥),𝜖∼ (0,𝐼),𝑡

[‖‖𝜖 − 𝜖𝜃(𝑧𝑡, 𝑡)‖‖22
]

(7)

The primary strength of LDMs lies in their exceptional conditioning capabilities. This ability is substantially boosted by integrating
cross-attention layers into the model’s architecture. Cross-attention layers are inherently flexible, allowing the model to handle
various conditioning inputs. These inputs could range from text to bounding boxes or any input described as a sequence of vectors.
This flexibility makes LDMs a potent tool for handling different conditioning inputs effectively. We leverage this flexibility by using
satellite imagery as conditioning inputs to predict the elevation and path probability maps. Our work showcases how effectively the
LDMs can be adapted for a highly specific application such as image-based pathfinding.

Moreover, the inherent flexibility of the cross-attention mechanism also allowed us to introduce an additional level of conditioning
through start and goal coordinate information. We concatenate them with the encoded image features by transforming the (𝑥, 𝑦)
coordinates into a vector representation using a trainable linear projection. This enhances the conditioning process by providing the
17

model with a more nuanced spatial context. We refer to the model that involves this additional conditioning as LDM-cond.

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Table 5

Comparative evaluation results. Values before ± indi-
cate the average, while values after ± denote the stan-
dard deviation across the dataset.

NeuralA* GBFS+PPM

Cost Ratio (%) 121 ± 20 106 ± 10

Expansions Ratio (%) 64 ± 43 44 ± 32

Table 6

Comparison of different models that infer PPMs from images. Values before ± indicate the average,
while values after ± denote the standard deviation across the dataset.

128×128 resolution LDM LDM-cond StyleGAN3 Autoencoder

Cost Ratio (%) 105 ± 8 103 ± 5 105 ± 9 106 ± 9
Expansions Ratio ×102 (%) 44.9 ± 78.6 44.2 ± 67 54.1 ± 99.4 62.9 ± 92.5
MSE ×10−3 1.66 ± 0.14 1.61 ± 0.13 1.72 ± 0.14 1.8 ± 0.17

4.4. Empirical evaluation

Empirical evaluation is carried out on the test part of our dataset. The latter is comprised of 18, 316 pathfinding instances (each
instance is a map with a unique start-goal pair). We assume that the planner does not have access to the DEM data and must rely
only on the input image for pathfinding. The size of the latter is either 64 × 64 or 128 × 128.

We conduct three different experiments. First, we compare our primary pipeline, i.e. GBFS+PPM, against Neural A*. PPM is
predicted with the basic autoencoder model in this experiment. Next, we examine how the more involved models improve the
prediction of the PPM and pathfinding consequently. Finally, we evaluate A*+DEM pipeline, i.e. we use the predicted DEM and run
A* on it (this requires an additional cost-tuning as described in Section 4.3).

GBFS+PPM vs. Neural A* Neural A* [17] is the state-of-the-art ML-based planner that is capable of planning on images. For a fair
comparison, for this experiment, we use 64 × 64 images as the performance of Neural A* significantly degrades when planning on
128 × 128 images (which is not the problem for our planner as we will see later).

In each run, we track the cost of the constructed path and the number of expansions. Table 5 shows the aggregated results relative
to A* on the ground truth DEM. E.g., the average expansions ratio of 44% for our solver means that on average the number of
expansions made by it is 66% lower compared to the number of expansions that a regular A* would have made on the ground truth
DEM inputs (which are unavailable to our solver and Neural A*). Generally, the results show that the cost of the GBFS-PPM solution
does not considerably exceed that of the ground truth solution (which, we emphasize, cannot in principle be constructed on the
image-only inputs), while the number of expansions significantly decreases. Moreover, in both metrics, we outperform Neural A*
evidently.

Different models for GBFS+PPM In this experiment, we assess whether we can improve the performance of the suggested approach
by leveraging more advanced models that are in charge of predicting PPMs: StyleGan3, Latent Diffusion Model (LDM) and LDM
additionally conditioned on the start and goal location (LDM-cond). The primary model is denoted as Autoencoder.

For this experiment, we use 128 × 128 images as input. As before, we track the costs of the obtained paths as well as the number
of expansions made by the planner. We normalize these values by dividing the ones achieved by Focal Search on ground-truth PPMs.
Additionally, we analyze the mean squared error (MSE) between the predicted PPMs and the ground truth ones. The results are
presented in Table 6.

First, note that all models exhibit similar cost ratios which, on average, do not exceed 100% (cost of the optimal solution) much.
This shows that predicting PPM and then running GBFS leads to finding near-optimal paths even for a larger input size (128 × 128
compared to 64 × 64 in the previous experiment). The best cost ratio is achieved by LDM-cond. This applies to expansions as well –
the LDM-cond on average requires the lowest number of expansions compared to the other models and the standard deviation also
shrinks. Generally, one may note that the deviation in expansions is noticeably large. We explain this by the presence of a large
variety of tasks in the test dataset which differ much in their complexity. We also hypothesize that if the size of the training dataset
was larger, all models would exhibit more stable results. Finally, LDM-cond achieves the lowest MSE, followed closely by LDM, while
the MSE of StyleGAN3 and Autoencoder is slightly higher. This confirms that LDM-cond generates more accurate PPMs.

Overall, this comparative analysis provides evidence that utilizing more involved models instead of the autoencoder, indeed,
positively affects the performance of planning both in terms of cost and expansions (Fig. 16).

A*+DEM In this experiment, we evaluate how the problem at hand can be solved not by leveraging PPMs but rather by predicting
DEMs from images and then running A* on these DEMs. This variant requires that the user specifies the proper scaling factor 𝛼 for
the cost function of A* (recall Eq. 3). This is needed as the output of the neural network that predicts DEM from image is within
18

[0, 1], where 0 corresponds to the pixels with the lowest elevation and 1 to the ones of the highest elevation. Meanwhile for the cost

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. 16. Two leftmost columns depict the samples (RGB image + DEM) presented in the test part of our dataset. Then the predicted DEM is shown. Grayscale images
depict path probability maps (ground-truth ones and the ones inferred by the neural network). Finally, the last two columns depict the search results, i.e. the explored
search nodes are shown in green and the resultant path in black. A* stands for running A* on the ground-truth DEM, while the last column depicts the results of the
Focal Search on the inferred path probabilty map.

Fig. 17. Cost and expansions ratios w.r.t. the different scale factor for predicted DEMs.

function, we need this range to be larger in order to be consistent with the first component of the cost function that defines the cost
of lateral shift (which is 1 for the cardinal moves and

√
2 for the diagonal moves).

In the experiment we vary the scaling factor manually in a range 10, 25, 50, 100, 150, 200, 255. We also include into the compar-
ison the true scaling factor we have extracted from the ground truth DEM. I.e. for each input image we examine the corresponding
DEM (which is not available to the planner) and set the scaling factor to be equal to 𝑚𝑎𝑥(𝐷𝐸𝑀) −𝑚𝑖𝑛(𝐷𝐸𝑀). We denote this variant
as A*(GT).

The results are presented in Fig. 17. Here costs and expansions numbers are normalized by the corresponding values of A* invoked
on the ground truth DEMs. Generally, one can note that even with the correct scaling factor A*(GT) is not able to decrease substantially
19

the number of expansions (right plot, right bar). And setting this factor in an unfavorable way, e.g. to 10 or 255, prominently enlarges

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

the deviation. This is in contrast to planning with GBFS+PPM (recall Table 5). In terms of the path cost, the state of affairs is less
dramatic. Generally, A*+DEM is able to find a path of acceptable quality: the maximal cost overhead (w.r.t. the optimal path) is
+35% for A*(255). Last but not least, the obtained results provide clear evidence that the performance of A*+DEM is influenced
notably by the choice of the scaling factor. This confirms that utilizing PPMs (coupled with GBFS) is more preferable for pathfinding
on image inputs as i) does not require setting any parameters that influence the performance; and ii) it outperforms planning with
A* on the reconstructed DEM even when the scaling factor for the latter is known.

5. Discussion and limitations

In this work, we have suggested to utilize supervised machine learning to extract the data that can be successfully used for search-
based planning when looking for a path on a binary grid or image. The following three limitations, associated with the suggested
approach and techniques, can be distinguished. The first, is the ability to generalize to the problem instances that do not resemble the
ones used for training that comes into question. In Section 4.4, we have conducted an empirical evaluation on such scenarios (out-
of-the-distribution) for grids-with-costs domain. Indeed, the performance of our method degrades; however, it still i) does provide
the correct output (due to the utilization of the sound search-based algorithm); and ii) outperforms the competitors, including the
conventional planning techniques. The second limitation is that our approach requires the labeled ground-truth data in order to
conduct (supervised) learning. It is not a problem for the grids-with-costs domain as here one can obtain ground-truth labels directly
from the problem instances, as described in the paper. However, for the planning-on-images domain, we have relied on the additional
data (i.e. corresponding digital elevation models) to compute the ground-truth outputs. If such additional data is not available (at the
training stage) our approach cannot be applied. The third limitation is related to the computing resources needed to accommodate the
presented pipeline. On the one hand, the models suggested in the paper are quite lightweight (comparing to modern models used in
computer vision and natural language processing), e.g. the autoencoder model contains 1M parameters. As described in Section 4.4,
the inference takes approximately 10-40 ms (depending on the hardware used) for a batch size of 64. This meets the real-time
requirements of the real-world robotic applications. However, if the robot is equipped with very limited computation resources and is
not processing the inputs in batch mode, the inference time is likely to increase and might become a bottleneck. To mitigate this issue
neural networks’ distillation and compression methods may be needed, However, this has been left out of the scope of this paper.

Notably, all mentioned limitations are generic and typical to any problem-solving method that relies on (supervised) machine
learning.

6. Conclusion

In this work, we have explored how state-of-the-art deep learning techniques may aid heuristic search planners in solving grid-
based pathfinding problems. We have considered two setups: the one where the transition costs are known and the one where they are
not (planning on images). We have suggested utilizing a deep neural network composed of both convolutional and attention layers
to predict a heuristic proxy that we refer to as the path probability map. The latter can be used in combination with Focal Search
or Greedy Best First Search resulting in a solver that is capable to generalize and solve challenging pathfinding problems efficiently.
Empirically, we have shown that our approach outperforms the competitors that include both traditional heuristic search techniques
as well as the state-of-the-art learnable approaches.

The avenues for future research include, but are not limited to, planning in 3D and planning with kinodynamic constraints
(including sample-based planning).

CRediT authorship contribution statement

Daniil Kirilenko: Investigation, Software, Validation, Visualization, Writing – original draft. Anton Andreychuk: Data cura-
tion, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft. Aleksandr I. Panov: Investigation,
Methodology, Resources, Writing – review & editing. Konstantin Yakovlev: Conceptualization, Investigation, Methodology, Project
administration, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

This work was partially supported by the Analytical Center for the Government of the Russian Federation in accordance with the
20

subsidy agreement (agreement identifier 000000D730321P5Q0002; grant No. 70-2021-00138).

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Fig. A.18. Difference between the ground-truth PPMs constructed based on A* and Theta* path costs. Only the portion of PPM with 𝑝𝑝-values of 1 is shown in gray.
Green cells denote the path found by FS+PPM.

Table A.7

Empirical results for the experiments involving different types of PPMs. Values be-
fore ± indicate the average, while values after ± show the standard deviation.

Optimal Found
Ratio (%) ↑

Cost
Ratio (%) ↓

Expansions
Ratio (%) ↓

FS+Theta*-PPM 82.97 100.24 ± 0.74 26.36 ± 21.08
GBFS+Theta*-PPM 83.02 100.25 ± 0.90 23.60 ± 18.34

FS+A*-PPM 61.20 103.6 ± 2.45 53.03 ± 28.73
GBFS+A*-PPM 60.06 103.9 ± 2.32 49.93 ± 27.81

Appendix A. On different ways to create PPMs

A.1. A* vs. theta* to create grouth-truth PPMs

We have considered two approaches to construct ground-truth PPMs for pathfinding on grids (as mentioned in Section 3.2.2 of the
main text). The one where we use Theta* to compute the distances and the one where we used A* for that. The principal difference
is that in the latter case much more cells are likely to have 𝑝𝑝-values of 1, while in the former case this number is lower (and these
cells naturally form a narrow stripe spanning from start to goal) – see Fig. A.18.

Assume now that PPM is predicted by the neural network absolutely accurately and is fed further to Focal Search. How will the
sought path be constructed in case we use A*-PPM? For the sake of simplicity assume that the subotimality factor is large enough
for all generated nodes to be part of both OPEN and FOCAL. In this case on any iteration there will be several nodes in FOCAL with
𝑝𝑝-value equal to 1 to pick from. Thus the node to be picked should be decided by the (FOCAL) tie-breaking rule. The most intuitive
tie-breaking rule is to prefer nodes with the lower ℎ-values, i.e. the nodes residing closer to the goal. With this tie-breaker the search
will pick one node with 𝑝𝑝-value of 1 after another and finally reach the goal (without expanding any node with 𝑝𝑝-value less than 1)
in a way depicted on Fig. A.18b. Clearly, for this particular instance an unnecessary zig-zag detour is present and, consecutively, the
cost of the path significantly increases. The reason of such zig-zag behavior is that ℎ-based tie-breaker forces the search to transition
from a cell belonging to one optimal path to the cell belonging to the other optimal path which is closer to the goal. Meanwhile this
exact transition is, in fact, suboptimal (despite both endpoints belong to (different) optimal paths).

To avoid such detours one might consider designing an involved tie-breaking strategy that is based not only on the ℎ- or 𝑔-values
of the nodes but on which moves have already been applied to reach a specific cell. Instead, as we suggest in this work, one might
decrease the number of cells in PPM that have the values of 1, by utilizing Theta* instead of A* while constructing this PPM. When
doing so the area occupied by the cells with 𝑝𝑝-values of 1 shrinks and the negative effect of transitioning between the cells belonging
to the different optimal paths diminishes. Thus, invoking Focal Search with the standard tie-breaking technique (of preferring the
nodes with the lower ℎ-values) does not lead to a pathological behavior, described above (as depicted on Fig. A.18b).

To assess the described effect at scale we conduct an experiment where we have used two types of the ground-truth PPMs for
training the neural network: A*-PPMs and Theta*-PPMs. Then we run our main experiments, i.e. invoke FS+PPM (with 𝑤 = 2) and
GBFS+PPM on a large set of unseen pathfinding instances as described in Section 4.4. The results are shown in Table A.7. Clearly,
Theta*-PPMs is beneficial as the cost of the resultant paths is better and the number of expansions is notably lower (up to 2x compared
21

to A*-PPMs).

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Table A.8

Cost Ratios and Expansions Ratios (in % w.r.t. A*) for Greedy Best First
Search (GBFS) that utilizes PPMs predicted by different neural networks, i.e.
neural networks that have been trained to predict differently post-processed
PPMs. Values before ± indicate the average, while values after ± show the
standard deviation.

clipping value Cost Ratio Expansion Ratio

power 1 power 10 power 1 power 10

0 101 ± 1 100.3 ± 0.4 68 ± 35 28 ± 25
0.3 101 ± 1 100.3 ± 0.4 71 ± 40 30 ± 22
0.6 102 ± 1.2 100.4 ± 0.6 75 ± 37 35 ± 21
0.9 101 ± 0.6 101 ± 1.2 79 ± 41 32 ± 22
0.95 107 ± 5 100.2 ± 0.9 57 ± 23 23 ± 18

Fig. B.19. Comparison of WA* and FS+PPM with different subotimality factors.

A.2. Additional techniques to further focus theta*-PPMs

As said in the main text, after obtaining ground-truth PPMs based on the Theta* paths we additionally employ the following two
techniques to post-process them: powering the 𝑝𝑝-values and zeroing the ones that do not exceed a specified threshold. Both of these
techniques make the resultant PPM more sharp: the 𝑝𝑝-values of 1 stay unaltered while the others decay to zero much intensively
and the ones that are close to zero (measured by comparing to the threshold) are filtered out (zeroed). As said in the main text,
we hypothesize that sharpening and filtering the PPMs drives the neural network not to waste its capacity on predicting the lower
𝑝𝑝-values that are redundant to find a path, but rather forces to predict the 𝑝𝑝-values only for the regions that are the most needed
to find a solution.

To quantitatively measure the effect of applying both of these techniques we have constructed a range of different PPMs for
all training instances of our dataset, trained neural network on them, which resulted in having a range of different trained neural
networks (which differ in their weights), and then run the experiments on the test part of the dataset utilizing these different neural
networks and GBFS+PPM. The results are presented in Table A.8.

Each cell in the table corresponds to either cost ratio or expansions ratio of GBFS+PPM that was obtained utilizing the neural
network trained on the PPMs with different clipping thresholds and power values. As one can see, powering the PPM results in a
notable performance gain (both in terms of expansions and solution costs). The effect of clipping is less pronounced, however, setting
the clipping value to 0.95 seems to be the most beneficial.

Appendix B. On varying the suboptimality factor in grid-based pathfinding

In Section 4.4 we have reported the results of WA* and FS+PPM with the suboptimality factor, 𝑤, set to 2. Here, in Fig. B.19 and
Table B.9, we report the results for the full spectrum of 𝑤, from 1.1 to 10. Additionally, we report the results when 𝑤 = 100 (this
corresponds to Greedy Best First Search in our setup) and 𝑤 = 1 (this is A*).

Fig. B.19 shows the scatter plot of the results. Each dot with the color 𝑐𝑜𝑙 and the coordinates (𝑥, 𝑦) should be read as “algorithm
22

𝑐𝑜𝑙 uses (on average) 𝑥% of expansions (compared to A*) and its resultant cost is (on average) 𝑦% of the optimal one”. The closer

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

Table B.9

Cost Ratio and Expansions Ratio for FS+PPM and WA* with different subotimality factors.
Values before ± indicate the average, while values after ± show the standard deviation.

Suboptimality
factor

Expansions Ratio (%)↓ Cost Ratio(%)↓

FS+PPM WA* FS+PPM WA*

1.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
1.10 100.24 ± 0.59 100.33 ± 0.76 69.81 ± 29.22 82.43 ± 17.19
1.25 100.24 ± 0.71 101.09 ± 1.80 44.33 ± 30.66 66.38 ± 24.18
1.50 100.24 ± 0.75 102.10 ± 3.03 31.99 ± 25.29 53.65 ± 25.89
2.00 100.24 ± 0.75 103.52 ± 4.85 25.42 ± 19.70 43.48 ± 25.46
3.00 100.25 ± 0.84 105.31 ± 6.85 23.41 ± 17.57 38.19 ± 24.22
4.00 100.25 ± 0.90 107.34 ± 8.55 22.96 ± 16.74 36.84 ± 24.04
5.00 100.25 ± 0.89 108.31 ± 9.36 22.82 ± 16.51 35.98 ± 23.99
10.00 100.25 ± 0.89 110.22 ± 11.37 22.63 ± 16.32 34.32 ± 23.76
100.00 100.25 ± 0.89 110.72 ± 12.13 22.61 ± 16.37 32.76 ± 23.37

Table C.10

Cost Ratios and Expansions Ratios (in % w.r.t. A*) for Greedy Best First
Search (GBFS) that utilizes PPMs predicted by different neural networks,
i.e. neural networks that have been trained to predict differently post-
processed PPMs. Values before ± indicate the average, while values after
± show the standard deviation.

clipping value Cost Ratio Expansion Ratio

power 1 power 10 power 1 power 10

0 106 ± 10 136 ± 39 44 ± 32 21 ± 24
0.3 109 ± 14 130 ± 44 49 ± 34 16 ± 11
0.6 110 ± 12 135 ± 31 47 ± 31 20 ± 19
0.9 151 ± 49 141 ± 39 18 ± 15 15 ± 14
0.95 146 ± 53 133 ± 42 21 ± 19 25 ± 31

the dot sits to the lower left corner, the better the performance is. Clearly, FS+PPM consistently outperforms WA* across all the
suboptimality factors. In the main text we reported the results for 𝑤 = 2 as this value provides the most balanced trade-off between
the solution cost and the number of expansions for WA* – observe that the corresponding red dot is the closest to the origin.

Table B.9 presents the same data in tabular form.

Appendix C. On post-processing of the PPMs for image-based pathfinding

As reported earlier, for grid-based pathfinding two techniques to post-process ground-truth PPMs (that are further used to train
the neural network) are, evidently, beneficial: powering and clipping. For image-based pathfinding we have also tried to employ
these techniques, however the effect is questionable – see Table C.10.

Looking at the expansions ratios from 𝑝𝑜𝑤𝑒𝑟 1 PPMs with different clipping rations one might propose that 0.95 clipping is
beneficial. However, observe how the cost increases (both the average and the standard deviation). In fact, for high clipping thresholds
the resultant paths degenerate into the straight lines (which is the cause of the cost increase). In other words, the neural network
trained on clipped PPMs looses its ability to capture the nuances of the image to construct meaningful detours when needed. The
technique of powering the 𝑝𝑝-values is also not beneficial due to the notable increase in solutions costs. Overall, to obtain meaningful
solutions, i.e. paths that actually detour the costly areas (i.e. the ones that are characterized by greater slopes), neither powering nor
clipping is valuable. Thus we do not employ these techniques for image-based pathfinding.

Providing a sound explanation, even informal, why the techniques of powering and clipping are not beneficial for the considered
image-based pathfinding setup while being effective for grid-based pathfinding is challenging due to the inherent differences in these
tasks. Specifically, in grid-based pathfinding transition costs for any pair of orthogonally/diagonally adjacent cells are the same thus
the 𝑝𝑝-values do not need to embed the difference in these costs, while in image-based path-finding transition costs are different
due to the difference in elevation. This, possibly, explains why powering the PPM is not beneficial in image-based pathfinding – it
indirectly distorts the transition costs between the cells and complicates the problem of implicit reconstruction of these costs in the
form of PPM. Next, in grid-based pathfinding, if force the neural network to learn 𝑝𝑝-values for all the cells, the former would have to
predict the degree of proximity to the optimal path for every cell, which could distract it from the more important task of establishing
the shaping the (optimal) path itself. Thus, clipping low 𝑝𝑝-values enhances the quality of the predictions by ensuring the network
prioritizes the most important cells. In image-based pathfinding, all cells are potentially traversable and low 𝑝𝑝-values represent areas
to be avoided due to higher traversal difficulty. Clipping these values would remove valuable information, making it harder for the
neural network to learn to predict the degree of traversability of a cell, thus affecting the quality of a path. In other words it may
be the case that in grid-based pathfinding the most important task is to understand where the path is located while in image-based
pathfinding one needs to make a judjement regarding each individual cell – high likely it should be avoided. Despite these arguments
23

being made, we emphasize that they are hypothetical and not rigorous. Meanwhile, the results of the empirical evaluation provide

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

clear evidence that both powering 𝑝𝑝-values and clipping them negatively impact the performance of the suggested planners in the
considered image-based pathfinding setup.

Data availability

We included the link to the repository that contains our code and data into the paper.

References

[1] N. Rivera, C. Hernández, N. Hormazábal, J.A. Baier, The 2ˆ k neighborhoods for grid path planning, J. Artif. Intell. Res. 67 (2020) 81–113.
[2] J.P. Bailey, A. Nash, C.A. Tovey, S. Koenig, Path-length analysis for grid-based path planning, Artif. Intell. 301 (2021) 103560.
[3] W. Lee, R. Lawrence, Fast grid-based path finding for video games, in: Proceedings of the 26th Canadian Conference on Artificial Intelligence (Canadian AI 2013),

2013, pp. 100–111.
[4] R. Lawrence, V. Bulitko, Database-driven real-time heuristic search in video-game pathfinding, IEEE Trans. Comput. Intell. AI Games 5 (2012) 227–241.
[5] A. Elfes, Using occupancy grids for mobile robot perception and navigation, Computer 22 (1989) 46–57.
[6] E.G. Tsardoulias, A. Iliakopoulou, A. Kargakos, L. Petrou, A review of global path planning methods for occupancy grid maps regardless of obstacle density,

J. Intell. Robot. Syst. 84 (2016) 829–858.
[7] P. Sodhi, B.-J. Ho, M. Kaess, Online and consistent occupancy grid mapping for planning in unknown environments, in: Proceedings of the 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2019), IEEE, 2019, pp. 7879–7886.
[8] G. Hedrick, N. Ohi, Y. Gu, Terrain-aware path planning and map update for Mars sample return mission, IEEE Robot. Autom. Lett. 5 (2020) 5181–5188.
[9] T. Guan, Z. He, D. Manocha, L. Zhang, Ttm: terrain traversability mapping for autonomous excavator navigation in unstructured environments, arXiv preprint,

arXiv :2109 .06250, 2021.
[10] J. Li, G. Deng, C. Luo, Q. Lin, Q. Yan, Z. Ming, A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems, IEEE Trans.

Veh. Technol. 65 (2016) 9585–9596.
[11] P.E. Hart, N.J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Syst. Sci. Cybern. 4 (1968) 100–107.
[12] D. Speck, A. Biedenkapp, F. Hutter, R. Mattmüller, M. Lindauer, Learning heuristic selection with dynamic algorithm configuration, in: Proceedings of the 31st

International Conference on Automated Planning and Scheduling (ICAPS 2021), 2021, pp. 597–605.
[13] M. Janner, Y. Du, J. Tenenbaum, S. Levine, Planning with diffusion for flexible behavior synthesis, in: Proceedings of the 39th International Conference on

Machine Learning (ICML 2022), 2022, pp. 9902–9915.
[14] P. Ramachandran, B. Zoph, Q.V. Le, Searching for activation functions, arXiv preprint, arXiv :1710 .05941, 2017.
[15] M. Tan, Q. Le, Efficientnet: rethinking model scaling for convolutional neural networks, in: Proceedings of the 36th International Conference on Machine Learning

(ICML 2019), 2019, pp. 6105–6114.
[16] T. Takahashi, H. Sun, D. Tian, Y. Wang, Learning heuristic functions for mobile robot path planning using deep neural networks, in: Proceedings of the 29th

International Conference on Automated Planning and Scheduling (ICAPS 2019), 2019, pp. 764–772.
[17] R. Yonetani, T. Taniai, M. Barekatain, M. Nishimura, A. Kanezaki, Path planning using neural A* search, in: Proceedings of the 38th International Conference

on Machine Learning (ICML 2021), 2021, pp. 12029–12039.
[18] J. Pearl, J.H. Kim, Studies in semi-admissible heuristics, IEEE Trans. Pattern Anal. Mach. Intell. (1982) 392–399.
[19] I. Pohl, Heuristic search viewed as path finding in a graph, Artif. Intell. 1 (1970) 193–204.
[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the 31st Conference

on Neural Information Processing Systems (NeurIPS 2017), 2017.
[21] D. Kirilenko, A. Andreychuk, A. Panov, K. Yakovlev, Transpath: learning heuristics for grid-based pathfinding via transformers, in: Proceedings of the 37th AAAI

Conference on Artificial Intelligence (AAAI 2023), 2023, pp. 12436–12443.
[22] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, T. Aila, Alias-free generative adversarial networks, Adv. Neural Inf. Process. Syst. 34 (2021)

852–863.
[23] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image synthesis with latent diffusion models, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
[24] M. Likhachev, G.J. Gordon, S. Thrun, ARA*: Anytime A* with provable bounds on sub-optimality, in: S. Thrun, L.K. Saul, B. Schölkopf (Eds.), Advances in Neural

Information Processing Systems, vol. 16, NIPS 2003, MIT Press, 2003, pp. 767–774, http://papers .nips .cc /paper /2382 -ara -anytime -a -with -provable -bounds -on -
sub -optimality .pdf, 2003.

[25] E.A. Hansen, R. Zhou, Anytime heuristic search, J. Artif. Intell. Res. 28 (2007) 267–297.
[26] L. Cohen, M. Greco, H. Ma, C. Hernández, A. Felner, T.S. Kumar, S. Koenig, Anytime focal search with applications, in: Proceedings of the 27th International

Joint Conference on Artificial Intelligence (IJCAI 2018), 2018, pp. 1434–1441.
[27] J.T. Thayer, W. Ruml, Bounded suboptimal search: a direct approach using inadmissible estimates, in: Proceedings of the 22nd International Joint Conference

on Artificial Intelligence (IJCAI) 2011, 2011, pp. 674–679.
[28] D. Gilon, A. Felner, R. Stern, Dynamic potential search – a new bounded suboptimal search, in: Proceedings of the 9th Annual Symposium on Combinatorial

Search (SOCS 2016), 2016, pp. 36–44.
[29] M. Fickert, T. Gu, W. Ruml, New results in bounded-suboptimal search, in: Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI 2022),

2022, pp. 10166–10173.
[30] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, M. Likhachev, Multi-heuristic a, Int. J. Robot. Res. 35 (2016) 224–243.
[31] M. Likhachev, A. Stentz, R* search, in: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008), AAAI Press, 2008, pp. 344–350, http://

www .aaai .org /Library /AAAI /2008 /aaai08 -054 .php.
[32] M. Bagatella, M. Olšák, M. Rolínek, G. Martius, Planning from pixels in environments with combinatorially hard search spaces, Adv. Neural Inf. Process. Syst.

34, NeurIPS 2021 (2021) 24707–24718.
[33] M.V. Pogančić, A. Paulus, V. Musil, G. Martius, M. Rolinek, Differentiation of blackbox combinatorial solvers, in: Proceedings of the 8th International Conference

on Learning Representations (ICLR 2020), 2020.
[34] Z. Li, Q. Chen, V. Koltun, Combinatorial optimization with graph convolutional networks and guided tree search, in: Proceedings of the 32nd Conference on

Neural Information Processing System, NeurIPS 2018, 2018.
[35] M. Pándy, W. Qiu, G. Corso, P. Veličković, Z. Ying, J. Leskovec, P. Lio, Learning graph search heuristics, in: Proceedings of the 1st Learning on Graphs Conference

(LoG 2022), 2022, pp. 10:1–10:13.
[36] A. Tamar, Y. Wu, G. Thomas, S. Levine, P. Abbeel, Value iteration networks, in: Proceedings of the 30th International Conference on Neural Information Processing

Systems (NeurIPS 2016), 2016, pp. 2154–2162.
[37] M. Bhardwaj, S. Choudhury, S. Scherer, Learning heuristic search via imitation, in: Proceedings of the 1st Conference on Robot Learning (CoRL 2017), 2017,
24

pp. 271–280.

http://refhub.elsevier.com/S0004-3702(24)00174-7/bib77063F49FCB51EDFF8ECE08C7E6E647Cs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib921BC38C7C145A369A7E8AFA054D700Bs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF18A471EB40CA2A7896B1FB4FF9938E2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF18A471EB40CA2A7896B1FB4FF9938E2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib5375B13630834F291FC00FA40BAD336Ds1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF373DFF1ED0302A9396B232C26B94716s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0A0A77037430F4B349659CC93B53FA13s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0A0A77037430F4B349659CC93B53FA13s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6B3D21AF59D7F50865F63DBEE25C8223s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6B3D21AF59D7F50865F63DBEE25C8223s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibBC99E547C5F798E8EEFEFD03ED409CB2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib4930849F3076CA29B2A530BB9D25C42Bs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib4930849F3076CA29B2A530BB9D25C42Bs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib9B71A2A269BF4C592A41A7C3A6B06610s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib9B71A2A269BF4C592A41A7C3A6B06610s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB07B19AC64FADFD465F6F0A72774B24As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6B140067FC4A3EE0DAC2AFC78AF56B76s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6B140067FC4A3EE0DAC2AFC78AF56B76s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib3D34C34B824A5F352D8896B1AF6D6E86s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib3D34C34B824A5F352D8896B1AF6D6E86s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDFBA4DEE94D37E402BFC0641166FAAAAs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib4046BBF539295C86E682AD61B8AF9D78s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib4046BBF539295C86E682AD61B8AF9D78s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF5E09B8A40DDA9C6720798709986F9EBs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF5E09B8A40DDA9C6720798709986F9EBs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDF88AB1A453C088CA641DB8DD5E5C454s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDF88AB1A453C088CA641DB8DD5E5C454s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib7FAD93F83D9EAF679DF5B2EF0C1BA0B6s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibAC95D381B4FF464B6ED5792CF1524E17s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib31E3B0E4211047EF95DE0BAD45123C1As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2217E9C576B966E5FD1074A6A361EE9As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2217E9C576B966E5FD1074A6A361EE9As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD5EA37B29C853DF86E56F3D2DF513E5As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD5EA37B29C853DF86E56F3D2DF513E5As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF75E6391D22D14832F09E1DCAEB41433s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF75E6391D22D14832F09E1DCAEB41433s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib476378E2201E6D3D6A46B5796045B7F9s1
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib476378E2201E6D3D6A46B5796045B7F9s1
http://papers.nips.cc/paper/2382-ara-anytime-a-with-provable-bounds-on-sub-optimality.pdf
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib476378E2201E6D3D6A46B5796045B7F9s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib541998E32F036BC14299C17ADF43960As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib379A51718AF9ECC1F85875155D328B92s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib379A51718AF9ECC1F85875155D328B92s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB96F9F383EA41A1F24D46D01C21939A2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB96F9F383EA41A1F24D46D01C21939A2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB38480284EB4AC60EFA217E311CD40D7s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB38480284EB4AC60EFA217E311CD40D7s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6F037968484432686758D7A1CD85BE8Ds1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6F037968484432686758D7A1CD85BE8Ds1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibA3DF1F6A0E526463CEBF53D338A1CA86s1
http://www.aaai.org/Library/AAAI/2008/aaai08-054.php
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90EB20E693033467FBF651AE8B5BEA9Fs1
http://www.aaai.org/Library/AAAI/2008/aaai08-054.php
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90EB20E693033467FBF651AE8B5BEA9Fs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib7895A17ADBC0F8D907238AA172AF2CB2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib7895A17ADBC0F8D907238AA172AF2CB2s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2666476B00F7742F7CB5906E95B3B948s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2666476B00F7742F7CB5906E95B3B948s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib08C55E76670F2EF80DB7A9FE217087E7s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib08C55E76670F2EF80DB7A9FE217087E7s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2F05C59490B7856EF66005359F20AC11s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2F05C59490B7856EF66005359F20AC11s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6DC7E2E892D2F42672532636B4F926F3s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6DC7E2E892D2F42672532636B4F926F3s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCB5B2D302B8218A4B781D8E048D93BEAs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCB5B2D302B8218A4B781D8E048D93BEAs1

Artificial Intelligence 338 (2025) 104238D. Kirilenko, A. Andreychuk, A.I. Panov et al.

[38] A.I. Panov, K.S. Yakovlev, R. Suvorov, Grid path planning with deep reinforcement learning: preliminary results, Proc. Comput. Sci. 123 (2018) 347–353.
[39] T. Li, R. Chen, B. Mavrin, N.R. Sturtevant, D. Nadav, A. Felner, Optimal search with neural networks: challenges and approaches, in: Proceedings of the 15th

International Symposium on Combinatorial Search (SoCS 2015), 2022, pp. 109–117.
[40] M. Greco, J. Toro, C. Hernández-Ulloa, J.A. Baier, K-focal search for slow learned heuristics, in: Proceedings of the 15th International Symposium on Combinatorial

Search (SoCS 2015), 2022, pp. 279–281.
[41] N. Soboleva, K. Yakovlev, Gan path finder: preliminary results, in: Proceedings of the 42nd German Conference on AI (KI 2019), 2019, pp. 316–324.
[42] C. Xia, A. El Kamel, Neural inverse reinforcement learning in autonomous navigation, Robot. Auton. Syst. 84 (2016) 1–14, https://doi .org /10 .1016 /j .robot .2016 .

06 .003, publisher: Elsevier B.V.
[43] D.S. Chaplot, E. Parisotto, R. Salakhutdinov, Active neural localization, in: International Conference on Learning Representations, 2018, pp. 1–15, http://

arxiv .org /abs /1801 .08214, arXiv :1801 .08214.
[44] H.T.L. Chiang, A. Faust, M. Fiser, A. Francis, Learning navigation behaviors end-to-end with AutoRL, IEEE Robot. Autom. Lett. 4 (2019) 2007–2014, https://

doi .org /10 .1109 /LRA .2019 .2899918, arXiv :1809 .10124.
[45] A. Francis, A. Faust, H.T.L. Chiang, J. Hsu, J.C. Kew, M. Fiser, T.W.E. Lee, Long-range indoor navigation with PRM-RL, IEEE Trans. Robot. 36 (2020) 1115–1134,

https://doi .org /10 .1109 /TRO .2020 .2975428, arXiv :1902 .09458.
[46] B. Liu, X. Xiao, P. Stone, A lifelong learning approach to mobile robot navigation, IEEE Robot. Autom. Lett. 6 (2021) 1090–1096, https://doi .org /10 .1109 /LRA .

2021 .3056373, arXiv :2007 .14486.
[47] D. Shah, A. Bhorkar, H. Leen, I. Kostrikov, N. Rhinehart, S. Levine, Offline reinforcement learning for visual navigation, in: 6th Conference on Robot Learning,

2022, http://arxiv .org /abs /2212 .08244, arXiv :2212 .08244.
[48] D. Shah, B. Eysenbach, N. Rhinehart, S. Levine, Rapid exploration for open-world navigation with latent goal models, in: Proceedings of the 5th Conference on

Robot Learning, vol. 164, 2021, pp. 674–684, http://arxiv .org /abs /2104 .05859, arXiv :2104 .05859.
[49] A. Staroverov, D.A. Yudin, I. Belkin, V. Adeshkin, Y.K. Solomentsev, A.I. Panov, Real-time object navigation with deep neural networks and hierarchical rein-

forcement learning, IEEE Access 8 (2020) 195608–195621, https://doi .org /10 .1109 /ACCESS .2020 .3034524, https://ieeexplore .ieee .org /document /9241850/.
[50] D.S. Chaplot, D. Gandhi, A. Gupta, R. Salakhutdinov, Object goal navigation using goal-oriented semantic exploration, in: Advances in Neural Information

Processing Systems, vol. 33, 2020, pp. 1–11, http://arxiv .org /abs /2007 .00643, arXiv :2007 .00643.
[51] A. Staroverov, A. Panov, Hierarchical landmark policy optimization for visual indoor navigation, IEEE Access 10 (2022) 70447–70455, https://doi .org /10 .1109 /

ACCESS .2022 .3182803, https://ieeexplore .ieee .org /document /9795006/.
[52] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, J. Salvador, K. Ehsani, W. Han, E. Kolve, A. Farhadi, A. Kembhavi, R. Mottaghi, ProcTHOR: Large-Scale Embodied

AI Using Procedural Generation, Advances in Neural Information Processing Systems, vol. 35, 2022, http://arxiv .org /abs /2206 .06994, arXiv :2206 .06994.
[53] L. Mezghani, S. Sukhbaatar, T. Lavril, O. Maksymets, D. Batra, P. Bojanowski, K. Alahari, Memory-augmented reinforcement learning for image-goal navigation,

in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022, http://arxiv .org /abs /2101 .05181, arXiv :2101 .05181.
[54] M. Shridhar, L. Manuelli, D. Fox, Perceiver-actor: a multi-task transformer for robotic manipulation, in: Proceedings of the 6th Conference on Robot Learning,

vol. 205, 2023, pp. 785–799, http://arxiv .org /abs /2209 .05451, arXiv :2209 .05451.
[55] B.Y. Lin, C. Huang, Q. Liu, W. Gu, S. Sommerer, X. Ren, On grounded planning for embodied tasks with language models, in: Proceedings of the AAAI Confer-

ence on Artificial Intelligence, vol. 37, 2023, pp. 13192–13200, https://arxiv .org /abs /2209 .00465 ?utm _source =researcher _app &utm _medium =referral &utm _
campaign =RESR _MRKT _Researcher _inbound, arXiv :2209 .00465.

[56] D. Shah, B. Osinski, B. Ichter, S. Levine, LM-nav: robotic navigation with large pre-trained models of language, vision, and action, in: Proceedings of the 6th
Conference on Robot Learning, vol. 205, 2023, pp. 492–504, http://arxiv .org /abs /2207 .04429, arXiv :2207 .04429.

[57] A. Nash, K. Daniel, S. Koenig, A. Felner, Theta*: any-angle path planning on grids, in: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI
2007), 2007, pp. 1177–1183.

[58] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), 2016, pp. 770–778.

[59] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An
image is worth 16x16 words: transformers for image recognition at scale, in: Proceedings of the 9th International Conference on Learning Representations (ICLR
2021), 2021, https://openreview .net /forum ?id =YicbFdNTTy.

[60] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang, D. Tao, A survey on vision transformer, IEEE Trans. Pattern
Anal. Mach. Intell. 45 (1) (2023) 87–110, https://doi .org /10 .1109 /TPAMI .2022 .3152247.

[61] A. Panov, K. Yakovlev, Transpath dataset: generative models for grid-based and image-based pathfinding, Mendeley data, https://doi .org /10 .17632 /bc3zmk2thy .
1, 2023.

[62] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv :1412 .6980, 2014.
[63] L.N. Smith, N. Topin, Super-convergence: very fast training of residual networks using large learning rates, arXiv preprint, arXiv :1708 .07120, 2018, http://

arxiv .org /abs /1708 .07120.
[64] N.R. Sturtevant, Benchmarks for grid-based pathfinding, IEEE Trans. Comput. Intell. AI Games 4 (2012) 144–148.
[65] A. Candela, D. Wettergreen, An approach to science and risk-aware planetary rover exploration, IEEE Robot. Autom. Lett. 7 (2022) 9691–9698.
[66] V.-D. Hoang, D.C. Hernández, J. Hariyono, K.-H. Jo, Global path planning for unmanned ground vehicle based on road map images, in: Proceedings of the 7th

International Conference on Human System Interactions (HSI 2014), IEEE, 2014, pp. 82–87.
[67] S. Vélez, R. Vacas, H. Martín, D. Ruano-Rosa, S. Álvarez, High-resolution UAV RGB imagery dataset for precision agriculture and 3d photogrammetric recon-

struction captured over a pistachio orchard (pistacia vera l.) in Spain, Data 7 (2022) 157.
[68] S.S. Sutton, M. Chojnacki, A.S. McEwen, R.L. Kirk, C.M. Dundas, E.I. Schaefer, S.J. Conway, S. Diniega, G. Portyankina, M.E. Landis, et al., Revealing active Mars

with hirise digital terrain models, Remote Sens. 14 (2022) 2403.
[69] Y. Pang, J. Lin, T. Qin, Z. Chen, Image-to-image translation: methods and applications, IEEE Trans. Multimed. 24 (2022) 3859–3881, https://doi .org /10 .1109 /
25

TMM .2021 .3109419.

http://refhub.elsevier.com/S0004-3702(24)00174-7/bibBD6FF196DCC57E1406C1AB8F013BF7A8s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib379D1B4153E843E00CDDD5DA1E23C589s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib379D1B4153E843E00CDDD5DA1E23C589s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCA6F640F01BE1CE6381352B2C592EE8Es1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCA6F640F01BE1CE6381352B2C592EE8Es1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib2267C9E7628B9E173FC73CD7014E4DD1s1
https://doi.org/10.1016/j.robot.2016.06.003
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib7FD71245D2C5A319503FB9F9D9771AF4s1
https://doi.org/10.1016/j.robot.2016.06.003
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib7FD71245D2C5A319503FB9F9D9771AF4s1
http://arxiv.org/abs/1801.08214
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDEE0561F92455167D204801088D52E8Bs1
http://arxiv.org/abs/1801.08214
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDEE0561F92455167D204801088D52E8Bs1
https://doi.org/10.1109/LRA.2019.2899918
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib78AE19B0521493EE9F1BE32BCF5BD44As1
https://doi.org/10.1109/LRA.2019.2899918
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib78AE19B0521493EE9F1BE32BCF5BD44As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib9DBC431045E0CE908937DB4A8BD8E72Es1
https://doi.org/10.1109/TRO.2020.2975428
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib9DBC431045E0CE908937DB4A8BD8E72Es1
https://doi.org/10.1109/LRA.2021.3056373
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCD286A5A53B3411B5B29C756C41C4CE9s1
https://doi.org/10.1109/LRA.2021.3056373
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCD286A5A53B3411B5B29C756C41C4CE9s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib101B4EF431DCAF3A1D7CC74A8CAA34F4s1
http://arxiv.org/abs/2212.08244
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib101B4EF431DCAF3A1D7CC74A8CAA34F4s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0C8B9F50130F7E80CB0C38BCD52734ADs1
http://arxiv.org/abs/2104.05859
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0C8B9F50130F7E80CB0C38BCD52734ADs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib18A71970E2BC0C4DD5BB45FBB8D88A5As1
https://doi.org/10.1109/ACCESS.2020.3034524
https://ieeexplore.ieee.org/document/9241850/
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib18A71970E2BC0C4DD5BB45FBB8D88A5As1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib8D96A1C7EEB0EE9A0524B209317B8B14s1
http://arxiv.org/abs/2007.00643
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib8D96A1C7EEB0EE9A0524B209317B8B14s1
https://doi.org/10.1109/ACCESS.2022.3182803
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD55C25252931A64BC59C8FFEA7D46F6Es1
https://doi.org/10.1109/ACCESS.2022.3182803
https://ieeexplore.ieee.org/document/9795006/
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD55C25252931A64BC59C8FFEA7D46F6Es1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD1F9DAB071B0FD44C3B0153DBEE5248Fs1
http://arxiv.org/abs/2206.06994
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibD1F9DAB071B0FD44C3B0153DBEE5248Fs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib832DF5980144267E4657BDDD2441531Cs1
http://arxiv.org/abs/2101.05181
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib832DF5980144267E4657BDDD2441531Cs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90049D2E85F7561B4DE023ADB1F18039s1
http://arxiv.org/abs/2209.05451
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90049D2E85F7561B4DE023ADB1F18039s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib1E3F55B87523857EE3CDEE5BCB74C763s1
https://arxiv.org/abs/2209.00465?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib1E3F55B87523857EE3CDEE5BCB74C763s1
https://arxiv.org/abs/2209.00465?utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib1E3F55B87523857EE3CDEE5BCB74C763s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6879B3926560A0B0C3A26C1FD5D30503s1
http://arxiv.org/abs/2207.04429
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib6879B3926560A0B0C3A26C1FD5D30503s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDE751C3E74C37958385FA691C90C9D40s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibDE751C3E74C37958385FA691C90C9D40s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib23F14E6549054BC06537DE9E59E8EB4Bs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib23F14E6549054BC06537DE9E59E8EB4Bs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCA244F46885B39795AD867590330C2FAs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCA244F46885B39795AD867590330C2FAs1
https://openreview.net/forum?id=YicbFdNTTy
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibCA244F46885B39795AD867590330C2FAs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0C2319D3B39C304D872E0D28CB3F087Cs1
https://doi.org/10.1109/TPAMI.2022.3152247
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib0C2319D3B39C304D872E0D28CB3F087Cs1
https://doi.org/10.17632/bc3zmk2thy.1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF78DF57B63AA92C098A9156EB17A36E7s1
https://doi.org/10.17632/bc3zmk2thy.1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibF78DF57B63AA92C098A9156EB17A36E7s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://arxiv.org/abs/1708.07120
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90D901C85186F16F5CEF7F4366CD8A81s1
http://arxiv.org/abs/1708.07120
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib90D901C85186F16F5CEF7F4366CD8A81s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibEF855AEB9ACB239E23225C95847C87EDs1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib319BCDBB6F9F8F59ED98B05891DF38F8s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB3C4C7197B54F6E5A6753AD74B930374s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bibB3C4C7197B54F6E5A6753AD74B930374s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib882E23A4B6410BCE1EAA5C54B03EDC99s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib882E23A4B6410BCE1EAA5C54B03EDC99s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib614A118CBCC430950DFFE3A45A65DE60s1
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib614A118CBCC430950DFFE3A45A65DE60s1
https://doi.org/10.1109/TMM.2021.3109419
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib73792E72A20D171552810E3FB5911408s1
https://doi.org/10.1109/TMM.2021.3109419
http://refhub.elsevier.com/S0004-3702(24)00174-7/bib73792E72A20D171552810E3FB5911408s1

	Generative models for grid-based and image-based pathfinding
	1 Introduction
	2 Related work
	3 Pathfinding on binary grids
	3.1 Problem statement
	3.2 Method
	3.2.1 Background
	A*
	Heuristics
	Weighted A*
	Focal search
	Pseudocode

	3.2.2 Search with learned heuristic functions
	3.2.3 Types of the heuristic functions being learned
	3.2.4 Learning supervision
	3.2.5 Neural network architecture

	3.3 Empirical evaluation
	3.3.1 Dataset
	3.3.2 Planners
	3.3.3 Training setup
	3.3.4 Results
	3.3.5 Runtime breakdown
	3.3.6 Evaluation on out-of-the-distribution dataset
	3.3.7 Ablation study
	3.3.8 Pathfinding with PPMs without systematic search

	4 Pathfinding on image representations of digital elevation models
	4.1 Problem statement
	4.2 Dataset
	4.3 Method
	4.3.1 Models
	StyleGAN3
	Latent diffusion

	4.4 Empirical evaluation

	5 Discussion and limitations
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A On different ways to create PPMs
	A.1 A* vs. theta* to create grouth-truth PPMs
	A.2 Additional techniques to further focus theta*-PPMs

	Appendix B On varying the suboptimality factor in grid-based pathfinding
	Appendix C On post-processing of the PPMs for image-based pathfinding
	Data availability
	References

