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a b s t r a c t

Deep reinforcement learning (RL) shows impressive results in complex gaming and robotic environ-
ments. These results are commonly achieved at the expense of huge computational costs and require
an incredible number of episodes of interactions between the agent and the environment. Hierarchical
methods and expert demonstrations are among the most promising approaches to improve the sample
efficiency of reinforcement learning methods. In this paper, we propose a combination of methods
that allow the agent to use low-quality demonstrations in complex vision-based environments with
multiple related goals. Our Forgetful Experience Replay (ForgER) algorithm effectively handles expert
data errors and reduces quality losses when adapting the action space and states representation
to the agent’s capabilities. The proposed goal-oriented replay buffer structure allows the agent
to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations. Our
method has a high degree of versatility and can be integrated into various off-policy methods. The
ForgER surpasses the existing state-of-the-art RL methods using expert demonstrations in complex
environments. The solution based on our algorithm beats other solutions for the famous MineRL
competition and allows the agent to demonstrate the behavior at the expert level.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Modern reinforcement learning (RL) methods require huge
omputational resources and a large number of episodes of in-
eraction with the environment, especially for learning effective
olicies in complex hierarchical and robotic environments [1,2].
ne of the most promising approaches to developing sample-
fficient RL methods is imitation learning [3,4] and expert demon-
trations [5,6]. Expert trajectories for the imitation are obtained
y recording human actions or running a pre-trained algorithm.
etting high-quality suboptimal demonstrations is a separate,
ime-consuming task that is comparable in complexity with data
arkup for supervised learning [7]. Another challenge is adapting
xpert trajectories to the capabilities and limitations of agents. It
s often impossible to accurately correlate the actions of an expert
nd an agent, especially in hybrid discrete–continuous cases.

The code (and data) in this article has been certified as Reproducible
by Code Ocean:https://help.codeocean.com/en/articles/1120151-code-ocean-s-
verification-process-for-computational-reproducibility. More information on the
Reproducibility Badge Initiative is available at www.elsevier.com/locate/knosys.
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The standard approach is when we simplify the task for col-
lecting expert data by reducing the quality requirements for
trajectories and the optimal strategy used by the expert [8,9]. This
paper, considers using demonstrations in off-policy RL methods
with a replay buffer as the most suitable method for learning and
planning on the trajectories collected by a secondary strategy [10,
11]. Using noisy trajectories applied for the initial buffer filling
allows the agent to learn faster in the environment. However,
ineffective actions in demonstrations are another source of agent
errors and unobserved states that are not covered by expert
trajectories. This is even more likely to lead to a catastrophic drop
in total reward and it is the main problem in RL from imperfect
demonstrations [8].

We propose a new hierarchical experience replay technique
that allows overcoming the main disadvantages for the existing
methods of off-policy learning from demonstrations. We propose
managed forgetting expert data by reducing their ratio in the
experience replay buffer and learning bathes. In contrast to the
previously used approaches with a constant priority and a frac-
tion of expert data [5,12], our approach rather effectively deals
with the influence of low-quality expert actions and adapts the
trajectories to a discrete space of agent actions. We applied a

hierarchical approach to use demonstrations and to fill a replay
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uffer. We proposed an algorithm for extracting sub-goals from
xpert data that correspond to certain parts of trajectories and
ubtasks. Following the selected sub-goals, the agent constructs
replay buffer in which parts of each sub-task’s trajectories are
xplicitly separated. This replay buffer structure allows generat-
ng meta-actions and tuning them during interaction with the
nvironment. Finally, we developed a hierarchical task-oriented
ugmentation of expert data to partially reduce the requirement
or the amount of data necessary for high-quality imitations.

We used these techniques to develop a new Forgetful Expe-
ience Replay (ForgER) algorithm that forges expert data while
ollecting its own experience automatically correlated with sub-
asks performed in the environment. To investigate the contri-
ution and features of the main ideas, we considered two envi-
onment classes, i.e., the indicative simple low-dimensional envi-
onments with simple action space (Lunar Lander, Torcs, and oth-
rs) [13] and the complex hierarchical vision-based Minecraft [14]
ith hybrid discrete–continuous action space. Using simple en-
ironments, we compared ForgER with the well-known state-of-
he-art (SOTA) approaches. We showed the effect of the forgetting
echnique in three main cases: poor quality of expert data, incor-
ect choice of discretization, and variability of the environment,
hich leads to a discrepancy between the expert’s value function
nd the environment in which the agent operates. The existing
ff-policy methods using demonstrations are designed to work
n environments where there is no sub-goal structure, and a
imple set of actions is used. Our approach extends to work in
omplex hierarchical environments with a mixed (discrete and
ontinuous) set of actions. We apply ForgER in the well-known
omplex Minecraft environment, which has recently served as
good benchmark for testing RL algorithms in rich hierarchical
ettings [15,16]. This allows us to demonstrate the performance
f the ForgER and surpass the results of recent SOTA methods in
he MineRL competition [17].

The main contributions of this work are as follows. We investi-
ated the impact of poor-quality expert data on the effectiveness
f off-policy methods. We proposed a new forgetting mechanism
o deal with a catastrophic drop in productivity due to poor-
uality expert trajectories and extended the approach of using
emonstrations to partially observed and hierarchical environ-
ents. We developed a data augmentation method in RL that
eakens the requirements for the amount and quality of expert
ata for efficient imitation. We conducted a detailed experimental
tudy on simple environments and showed the advantage of
ur method as compared to the known SOTA approaches. Using
he proposed algorithm, we surpass the existing algorithms for
olving hierarchical tasks in the Minecraft environment.

. Background

We consider a Markov decision process (MDP) [18] defined by
he tuple (S, A, T , R, γ ) where S is the state space, A is the action
pace, the unknown transition probability T : S×A×S → [0,∞)
represents the probability density of reaching st+1 ∈ S from st ∈ S
by taking the action a ∈ A, γ ∈ [0, 1] is the discount factor,
nd the bounded real-valued function R : S × A → [rmin, rmax]

epresents the reward of each transition. Using the policy π (at |st )
to sequentially generate actions we obtain a trajectory through
the environment τ = (s0, a0, r0, s1, a1, r1, . . . ). For any given
policy, we define the action–value function (Q-function) as

Q π (s, a) = Eτ :s0=s,a0=a

[∑
t

γ tR(st , at )

]
. (1)

This function represents the expected discounted future total
return. The goal is to learn the optimal policy π∗, that maximizes
he action–value function for each state in S [19].
2

Q-learning [20] is a well-known RL algorithm that uses sam-
ples of experience of the form (st , at , rt , st+1) to estimate the
optimal action–value function Q ∗(st , at ). Hereby, Q ∗(st , at ) is the
xpected return of selecting action at in state st and following
n optimal policy π∗. Deep RL methods like DQN [21], Double
QN [22] and Dueling DQN [23] parameterize the Q-function and
epresent it as Qθ (st , at ), where neural network weights θ are
pdated using stochastic gradient descent. There are two main
oints in DQN that allowed us to apply deep neural networks to
he RL problem. First, it uses a separate target network that is
opied after a certain number of steps from the regular network.
econd, it uses a replay buffer D where the agent adds all of its
xperiences. The use of these techniques leads to better stability
f the target Q-function.
Most challenging tasks in reinforcement learning provide only

artial observations. In our work, we conduct the main experi-
ents in a partially observed environment MineRL, the model of
hich is represented as a Partially Observable Markov Decision
rocess (POMDP) [24]. A POMDP is a tuple (S,O, A, T , R, ω, γ ),

where S, A, R, T , and γ are defined as in an MDP, O is the finite
set of the observations, and ω(s, o) is the observation probability
distribution. At every time step t , the agent executes an action
at ∈ A and receives a reward R(st , at ) and an observation ot+1 ∈ O.
The agent does not observe the true state st+1, and only the
observation provides the agent a clue about what the state st+1 ∈
S is. Usually, to account for the agent’s interaction history with
the environment the concept of a belief state is introduced. The
belief state is a probability distribution bt : S → [0, 1] over S,
such that bt (s) is the probability that the agent is in state s ∈ S
given the history up to time t . The belief state bt+1 is determined
as following

bt+1(s′) ∝ ω(s′, ot+1)
∑
s∈S

p(s, at , s′)bt (s) (2)

for all s′ ∈ S.
The idea of using demonstrations is to train the agent as

much as possible from the demonstration data before running in
the real environment. Most algorithms such as DQfD [5] work
in a fully observable case. The use of demonstrations occurs
once, i.e., during the imitating phase in which the agent learns
to imitate the demonstrator. During this imitating phase, the
agent samples mini-batches from the demonstration data and
updates the network by applying a loss function with a margin
classification part [25]. This loss grounds the values of the unseen
actions to reasonable values and makes the greedy policy imitate
the demonstrator. Using regularization on the network weights
and biases prevents the network from overfitting on the relatively
small demonstration dataset.

When the imitating phase is completed, the agent begins to fill
the replay buffer with self-generating data representing its own
experience. In such works as PDD DQN [12] for forming a sample,
prioritization is used. It consists of adding different small positive
constants to the priorities of the agent and demonstration tran-
sitions to control the relative sampling of demonstration versus
agent data. In our work, we also use this two-phase approach.

3. Forgetful experience replay

In addition to simple single-goal environments, our approach
extends to partially observable hierarchical tasks in which a hi-
erarchical structure of subtasks given or can be extracted. This
assumption allows us to simplify the difficult POMDP task with
sparse rewards to a set of simpler ones. We define each subtask
as a meta-action or an option [26]. An option is triple (I, π, β)
in which I ∈ O is the initiation set, π is the inner option policy,
and β is the termination function. Additionally, each option may
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ave its own function fp that defines pseudo-rewards. For some
asks, the hierarchical structure can be extracted automatically or
emi-automatically using human demonstrations.
We will consider such problems in which sub-goals can be

etermined by the features extracted from expert trajectories.
xamples of such features are the appearance of an item in the
haracter’s inventory, reaching a new level, receiving a certain
eward. To represent the dependency of one subtask on another,
e construct a directed weighted graph G = (V , E), where the
ertices V = {g1, g2, . . . , gn} are the extracted subgoals (feature
ectors). The set of edges E is defined by transitions from one sub-

goal to another in expert trajectories, the weights of the edges
are proportional to the number of such transitions. This graph
needs to be turned into a tree to apply one of the hierarchical
reinforcement learning methods. In our method, we use the op-
tions framework. Topological sorting and various heuristics can
be used for this conversion. The resulting tree does not guarantee
the convergence of hierarchical approaches, and adjusting its
structure is a further direction of our work.

The agent learning process consists of two phases: the imitat-
ing phase using demonstrations and the forging phase when the
agent refines the policy during interaction with the environment.
The architecture of the ForgER agent is shown in Fig. 1. In both
phases, the agent uses a replay buffer D structured regarding the
current sub-goal tree G. The pseudocode of the ForgER approach
is sketched in Algorithm 1. All demonstrations are divided into
expert Ddemo

g and extra Dextra
g for each subtask g , which are used

during the imitating phase. The agent samples mini-batches from
the demonstration and updates the network by applying the
POMDP goal-specific loss function:

L(Q g ) = LPDQ (Q g )+ λ1Ln(Q g )+ λ2LPE(Q g )+ λ3LL2(Q g ) (3)

where g ∈ V (G) is a subtask during which experience is collected.
LPDQ is the 1-step double Q-learning loss:

LPDQ (Q g ) = (R(ot , at )+ γQ g
θ ′
(ot+1, argmax

a
Q g

θ (ot+1, a))

− Q g
θ (ot , at ))

2
, (4)

and Ln is the n-step double Q-learning loss. This part of the over-
all loss function ensures that the network satisfies the Bellman
equation and helps propagate the values of the expert’s trajectory
to all the earlier states [27]. LPE is a supervised large margin
classification loss:

LPE(Q g ) = max
at∈A
[Q g (ot , at )+ l(aEt , at )] − Q g (ot , aEt ), (5)

where aEt is the action that the expert demonstrator took in state
st and l(aEt , at ) is the margin function that is 0 when at = aEt and
positive otherwise. Finally, LL2 is an L2 regularization loss on the
network weights and biases.

The structured replay buffer is defined by D = {di = (o, a, r,
o′, λ2, g)} in which λ2 is the margin weight. Each option policy
π g is formed using a new hierarchical augmentation approach.
During the forging phase, forgetting is used when the dynamic
adjustment of the ratio of expert and agent experience occurs. In
addition to the introduced replay buffer, we add noisy layers, that
are used along with ϵ-greedy exploration.

3.1. Forgetting in learning from demonstrations

The forgetting approach is part of our architecture designed for
hierarchical tasks, but it can be used separately for learning from
demonstrations, where it showed better results than the standard
approach. In this paper, we address these three problems of
expert demonstrations, which could be solved using the ForgER
algorithm. The first one is the suboptimality of the expert’s policy,
3

Algorithm 1 Forgetful experience replay
1: Inputs: G : subtask graph, θ : weights for the initial sub-

task network, θ ′ : weights for the target subtask network,
τ : frequency at which to update the target network, k : the
number of the imitating steps, D : structured replay buffer,
fp : goal-oriented pseudo reward function, frg (t) : forgetting
ratio function

2: for g ∈ V (G) do
3: tg ← 0, θg ← θ , θ ′g ← θ ′,
4: Ddemo

g ← (o, a, fp(o, r), o′, a′, 1, g) : di ∈ D where gi = g
5: Dextra

g ← (o, a, 0, o′, a′, 0, gi) : di ∈ D where gi ̸= g
6: imitating(g,Ddemo

g ,Dextra
g )

7: end for
8: for episode k ∈ {1, 2, . . .} do
9: forging(g,Ddemo

g ,Dagent
g , tg , fp, k, frg (k))

10: Select next subtask g from G
11: end for

Algorithm 2 ForgER forging phase

1: function forging
2: Inputs: g : current subtask, Ddemo

g : initialized with demon-
stration data for current subtask g , Dagent

g : initialized with
data collected by agent for current subtask g , t: current
step, fp: pseudo reward function, k: current episode, frg (k):
forgetting until episode

3: while subtask g not solved do
4: Sample action from policy a ∼ π

ϵQθg

5: Play action a and observe (o′, r).
6: Replace (o, a, r, o′) by (o, a, fp(o, r), o′)
7: Store (o, a, r, o′, 0, g) in D
8: Sample a mini-batch of n transitions from Ddemo

g and
Dagent

g with forgetting rate frg (k)
9: Calculate loss L(Q g ) using target network and perform a

learning update to θg
10: if t mod τ = 0 then θ ′cs ← θcs end if
11: t ← t + 1
12: end while
13: end function

Algorithm 3 ForgER imitating phase

1: function imitating
2: Inputs: g : current subtask, Ddemo

g : initialized with demon-
stration data for current subtask g , Dextra

g : initialized with
data from other subtasks

3: for steps t ∈ {1, 2, . . . k} do
4: Sample a mini-batch of n transitions from Ddemo

g and Dextra
g

5: Calculate loss L(Q g ) using target network θ ′g and perform
a learning update to θg

6: if t mod τ = 0 then θ ′cs ← θg end if
7: end for
8: end function

which can be caused by the expert’s errors. The second one is the
discrepancy between the action space of the agent and the expert.
For example, the data taken from robot sensors may contain noise
and errors, imperfect conditions for recording demonstrations,
the limitations of the space in which the agent can act. The third
problem is the imbalance of the expert trajectories, which may
be caused by incorrect data processing (e.g., the selection of only
the best trajectories with the best initial conditions).
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Fig. 1. ForgER architecture diagram for hierarchical setting. The training starts with the Imitating phase, that uses only expert data. The idea of augmentation is
to use the entire dataset to train each agent in a special way. During the training of each of the agents, the batch is sampled from the buffer Ddemo

g with the data
belonging to the current subtask g , and from the extra replay buffer Dextra

g with zeroed both rewards and margin loss weights λ2 . The Forging phase includes
nteraction with the environment. This phase is universal and can be applied to non-hierarchical settings in learning from demonstrations task. The sampling from
he expert and agent buffers occurs with a certain ratio function ρ = frg (t) (forgetting rate), which gradually reduces the amount of used expert data.
4

a
s
C
m
r
e
c
d
i
D

m
h
o
g
a
w
a
t
e
s
g
(
t

a
a

There are several ways to sample a batch from the replay
buffer. The first way is to store all data in the same buffer.
Expert demonstrations are always present in the replay buffer
and they are sampled with high priority. The second way is to
store data in two separated buffers and sample a batch in a
specific ratio (e.g., half of the batch data from the expert, half
from the agent) [28]. And the final way is a ForgER approach: data
is sampled in a dynamic ratio according to frg (t). The amount of
expert data in the batch is gradually decreasing.

Forgetting is the process of dynamically changing the sampling
rate of experts and agent data. For example, we can define the
sampling rate changing process as frg (k) = min(1, k/d) (linear
orgetting) in which frg (k) is the sampling rate (forgetting rate),
is the current episode and d is the last episode of forgetting

i.e., the last episode in which the expert data is used for learning)
see Algorithm 2).

.2. Task-specific augmentation

The idea of hierarchical augmentation is to use data from
ther subtasks as extra data on each policy’s imitating phase
see Algorithm 3). Both supervised loss function LPE and pseudo
ewards fp are turned off for the extra data.

Using this type of augmentation of ForgER, we can solve two
roblems. The margin loss function causes the agent to learn how
o act as an expert at the cost of generalization. Additional data
revents overfitting. The division into subtasks leads to the fact
hat only part of the data is used to learn each option policy
. The use of additional data and TD losses allows us to train
he agent on additional information from other subtasks. For
xample, in Minecraft, such behavior as avoiding obstacles or
loating out of water can be reused in different subtasks.
4

. Experiments

We evaluated ForgER in two classes of environments: simple
nd hierarchical sets. The first simple set is vector-based and
mall vision-based environments with a single subgoal: classic
ontrol benchmark (CartPole, MountainCar, Acrobot), environ-
ents from Box2D benchmark (LunarLander, CarRacing) [13], and

acing simulator Torcs with discrete action space. We chose these
nvironments because only in these simple conditions we can
ompare our method with the existing state-of-the-art methods
ealing with expert demonstrations that are not adapted to work
n complex hierarchical environments: POfD [29], NAC [8], and
QfD algorithms.
The second hierarchical set is vision-based Minecraft environ-

ents including the setting of the MineRL competition [15] with
ybrid action space. Using this set, we demonstrated the behavior
f the ForgER agent in a hierarchical setting where different sub-
oals can appear when the main goal is reached: Navigation (the
gent must reach the target), Treechop (the agent needs to chop
ood starting with an iron axe for cutting trees), ObtainIronPick-
xe (obtaining an iron pickaxe extracting many items sequen-
ially), ObtainDiamond (obtaining a diamond, which is the rarest
lement in Minecraft). The hierarchical set is utterly complex
ince the environment for each of the subtasks is procedurally
enerated. Also, environments from this set have sparse rewards
even dense versions) and belong to a POMDP class because only
he first-person view is available for the agent.

In addition to the comparative analysis, we conducted an
blation study to analyze the impact of the quality of expert data
nd various hyperparameters of our algorithm.
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Fig. 2. Two top graphs demonstrate a mean episode reward for the ForgER and the POfD agents in the CartPole environment using demonstrations with a different
verage score. Two bottom graphs demonstrate a mean episode reward for the ForgER and the POfD agents in the MountainCar environment.
.1. Comparative analysis

.1.1. ForgER vs. POfD in a simple set
This set of experiments shows if the ForgER performance with

he imitation phase on demonstrations collected with suboptimal
olicies can be compared with the POfD. The POfD was cho-
en as a baseline because it aimed at getting benefits from an
mperfect demonstration and outperformed strong algorithms in
nvironments with vector-based observation space. We were able
o show that the ForgER shows comparable results with the POfD
or simple vector tasks (see Fig. 2).

We evaluated the ForgER in three environments that have
iscrete action space and for each environment, we collected two
ets of demonstrations with a different average score. The ForgER
howed comparable performance on demonstrations with a high
verage score but was outperformed by the POfD on demon-
trations with a low average score. However, the low quality
f demonstrations is usually not caused by bad performance of
n expert. Normally, demonstrations are collected with a high
verage score but in a setup different from the one in which
he agent is acting. For example, demonstrations can be collected
y humans with continuous actions that were discretized for
he agent. The ForgER significantly outperforms the POfD on
he visual-based CarRacing environment (see top right picture
n Fig. 3). We relate these results with the fact that the POfD
pproach rely more on physical control benchmarks, while the
orgER works better on the visual-based tasks.
We collected demonstrations with a high average score in

nvironments with continuous action space (LunarLanderCon-
inuous, CarRacing), and then the actions were discretized. We
sed LunarLander action space (four actions) for LunarLander-
ontinuous discretization and custom discretization for CarRacing
four actions). The action from the continuous action space was
apped to the nearest action from the discretized space. In this
ase, the ForgER fully outperformed the POfD (see Fig. 3). For
ach algorithm and for each (demonstration, environment) pair,
5

only one hyperparameter was tuned: forgetting speed for the
ForgER (d parameter in the linear forgetting function frg(k)) and
the reward coefficient for the POfD. The results were averaged
across four seeds.

4.1.2. ForgER vs. NAC vs. DQfD in a simple set
In Torcs, the agent’s goal is to drive as fast as possible. The

action space is a Cartesian product between left, no-op, right and
up, no-op, down, while the observation space is a vector with a
size of 29, in which all the information about the car and the track
is contained. The reward is computed at each step, and it depends
on the velocity of the car projected along the track direction. The
expert dataset was obtained using a PPO agent, and it had an
average reward of 9230. In the ForgER, a linear function with
d = 50 was used as the forgetting function frg(k). The results
were averaged over five random seeds. As can be seen in Fig. 4
(middle), the results of the NAC and DQfD are similar to those
obtained in the article [8]. However, the ForgER results are much
higher (about 20% as compared to the NAC).

4.2. Ablation study

In this series of experiments, our goal was to demonstrate
the impact of the expert data quality, the action discretization
options, the task-oriented augmentation on the behavior of the
ForgER and DQfD, and the characteristics of the overfitting pro-
cess. Here, we used a number of environments from the MineRL
competition.

4.3. MineRL environments

MineRL is a shell on the game Minecraft, which presents
several environments (subtasks):

• Navigate: In this environment, the agent must reach the
target. In addition to standard observations, the agent has
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Fig. 3. ForgER vs POfD in LunarLander (top left) and CarRacing (top right) with expert data after discretization. Two bottom graphs demonstrate a mean episode
eward for the ForgER and the POfD agents in the Acrobot environment using demonstrations with a different average score.
Fig. 4. Mean episode reward for the ForgER, NAC, DQfD agents in Torcs. The other approaches do not perform as well as the ForgER.
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access to a compass that points to a target located 64 meters
from the starting location. The agent receives a reward +100
for achieving the goal, after which the episode ends. There
is also a Dense version in which the agent receives a reward
for each step, depending on the approach to the goal.
• Treechop: In this environment, the agent needs to chop

wood. The agent starts in a forest with an iron ax for cutting
trees. The agent receives +1 for each unit of wood received,
and the episode ends as soon as the agent receives 64 units,
or a time limit is reached.
• ObtainIronPickaxe: The main goal of this environment is an

iron pickaxe. To solve this environment, it is necessary to
extract many items, and this must be done sequentially.
That is, for the extraction of an iron pickaxe, it is necessary
to adhere to a hierarchy. There are also two versions of this
environment: in the first version, the reward is received
for the item obtained for the first time, and in the Dense
version, for each item received.
 d

6

• ObtainDiamond: The main goal of this environment is a
diamond, which is the rarest element in Minecraft. This
environment is similar to the previous one, however, after
receiving the iron pickaxe, the game does not stop, it is
also necessary to obtain a diamond. As for ObtainIronPickaxe,
there are two versions: regular and Dense.

As mentioned above, for the environments ObtainIronPickaxe
except diamond) and ObtainDiamond, the rewards are given to
he agent only for receiving an item. (See Table 1)

It is worth mentioning that, as observations, the agent receives
colored image with resolution (64, 64) for all environments, also
n ObtainDiamond and ObtainIronPickaxe, the agent receives an
nventory dictionary, in Navigate environment, the value of the
ompass indicating the target is also obtained. But the space of
ctions is much more complicated and hybrid, i.e., in addition to
iscrete values, there are also continuous ones.
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Fig. 5. Top graph on the left shows a mean episode reward with high-level expert data for the ForgER and the DQfD in LunarLander. The top graph on the right
shows a mean episode reward with medium-level expert data. Due to the wider coverage of states during expert trajectories, the vanilla DQfD approach draws more
out of it and gets more rewards, but the linear forgetting still outperforms it. The bottom graph shows a mean episode reward with low-level expert data. This data
contains no useful policy at all, so the faster we forget it, the higher our reward is.
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Table 1
Rewards for ObtainDiamond (left) and the action space for ObtainDiamond and
ObtainIronPickaxe environments (right).
Item Reward Action Type

Log 1 Attack Discrete(2)
Planks 2 Back Discrete(2)
Stick 4 Camera Box(shape=2, [−180, 180])
Crafting table 4 Craft Enumerated(5)
Wooden pickaxe 8 Equip Enumerated(8)
Cobblestone 16 Forward Discrete(2)
Furnace 32 jump Discrete(2)
Stone pickaxe 32 Left Discrete(2)
Iron ore 64 NearbyCraft Enumerated(8)
Iron ingot 128 NearbySmelt Enumerated(3)
Iron pickaxe 256 Place Enumerated(7)
Diamond 1024 right Discrete(2)

Ssneak Discrete(2)
Sprint Discrete(2)

Moreover nearbyCraft, nearbySmelt, craft, place, and equip ac-
ions can be used only in ObtainDiamond and ObtainIronPickaxe
nvironments.

.3.1. Impact of expert data quality
To explore the impact of the expert data quality on the effi-

iency of off-policy methods, we use a well-known environment
unar Lander. Our experiment consists of three parts with differ-
nt levels of expert data quality. In the first one, high-level expert
rajectories with total rewards from 100 to 200 were taken.
he second one contains medium-level trajectories with episode
ewards from 0 to 100. The third one contains low-level trajec-
ories with the lunar lander being broken with episode rewards
rom −100 to 0. These trajectories were taken from one pre-
rained agent, picking different trajectories for each part of the
xperiment. We tested four cases in each part: with a constant
emo-ratio 0.5, with complete forgetting after the imitation stage,
ith forgetting until episode 500, with forgetting until episode
500 and comparison of these results with the DQfD algorithm
7

nd the original pre-trained policy. In the second and third cases,
he forgetting rate changed linearly during the training phase.
fter the imitating phase, we used a sample with 100% of a
atch from the expert data buffer. And this rate decreases to 0%
o the episode, after which we want to fully forget the expert
rajectories. The purpose of these experiments is to prove that
orgetting expert data regardless of their quality improves the
earning process, and the forgetting rate is crucial in this process.
ll the experiment curves are a mean of ten separate experiments
ith the same parameters.
With high quality expert data (see Fig. 5), we can achieve a

igher reward by changing the forgetting rate and allocating the
gent and the expert data in a replay buffer. In linearly forgetting
ases, we can see that a significant improvement appears only
fter we stop using expert data. When the fraction of the expert
ata becomes low, for a moment, the performance of an agent
rops, but then immediately grows up and overcomes the expert
ata by far. The longer we train on the expert data, the longer this
eriod is. That happens because when we maintain the expert
ata, we maintain the expert policy, which is not optimal, and
etting out of this local minimum requires more time. But this
uboptimal policy guides the agent in the right direction in the
arly stage, and we can suggest that forgetting the expert data
oo early is not giving a performance at all. The forgetting rate is
hyperparameter that needs to be configured for each task.
It would seem that with worse expert data, the performance

lso should be worse, but that is not always true. The worse
eplay buffer includes a more diverse state and action pairs, so the
xpert policy is not precise, and the margin loss LPE(Q g ) cannot
verfit it. It is like a rookie trying to act like a pro and using
dvanced skills; the chances that one fails while trying to perform
his task is higher than just using mid-level skills with more
wareness. That is a case in the vanilla DQfD approach since our
pproach deals with the right forgetting rate and outperforms
thers demo-rate approaches.
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Fig. 6. Salience analysis of the imitating, DQfD, and ForgER agents on Treechop with the best discretization. The ForgER agent focusing on important details: the
rees’ crowns when the agent is far from them and the trunks when the agent is close. Noteworthy is the first frame on which the ForgER, unlike other agents,
gnores the stump. If the agent tries to cut it down, then it can dig itself down. It is very difficult for the agent that fell underground to get to the surface, and
here are no examples of such behavior in the demonstrations.
Fig. 7. Several variants of forgetting function frg (k) realization. The TD loss curve for the ForgER and DQfD agents is shown on the left. The first 100k sampled
batches match the imitating phase. The ForgER shows less TD loss than the DQfD approach. The ratio ρ of the sampling expert and the agent data in the replay
uffer is indicated in the middle. THe total reward in the Treechop environment is shown on the right.
Fig. 8. Left graph shows a mean episode reward for the agents with discretization with seven actions. The right graph shows a mean episode reward for the agents
ith discretization with ten actions. This is a better discretization, which is why the difference between the ForgER and fixed ratio agent is so insignificant.
.3.2. Overfitting
In this experiment, we consider the problem of overfitting on

he demonstrations in the Treechop environment, which leads to
the use of the margin loss LPE(Q g ). We created salience maps
after the imitating phase. The ForgER agent focuses on impor-
tant details: crowns and trunks of trees. Paying attention to the
8

crowns of trees when the agent is far from them is a more general
strategy, as texture crowns always match, while trunk textures
may vary. In most cases, the agent focuses on the nearest tree.
The imitation and the DQfD agents pay attention to unimportant
details: the blocks that are not related to the tree-chopping task
indicate overfitting (see Fig. 6).
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Fig. 9. Mean episode reward for the Cobblestone subtask, in which the agent must get 11 cobblestones. The reward for an episode can be higher than 11 if the agent
t the last moment picks up several cobblestones at once. Without augmentation, it takes much time for the agent to understand where a cobblestone is.
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This fact of overfitting is confirmed by the TD loss diagram
n Fig. 7. The TD loss is strongly correlated with the frg grow
arameter and behaves differently after the imitating phase in
ig. 7 in comparison with the DQfD. The TD loss of the ForgER
gent after the forging phase is almost twice less than the DQfD
ne. The ForgER agent shows better performance: 62 vs. 49 for
he Treechop task.

.3.3. Discretization
Discretization is a mapping between the continuous action

pace of the environment and the discrete action space of the
gent. However, despite the fact that it lowers the number of
ctions performed by the agent, it also limits the agent’s action
pace. The discretized actions from expert demonstrations may be
naccurate. To explore how forgetting affects the learning process
ith different discretization mappings, we trained the agent for
reechop with seven and ten actions and with different replay
uffer structures. Each discretization was used with frameskip 4.
he rotation angle is determined using the sum of four frames.
or other actions, the most frequent action was selected.
For each mapping, we trained three configurations of the

gent. The first configuration used forgetting the expert data after
0 steps. The second configuration used the DQfD buffer. The
hird configuration had a fixed ratio ρ = 0.1 of the expert data
n the batch. Each version of the agent had 150000 pre-train
teps and 250 episodes of training in the environment. Human
emonstrations are considered as expert data.
As can be seen from the graphs in Fig. 8, when the discretiza-

ion is not accurate enough to map expert actions, forgetting
erforms better, and when the discretization is good enough, it
oes not perform worse even without forgetting.

.3.4. Augmentations
Task-specific augmentation was evaluated on the Cobblestone

ubtask in the ObtainDiamond (dense) environment and human
emonstrations as expert data. It was compared with the ver-
ion of the algorithm without augmentation. Both were averaged
cross three trials (see Fig. 9).
The agents for the other subtasks were not updated during

valuation. The Cobblestone agents had 50000 imitation steps
nd 50 episodes to forget expert demonstrations. Discretization
ith ten actions for better behavior cloning was used. Significant
ispersion can be explained by a great variety ofMinecraft worlds,
here the agent can appear.
 t
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4.3.5. Loss ablation study
In this part of the experimental study, we evaluated the sig-

nificance of all components of the loss function in two differ-
ent environments: an environment for which copying behavior
is difficult (Treechop) and in an environment with high-quality
demonstrations (LunarLander). This experiment shows compar-
isons of the ForgER with turned off: TD loss LPDQ (Q g ), n-step
TD loss Ln(Q g ), margin loss LPE(Q g ) and L2 regularization loss
L2(Q g ). In a Treechop environment (see Fig. 10), disabling these
oss functions has a substantial impact on the performance: n-
tep TD loss (degrade), margin loss (improve). We explain the
egrading of the performance with disabled n-step TD loss by the
ense reward function of this environment and the imperfectness
f the demonstrations after discretization. The agent learns a final
olicy based more on the rewards that can be proved by the
esults with disabled margin loss. Disabling margin loss leads to
etter performance even comparing with the ForgER for forget-
ing function d = 50. Noteworthy, this result is almost identical
o ForgER d = 0 in Fig. 7. Moreover, the results for the disabled
argin loss during the imitating phase and shortly after it are
oticeably worse.
The LunarLander environment has a sparse reward function for

he goal achievement, so the impact is very different from the
revious case (see Fig. 11). Now the agent with disabled margin
oss starts with the worst results, and the best results show the
gent with the disabled TD loss. In both cases, the ForgER shows
eliable results for different types of the reward function, which
roves the importance of each part of the loss.

.4. Hierarchical setting

For the task of obtaining a diamond in MineRL (hierarchical
et), we demonstrate the ForgER ability to use the extracted
ubtask graph G and use the goal-oriented organization of the ex-
erience replay and data augmentation. In a crucial experiment,
e compare our ForgER approach, the ForgER++ modification
a heuristically modified hierarchy of subtasks G) with the best
ineRL competition solution [17]. Because it was impossible to

ecreate the competition’s limitations, we reproduced the best
olution without restrictions on the training time and the number
f steps. The algorithms were tested on 1000 episodes using a
ommon pool of 1000 seeds responsible for the procedural gener-
tion of the world and the agent’s initial position. This approach
llowed the agent to mine a diamond for the first time in the
ineRL competition released. As a result, our approach surpassed
he best solution of the MineRL competition, which, in its turn,
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Fig. 10. Rewards of the ForgER d = 50 with some losses disabled in the Treechop environment with ten action discretization and 150000 imitating steps (left). The
valuation results on the imitating phase for the ForgER and the disabled margin loss agents (right). The ForgER outperforms all other agents during the forging
hase except the agent with disabled margin loss, due to specifics of the environment and the quality of the demonstrations. However, disabling this loss leads to
orse results during the imitating.
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Fig. 11. Rewards of the ForgER (forgetting function: d=50, 105 imitating steps)
ith some losses disabled in the LunarLander environment with action dis-
retization. The best performance shows the agent without the TD loss. The
gent with the disabled margin loss shows the worst results after the imitating
hase.

as the best among all other solutions based on the DQfD, PPO,
AIL, and other algorithms.
For the task of obtaining a diamond in MineRL, we propose

he following automatic approach for subtasks extraction. We
onsider the time of the item appearance in the inventory in
hronological order. The sequential items of the same type are
ombined into an item with quantity. The final subgoal tree can
e a sequence obtained from a single trajectory. An example of a
arked sequence of subtasks presented here: log(6), planks(24),
rafting table(1), sticks(4), wooden pickaxe(1), . . . , iron pickaxe(1).
To complete the diamond task, the tree diminishes to a chain

of subtasks. Each subtask is to obtain the required amount of the
indicated resource. The agent receives a pseudo-reward when it
obtains an item related to the current subtask (for example, +1,
or receiving one log). If the agent receives several items at a
ingle step, then the reward of +1 will be added for each one:

p :=

{
+1, if acquired item relates to current subtask,
0, otherwise.

In addition to a pseudo reward in the environment, pseudo
ewards are added to the expert data. We also used the fact that
he actions to craft the items are strongly related to the subtasks.
he craft actions aimed at solving the subtask were included in
ach subtask.
Table 2 shows the results of testing three algorithms: the best

lgorithm presented at the competition (trained from scratch),
he ForgER with an automatically extracted chain of subtasks, and
he ForgER with a modified chain of subtasks (ForgER++).
 f

10
Table 2
The results of testing the algorithms on 1000 evaluation episodes. For each item
in the row, it shows the number of episodes in which the agent obtained a
reward for receiving it. The first column shows the results of the best solution
in the MineRL competition.
Item MineRL ForgER ForgER++

Log 859 882 867
Planks 805 806 792
Stick 718 747 790
Crafting table 716 744 790
Wooden pickaxe 713 744 789
Cobblestone 687 730 779
Stone pickaxe 642 698 751
Furnace 19 48 98
Iron ore 96 109 231
Iron ingot 19 48 98
Iron pickaxe 12 43 83
Diamond 0 0 1
Mean reward 57.701 74.09 104.315

We used several task-specific settings in the ForgER and the
ForgER++. We added a small white noise (mean = 0, std = 0.6)
to the camera rotation actions to improve both exploration and
behavior of policies after the imitating phase. Also, we used the
log subtask policy trained in the auxiliary TreeChop environment.

4.5. Hyperparameters

Table 3 shows the parameters for the ForgER approach used in
all our experiments. Table 4 represents the parameters, that differ
for visual and vector environments. The value for the number of
the pre-training steps varies for each of the environments.

In contrast to DQfD, we used l = 0.4, instead of l = 0.8
for the value of LPE , since this showed slightly better results for
ierarchical vision-based tasks. Also, we conducted experiments
here we replaced margin loss with cross-entropy and KL loss,
ut it did not make any significant changes. Furthermore, in a part
f the experiments, we used the DQfD with a fixed ρ, which is an
ttempt to modify the approach for imperfect demonstrations.
As a strategy for choosing the forgetting function (or d in

articular), we recommend adhering to the following principles:

• If you know that the demonstrations are problematic in
any way, you should use fast forgetting (low values of d
according to episode length). It is beneficial to control the
forgetting process by paying attention to learning and loss
curves.
• When you choose the forgetting function, you do not have

to re-run imitating phase (use the saved weights).

eneralization or online adjacent of the forgetting function is a
uture work of our research.
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Table 3
Shared parameters used for both environment sets.
Parameter Value

N-step return weight λ1 1.0
Margin loss weight λ2 1.0
L2 regularization weight λ3 10−5
Expert margin l 0.4
ϵ-greedy initial 0.1
ϵ-greedy final 0.01
ϵ-greedy decay 0.99
Prioritized replay exponent α 0.4
Prioritized replay constant ϵa 0.0001
Prioritized replay constant ϵd 1.0
Prioritized replay importance sampling exponent β0 0.6
n-step return 10
batch size 32

Table 4
Parameters used for simple and visual environments.
Parameter Value for simple set Value for visual set

Target network update period τ 2000 3000
Use noisy layers False True
Agent replay buffer capacity 100,000 450,000

5. Related work

Some components in the ForgER are not new. The proper
eplay buffer sampling policy can solve a wide range of learning
rocess problems. In the prioritized experience replay method
12], the authors suggest picking the samples from the buffer re-
arding how often these samples are used for backpropagation in
he network and based on the values of their temporal difference
TD) loss function.

The idea to store the human experience in the additional
xpert buffer to increase performance in difficult Atari games was
roposed in the Human Experience Replay [30]. More than five
ours of the gameplay was stored and this data was sampled as
6 out of 32 examples in the training batch without any pre-
raining and supervised loss. Due to the modified experience
eplay, the authors for the first time achieved better than random
gent performance in Montezuma’s Revenge.
A combination of TD and classification losses in a batch algo-

ithm in a model-free setting is the key components in RL with
xpert Demonstrations the (RLED) [31]. The DQfD differs from
LED in that the agent is pre-trained on the demonstration data
nitially, and the batch of self-generated data grows over time.
t is issued as an experience replay to train deep Q-networks.
n addition, a prioritized replay mechanism is used to balance
he amount of demonstration data in each mini-batch [32]. The
QfD uses a single buffer to store both for the expert and the
gent trajectories. These techniques provide the next level of
erformance in tasks like Montezuma’s Revenge and stay as a
tate-of-the-art algorithm in learning from demonstration. We
se the same learning approach but with a different experience
eplay buffer structuring strategy that helped achieve a significant
ncrease in efficiency.

There are also implementations of algorithms that learn from
emonstration based not on the DQN but on policy optimization
ethods. One of them is the Normalized Actor Critic (NAC) [8],
hich is almost entirely based on the Soft Actor Critic [33] (SAC).
owever it has a special normalizing gradient supplement, which
revents overfitting due to the fact that the expert data is of-
en imperfect. As it turns out, the NAC does not work well in
ision-based environments. Policy Optimization with Demonstra-
ions (POfD) [29] is an on-policy algorithm; the main difference
rom the Generative Adversarial Imitation Learning (GAIL) [34] is
hat the GAIL optimizes the policy to confuse the discriminator,
11
whereas the POfD has a demonstration-guided exploration term
in learning objection. The POfD showed massive improvement
over the GAIL, using a low number of expert data. The POfD also
proved that it is not biased by imperfect data. Despite all these,
the GAIL based algorithms are very computationally heavy, and
they are very sensitive to changes in the action space.

The most recent research in the field of learning from demon-
stration is a Recurrent Replay Distributed DQN from Demonstra-
tions (R2D3) [28], which outperformed multiple states of the art
baselines. The authors extended the R2D2 algorithm and added
an expert data buffer. In conclusion, it was mentioned, that the
ratio of the expert data and the agent data is one of the key
parameters of their algorithm, and its fine-tuning could signifi-
cantly increase the results. The R2D3 used only a fixed ratio and
established that a small demo ratio is the most desirable case. We
extend this investigation and suggest more appropriate ways to
treat the demo-ratio as a decreasing variable. We also adapt the
approach of using demonstrations to the hierarchical case.

The idea of reusing a faulty experience is proposed in Hind-
sight Experience Replay [11] (HER) for a multi-goal RL setting.
The rollout is stored in the replay buffer with a transformed goal,
assuming what the new goal is the state the agent saw in that
rollout. The HER can be applied when for each state we can find
a goal corresponding to it. The goal transformation is somewhat
similar to task-specific augmentation of the ForgER imitating
phase. In both cases, we obtain additional data for training.

Increasing the amount of training data is one of the best
ways to increase the generalization property of a trained model.
Augmentation is a method of increasing the training set based on
already available data, which is widely used in machine learning,
especially in computer vision. Augmentation of visual observation
in reinforcement learning is a fairly new field. Reinforcement
Learning with Augmented Data [35] proposes a simple plug-and-
play module to enhance algorithms with data augmentations. The
authors showed that augmentations can significantly improve
the data-efficiency and generalization of RL methods for a wide
range of environments. Data-regularized Q [36] (DRQ) introduces
a simple regularization technique based on image augmentation,
which improves the performance of the SAC approach trained
directly from image pixels.

6. Conclusion

We presented the ForgER, a novel algorithm for reinforce-
ment learning from demonstrations in complex partially observ-
able environments including hierarchical settings. We proposed
a task-oriented structure of the experience replay buffer with an
embedded procedure of forgetting imperfect expert trajectories.
By exploiting the hierarchical structure of the demonstrations in
case of its availability, we can obtain hierarchical policies that
generalize substantially better than the SOTA methods. Addition-
ally, we structured the replay buffer by using augmented data
on the imitating phase for each task specified policy. With the
ForgER, we achieved two main goals: we attained high sam-
ple efficiency by combining a hierarchical approach and using
demonstration data, and at the same time, we reduced the quality
requirements for these expert trajectories.

We experimentally investigated the ForgER techniques and
showed the features of their implementation in the case of differ-
ent sources of imperfectness in expert data. In our experiments,
we demonstrated that the ForgER can solve very complex hier-
archical vision-based environments such as Minecraft, where we
solve the main problem of obtaining diamond in the MineRL set-
ting. In the MineRL competition, various tricks were used to adapt
the known approaches to the hierarchical POMDP environment,
and only our complex original method helped to achieve the main
goal of this competition and surpass all other solutions.
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Broadly, we showed that the ForgER outperforms the existing
RL approaches based on expert demonstrations, especially those
with high-dimensional inputs and hierarchical complex goals.
Though we used a simple sequential graph of subgoals, in future
work, we aim to explore how more complex subgoal structures
with loops can be automatically detected and how they can
improve both the imitation and forging phase. In addition, we be-
lieve that the main idea of using forgetting experience replay will
open doors to incorporating more sophisticated memory-based
techniques into RL.
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