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Abstract
Multi-agent Pathfinding (MAPF) problem generally asks to
find a set of conflict-free paths for a set of agents confined to
a graph and is typically solved in a centralized fashion. Con-
versely, in this work, we investigate the decentralized MAPF
setting, when the central controller that possesses all the in-
formation on the agents’ locations and goals is absent and
the agents have to sequentially decide the actions on their
own without having access to the full state of the environ-
ment. We focus on the practically important lifelong vari-
ant of MAPF, which involves continuously assigning new
goals to the agents upon arrival to the previous ones. To ad-
dress this complex problem, we propose a method that inte-
grates two complementary approaches: planning with heuris-
tic search and reinforcement learning through policy opti-
mization. Planning is utilized to construct and re-plan indi-
vidual paths. We enhance our planning algorithm with a ded-
icated technique tailored to avoid congestion and increase the
throughput of the system. We employ reinforcement learning
to discover the collision avoidance policies that effectively
guide the agents along the paths. The policy is implemented
as a neural network and is effectively trained without any
reward-shaping or external guidance. We evaluate our method
on a wide range of setups comparing it to the state-of-the-art
solvers. The results show that our method consistently outper-
forms the learnable competitors, showing higher throughput
and better ability to generalize to the maps that were unseen
at the training stage. Moreover our solver outperforms a rule-
based one in terms of throughput and is an order of magnitude
faster than a state-of-the-art search-based solver. The code is
available at https://github.com/AIRI-Institute/learn-to-follow.

Introduction
Multi-agent pathfinding (MAPF) (Stern et al. 2019) is a
challenging problem that has been getting increasing atten-
tion recently. It is often studied in the AI community with the
following assumptions. The agents are confined to a graph,
and at each timestep, an agent can either move to an adja-
cent vertex or stay at the current one. A central controller
possesses information about the graph and the agents’ start
and goal locations. This unit is in charge of constructing a
set of conflict-free plans for all the agents. Thus, a typical
setting for MAPF can be attributed as centralized and fully
observable.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: An example of a decentralized LMAPF instance.
Agents are depicted as filled circles. The dashed line illus-
trates the red agent’s ego-centric field-of-view, where the
other observed agents are colored in teal. The red circles
with numbers represent the goals that the agent needs to
reach. The next goal is only revealed to the agent when the
current one is achieved.

In many real-world domains, however, it is not possi-
ble, from the engineering perspective, to design such a cen-
tral controller that has a stable connection to all the agents
(robots) and obtains a full knowledge of the environment
all the time. For example, consider a fleet of service robots
delivering some items in a human-shared environment, e.g.,
the robots delivering medicine in the hospital. Each of these
robots is likely to have access to the global map of the en-
vironment (e.g., the floor plan), possibly refined through the
robot’s sensors. However, the connection to the central con-
troller may not be consistent. Thus, the latter may not have
accurate data on the robots’ locations and, consequently,
cannot provide valid MAPF solutions. In such scenarios, de-
centralized approaches to the MAPF problems, when the
robots themselves have to decide their future paths based on
their local observations, as depicted in Fig. 1, are essential.
In this work, we aim to develop such an efficient decentral-
ized approach.

It is natural to frame the decentralized MAPF problem
as a sequential decision-making problem where, at each
timestep, each agent must choose and execute an action that
will advance it toward its goal while ensuring that the other
agents can also reach their goals. The result of solving this
problem is a policy that, at each moment, specifies which



action to execute. To form such a policy, learnable methods
are commonly used, such as reinforcement learning (RL),
which is particularly beneficial in tasks with incomplete in-
formation (Mnih et al. 2015; Rashid et al. 2018; Hafner et al.
2021). However, even state-of-the-art RL methods gener-
ally struggle with solving long-horizon problems with the
involved causal structure (Milani et al. 2020; Hafner et al.
2023), and they are often inferior to the search-based, plan-
ning methods when solving problems with hard combinato-
rial structure (Kansky et al. 2023).

Indeed, numerous learnable methods tailored to MAPF
settings are already known, such as PRIMAL (Sartoretti
et al. 2019), PRIMAL2 (Damani et al. 2021), DHC (Ma,
Luo, and Ma 2021), PICO (Li et al. 2022), SCRIMP (Wang
et al. 2023) to name a few. These methods either rely on the
complex training procedures that typically involve manual
reward-shaping, external demonstrations etc., or on commu-
nication (data sharing) between the agents. Moreover, these
methods often do not generalize well, i.e. their performance
degrades significantly when they solve problem instances on
the maps that are not alike the ones used for training.

To this end, we suggest that the MAPF problem should
not be solved directly by RL, but rather in combination and
vivid interaction with a heuristic search algorithm. This idea
is put into practice via the following pipeline. Each agent
plans an individual path to its goal by a heuristic search al-
gorithm without taking the other agents into account. More-
over, an additional technique is introduced for planning that
is dedicated specifically to dispersing the agents over the
workspace via penalizing the paths that are likely to cause
deadlocks. Upon path construction, a learnable policy, de-
veloped through decentralized training, is then invoked to
follow the planned path, making necessary detours to avoid
collisions and allow other agents to progress towards their
goals.

Empirically, we compare our method, which we name
FOLLOWER, to a range of both learnable and non-learnable
state-of-the-art competitors and show that it i) consistently
outperforms the learnable competitors in terms of solution
quality; ii) better generalizes to the unseen environments
compared to the other learnable solvers; iii) outperforms a
state-of-the-art rule-based centralized solver in terms of so-
lution quality; iv) scales much better to the large numbers of
agents in terms of computation time compared to the state-
of-the-art search-based centralized solver.

Related Works
Lifelong MAPF LMAPF is an extension of MAPF when
the new goals are assigned to the agents when they reach
their current ones. Similarly, in (online) multi-agent pickup
and delivery (MAPD), agents are continuously assigned
tasks comprising two locations that the agent has to visit
in a strict order: pickup location and delivery location.
Typically, the assignment problem is not considered in
LMAPF/MAPD. However, some works also consider task
assignment, such as (Liu et al. 2019; Chen et al. 2021).

Ma et al. (2017) propose several variants to tackle MAPD
differing in the amount of data the agents share. Yet, even
the decoupled (as attributed by the authors) algorithms based

on Token Swapping rely on global information, i.e., the one
provided by the central unit. An enhanced Token Swapping
variant that considers kinematic constraints was introduced
in (Ma et al. 2019b). In (Okumura et al. 2019) an efficient
rule-based re-planning approach to solve MAPF that is nat-
urally capable of solving LMAPF/MAPD problems is intro-
duced – PIBT (Priority Inheritance with Backtracking). It
does not rely on the several restrictive assumptions of Token
Swapping and is empirically shown to outperform the latter.
We compare with PIBT and demonstrate that our method
provides solutions of the better quality.

Finally, one of the most recent and effective LMAPF
solvers is the RHCR (Rolling-Horizon Collision Resolution)
algorithm presented in (Li et al. 2021). It draws upon the
idea of bounded planning, i.e., constructing not a complete
plan but rather its initial part. RHCR is a centralized solver
that relies on the full knowledge of the agents’ locations, cur-
rent paths, goals, etc. In this work, we empirically compare
with RHCR and show that our method scales better to large
number of agents when the computation time is capped.

Decentralized MAPF This setting entails that the path-
s/actions of the agents are not decided by a central unit but
by the agents themselves. Numerous approaches, especially
the ones tailored to the robotics applications, boil this prob-
lem down to reactive control (Lumelsky and Harinarayan
1997; Van den Berg, Lin, and Manocha 2008; Zhu, Brito,
and Alonso-Mora 2022). These methods, however, are often
prone to deadlocks. Several MAPF algorithms can also be
implemented in a decentralized manner. For example, Wang
and Botea (2011) introduce MAPP algorithm that relies on
individual pathfinding for each agent and a set of rules to
determine priorities and choose actions to avoid conflicts
when they occur along the paths. In general, most rule-based
MAPF solvers, like the previously mentioned PIBT (Oku-
mura et al. 2019), or another seminal MAPF solver Push
And Rotate (de Wilde, ter Mors, and Witteveen 2013), can
be implemented in such a way that each agent locally de-
cides its actions. However, in this case, the implicit assump-
tion is that the agents can communicate to share relevant
information (or that they have access to the global MAPF-
related data). By contrast, our work assumes that the agents
cannot reliably communicate with each other or a central
unit, which significantly increases the complexity of the
problem.

Learnable MAPF This direction has recently received
an increased attention. In (Sartoretti et al. 2019), a semi-
nal PRIMAL method was introduced. It utilizes reinforce-
ment learning and imitation learning to solve MAPF in
a decentralized fashion. Later in (Damani et al. 2021), it
was enhanced and tailored explicitly to LMAPF. The new
version was named PRIMAL2. Since numerous learning-
based MAPF solvers have emerged, it has become common
to compare against PRIMAL/PRIMAL2 (we also compare
with it in our work). For example, Riviere et al. (2020) pro-
pose another learning-based approach tailored explicitly to
agents with a non-trivial dynamic model, such as quadro-
tors. Ma, Luo, and Ma (2021) describe DHC – a method
that efficiently utilizes the agents’ communications to solve



decentralized MAPF. Another communication-based learn-
able approach, PICO, is presented in (Li et al. 2022) and yet
another in the most recent paper by (Wang et al. 2023). Over-
all, currently, there is a wide range of learnable decentralized
MAPF solvers. In this work, we compare our method with
the state-of-the-art learnable competitors and show that the
former produces better quality solutions and better general-
izes to the unseen maps.

MARL and HRL Multi-Agent Reinforcement Learning
(MARL) (Wong et al. 2023) is a separate direction in RL
that specifically considers the multi-agent setting. Mainly,
MARL approaches consider game environments (like Star-
craft (Samvelyan et al. 2019)) in which pathfinding is not
of primary importance. However, several MARL meth-
ods, such as QMIX (Rashid et al. 2018) and MAPPO (Yu
et al. 2022), have been adapted specifically for the MAPF
task (Skrynnik et al. 2021). However, they rely on informa-
tion sharing between the agents.

Learnable low-level policies and heuristic sub-goal al-
location procedures are commonplace in many hierarchi-
cal RL (HRL) approaches tailored to single-agent prob-
lems. However, such techniques are rarely explored in
MARL (Wang et al. 2022). Existing studies primar-
ily demonstrate their results within simplistic environ-
ments (Tang et al. 2018), leaving ample room for further
research. Among these, PoEM (Liu et al. 2016), a method
closely related to ours, utilizes preexisting demonstrations
to identify sub-goals, implying that its application is limited
without such demonstrations. In contrast to our approach,
all the methods we are aware of present their findings using
scenarios with a few agents.

Background
Multi-agent Pathfinding In (Classical) Multi-agent
pathfinding (Stern et al. 2019), the timeline is discretized
to timesteps and the workspace, where M agents operate,
is discretized to a graph G = (V,E), whose vertices
correspond to the locations and the edges to the transitions
between these locations. M start and goal vertices are given,
and each agent i has to reach its goal gi ∈ V from the start
si ∈ V . At each timestep, an agent can either stay in its
current vertex or move to an adjacent one. An individual
plan for an agent pi1 is a sequence of actions that transfers
it between two designated vertices. The plan’s cost is equal
to the number of actions comprising it.

The MAPF problem asks to find a set of M plans s.t. each
agent reaches the goal without colliding with the others. For-
mally, two collisions are typically distinguished: a vertex
collision, where the agents occupy the same vertex at the
same timestep, and an edge collision, where the agents use
the same edge at the same timestep.

Lifelong MAPF (LMAPF) is a variant of MAPF where
immediately after an agent reaches its goal, it is assigned to
another one (via an external assignment procedure) and has
to continue its operation.

1In MAPF literature, a plan is typically denoted with π. How-
ever, in RL, this is reserved to denote the policy. As we use both
MAPF and RL approaches in this work, we denote a plan as p.

The Considered Decentralized LMAPF Problem Let a
set of agents operate in the shared environment, represented
as a graph G = (V,E). The timeline is discretized into the
timesteps T = 0, 1, ..., Tmax, where Tmax is the episode
length. Each agent is located initially at the start vertex and
is assigned to the current goal vertex. If it reaches the latter
before the episode ends, it is immediately assigned another
goal vertex. We assume that the goal assignment unit is ex-
ternal to the system, and the agents’ behavior does not affect
the goal assignments. Each agent is allowed to perform the
following actions: wait at the current vertex and move to an
adjacent vertex. The duration of each action is uniform, i.e.,
one timestep. We assume that the outcomes of the actions
are deterministic and no inaccuracies occur when executing
the actions.

Each agent has a complete knowledge of the graph G.
However, it observes the other agents only locally. When
observing them, no communication occurs. Thus, an agent
does not know the current goals or intended paths of the
other agents. It only observes their locations. The observa-
tion function can be defined differently depending on the
type of graph. In our experiments, we use 4-connected grids
and assume that an agent observes the other agents in the
area of the size m×m, centered at the agent’s current posi-
tion.

Our task is to construct an individual policy π for each
agent, i.e., the function that takes as input a graph (global
information) and (a history of) observations (local informa-
tion) and outputs a distribution over actions. Equipped with
such policy, an agent at each time step samples an action
from the distribution suggested by π and executes it in the
environment. This continues until timestep Tmax is reached
when the episode ends. Upon that, we compute the through-
put as the ratio of the number of goals achieved by all agents
to episode length. We use it to compare different policies: we
assert that π1 outperforms π2 if the throughput of the former
is higher.

Partially Observable Markov Decision Process We con-
sider a partially observable multi-agent Markov decision
process defined as M = ⟨S,A,U, P,R,O,O, γ⟩. At each
timestep, each agent u ∈ U , with U = {1, . . . , n}, chooses
an action a(u) ∈ A. These actions form a joint action
j ∈ J = An, influencing the environment’s state transition
as per the function P (s′|s, j) : S × J× S → [0, 1].

After that, each agent receives an individual observation
o(u) ∈ O based on the global observation function O(s, a) :
S×A → O, and an individual scalar reward R(s, u, j) : S×
U ×J → R, which depends on the current state, joint action
and may be different for different agents. Discount factor
0 ≤ γ ≤ 1 determines the importance of future rewards.

To make decisions, each agent maintains an action-
observation history τ (u) ∈ T = (O×A)∗. The latter is used
to condition a stochastic policy π(u)(a(u)|τ (u)) : T × A →
[0, 1]. The aim is to obtain (to learn) a policy π(u) for each
individual agent that maximizes the expected cumulative re-
ward over time.
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Figure 2: The general pipeline of the FOLLOWER approach. The action selection policy for each agent is decentralized and
consists of two modules: Heuristic Path Planner, which addresses the long-term path planning problem, and Learnable Follower,
which addresses the short-term conflict resolution task.

Learn to Follow
The suggested approach, which we dub FOLLOWER, is com-
prised of the two complementary modules combined into a
coherent pipeline shown in Fig. 2. First, a Heuristic Path
Planner is used to construct an individual path to the goal.
Then, a Learnable Follower is invoked to follow this path.

Heuristic Path Planner

The aim of this module is to build a path from the current
location of the agent to the goal. The static obstacles are
taken into account, while the other agents are not; therefore,
the constructed path may go through them. The rationale be-
hind this is that the collision avoidance will be handled later
on by the path following policy.

A crucial design choice is which individual path to build.
On the one hand, paths with the minimal length are de-
sirable. On the other hand, when the number of agents is
high and each agent is following its shortest path, a conges-
tion often arises in the bottleneck parts of the map, such as
corridors or doors. This degrades the overall performance
dramatically. To this end, we suggest searching not for the
shortest paths but rather for the evenly dispersed paths. In-
tuitively, we wish to distribute the agents across the map to
decrease congestion and increase the throughput. This tech-
nique is implemented as follows.

Instead of assuming that the transition costs used by a
search algorithm (we use A* in our experiments) are uni-
form, we compute the individual varying transition costs as-
sociated with the cells. The individual cost of a transition
to a cell is the sum of two components, the static and the
dynamic one:

cost(c, t) = costst(c) + costdyn(c, t). (1)

The static cost component depends solely on the topology
of the map and does not change through the episode. The
dynamic cost component, conversely, is based on the history
of the observations of the agent and is dynamically updated.

To estimate the static cost of each cell, we, first, compute
the average cost of the paths starting in this cell and ending
in all other free cells (we use BFS algorithm for that):

avg cost(c) =
∑

c′∈Vfree(c)

path cost(c, c′)

|Vfree(c)|
, (2)

where Vfree(c) denotes the vertices reachable from c.
Intuitively, the lower values of avg cost(c) indicate that

a higher number of (the shortest) paths pass through c, and,
thus, the latter is a potential congestion attractor. Consecu-
tively, the transition to c should be penalized. This is imple-
mented as follows:

costst(c) =
maxc′∈V (avg cost(c′))

avg cost(c)
, (3)

In other words, the static transition cost to a cell is 1 only
if it is the “most rarely used” cell of the grid, while the
transition costs to the other (more frequently used) cells are
higher.

The dynamic cost, costdyn(c, t), is based on the personal
experience of an agent and changes during the episode. It is
computed as follows.

costdyn(c, t) =
∑

t′∈[0,t]

AgentAtCell(c, t′), (4)



where AgentAtCell(c, t′) is a function that returns 1 iff
some agent was observed (by the current agent) at cell c at
timestep t′ and returns 0 otherwise.

Intuitively, the dynamic cost penalizes transitions to the
cells that are frequently used by the other agents. Indeed,
each agent maintains its own dynamic costs. Moreover, to
avoid the negative impact of over-accumulating the dynamic
penalties, whenever an agent reaches its goal it resets the
dynamic costs of all grid cells.

Empirically, both the precomputed transition costs and
the individual dynamic costs contribute toward greater ef-
ficiency of our solver as will be shown later.

Learnable Follower
This module implements a learnable policy tailored to fol-
low the provided path while avoiding the collisions with
the other agents. The policy function is approximated by a
(deep) neural network and, as the agents are assumed to be
homogeneous, a single network is utilized during training (a
technique referred to as policy sharing).

The input to the neural network represents the local ob-
servation of an agent and is comprised of a 2×m×m ten-
sor, where m is the observation range. The channels of the
tensor encode the locations of the static obstacles combined
with the current path and the other agents; see Fig. 2.

The input goes through the Spatial Encoder first, and then
the network is split into the actor and critic heads, with the
RNN blocks designed to memorize the observation history.
The output of the actor is the Action Decoder, which pro-
duces an action distribution. The Critic Head generates a
value estimate, which is needed for training purposes only.

The pipeline employs a policy optimization algorithm,
rewarding the agent with +r for reaching the first way-
point (i.e. the next grid cell on the constructed path). If the
agent deviates from or approaches the waypoint, the heuris-
tic path planner is reactivated. This is advantageous in situ-
ations where taking a detour to avoid congestion with other
agents is beneficial in achieving the overall goal. The fo-
cus on reaching the first waypoint provides a dense reward
signal. While the agent is rewarded for reaching the near-
est waypoint, its decision-making extends beyond the im-
mediate vicinity of that waypoint. It’s important to note that
the FOLLOWER aims to maximize rewards by navigating
through multiple waypoints en route to the global goal. It
takes into account potential long-term cumulative rewards,
such as allowing another agent to pass and then following
the path, instead of obstructing each other.

The task of the learning process is to optimize the shared
policy πu

θ (i.e. the same policy for each agent) to maximize
the expected cumulative reward. During the training process,
rollouts (sequences of observations, rewards, and actions)
are gathered from multiple environments with varying num-
bers of agents. The shared policy πθ (actor network) is con-
tinually updated using the PPO clipped loss (Schulman et al.
2017).

In practice, the observation history τu is effectively mod-
eled using a recurrent neural network (RNN) integrated into
the actor and critic heads. The actor network is parameter-
ized by θ, while the critic network is parameterized by ϕ.

In our approach, we specifically utilize the GRU architec-
ture (Chung et al. 2014).

During the decentralized inference, each agent uses a
copy of the trained weights, and the other parameters remain
unchanged. The proposed FOLLOWER scheme, despite its
simplicity, allows the agent to separate the two components
of the overall policy transparently and does not require the
involvement of any expert data for training. Finally, the re-
ward function used is simple and does not require involved
manual shaping.

Experimental Evaluation
To evaluate the efficiency of the proposed method, we con-
duct a set of experiments, comparing it with the state-of-the-
art LMAPF algorithms on different maps. The training and
evaluation of the presented approaches is held in fast and
scalable POGEMA2 environment.

The path planner of FOLLOWER is based on A*. The
learnable policy is implemented as the neural network of the
following architecture. The Spatial Encoder is a ResNet (He
et al. 2016) with an additional Multi-Layer Perceptron
(MLP) in the output layer. The Action Decoder and the
Critic Head are recurrent neural networks, based on the
GRU. The total number of parameters is 5M. Moreover, we
developed an additional fast variant of FOLLOWER, FOL-
LOWERLITE, which has only 3,678 parameters, excludes
the RNN component (see the Arxiv version of the paper for
more details3) and is implemented fully in C++.

For training the episode length was set to 512. The agent’s
field-of-view was 11 × 11, the number of agents varied in
range: 128, 256. The reward r was a small positive num-
ber, i.e. r = 0.01. More details about tuning the hyper-
parameters are reported in the Arxiv version of the paper.
Upon fixing the parameters, the final policy of FOLLOWER
is trained for 1 billion steps using a single NVIDIA A100
in approximately 18 hours. FOLLOWERLITE is trained for
20 million steps with a single NVIDIA TITAN RTX GPU in
approximately 30 minutes.

Comparison With the Learnable Methods
In the first series of experiments, we compare our
method with the state-of-the-art learnable MAPF solvers –
SCRIMP (Wang et al. 2023), PRIMAL2 (Damani et al.
2021) and PICO (Li et al. 2022). PRIMAL2 is a semi-
nal approach specifically tailored for solving LMAPF prob-
lems. SCRIMP and PICO are the decentralized MAPF
solvers that were (straightforwardly) adopted by us to han-
dle LMAPF setting. In the experiments we utilize the envi-
ronmental conflict-handling mechanism from PRIMAL2 –
when two or more agents decide to move to the same cell,
only one of them succeeds while the rest stay put. Note-
worthy, SCRIMP has a dedicated negotiation procedure for
conflict resolution, which we did not modify.

As learnable methods assume training on a certain type
of maps, we use the maps suggested by the authors of the
respective baselines for a fair comparison. Specifically, we

2https://github.com/AIRI-Institute/pogema
3https://arxiv.org/abs/2310.01207
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Figure 3: Average throughput on random and maze-like
maps. The shaded area indicates 95% confidence intervals.
The symbol ⋆ marks the approaches that were trained on the
corresponding type of maps.

made a comparison on two types of maps – the maze-like
maps of size 65 × 65 on which PRIMAL2 was originally
trained, and 20 × 20 grids with randomly placed obstacles,
that were used for training PICO and SCRIMP. We use
the readily available weights for PRIMAL2 and SCRIMP
neural networks from the authors’ repositories. PICO was
trained by us using the open-source code of its authors. Our
solvers, FOLLOWER and FOLLOWERLITE, were trained on
the maze-like maps only.

For evaluation, each solver is faced with 10 different
maze-like and 40 random maps that were not used during
training. Each map is populated with an increasing number
of agents, ranging from 32 to 256 agents for maze-like maps
and from 8 to 64 for random ones. Start and goal locations
for the agents are generated randomly in a reproducible way
(so each solver gets the same starts and goals). The length of
the episode is set to 512.

The results of the first series of experiments are depicted
in Fig. 3. The OX-axis shows the number of agents, and the
OY-axis demonstrates the average throughput. Overall, on
both types of maps FOLLOWER demonstrates the best re-
sults, notably outperforming all the competitors. The main
competitor on the maze-like maps, PRIMAL2, shows al-
most twice less throughput on the instances with 256 agents.
The main competitor on random maps, SCRIMP, shows re-
sults equal to the lightweight version of FOLLOWER, i.e.
FOLLOWERLITE. However, the results of SCRIMP on the
maze-like maps are much worse, that indicates its low ability
to generalize. PICO demonstrates the worst results on ran-
dom maps out of all the evaluated approaches, though it was
trained on this type of maps. Therefore, we exclude PICO
from the rest of the experiments.

Out-of-distribution evaluation. An important quality of
any learnable algorithm is its generalization, i.e. the ability
to solve problem instances that are not similar to the ones
that have been used for training. We have already seen that
FOLLOWER generalizes well and can outperform SCRIMP
on random maps though FOLLOWER was not trained on this
type of maps. Now we run an additional evaluation where
we compare FOLLOWER, FOLLOWERLITE, PRIMAL2 and
SCRIMP on two (unseen during learning) maps from the
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well-known in the MAPF community MovingAI bench-
mark (Stern et al. 2019): den520d and Paris 1. The for-
mer map is taken from a video game, while the latter one
corresponds to the part of a real city. Their topologies are
quite different from the one of the maps used for training.
Both of the maps were downscaled to the size of 64× 64.

The results of these experiments are presented in Fig. 4.
Again FOLLOWER significantly outperforms all the com-
petitors. PRIMAL2 demonstrates very low throughput on
both maps, that indicates its poor ability for generalization.
Compared to PRIMAL2, SCRIMP shows itself much bet-
ter in terms of generalization, but in the best case it is only
able to demonstrate the results comparable to the lightweight
version of our approach, i.e. FOLLOWERLITE. Additional
results of the out-of-distribution experiments are presented
in the Arxiv version of the paper.

Comparison With Non-Learnable Approaches
We use two non-learnable approaches for comparison –
RHCR4 (Li et al. 2021) and PIBT5 (Okumura et al. 2022).
These are two different centralized approaches: RHCR is
the state-of-the-art search-based method aiming at the high-
quality LMAPF solutions at the expense of the limited scala-
bility, while PIBT is the state-of-the-art rule-based approach
that is extremely fast, but provides solutions of a moderate
quality.

RHCR solver requires setting a time limit for planning.
We set it either to 1 or 10 seconds (both variants are reported
with the according names). We chose PBS (Ma et al. 2019a)
as the planning method inside RHCR since it showed the
best results in the original paper. We have also tuned the
planning horizon (2, 5, 10, 20), the re-planning rate (1, 5)
and found that the best throughput is achieved by RHCR
when the first parameter is set to 20 and the second one to
5 (see the Arxiv version of the paper for more details). We
use these values in our experiments. The other parameters of
RHCR are left default.

The comparison is performed on the warehouse map
from the original RHCR paper (Li et al. 2021). The maxi-
mum number of agents is limited to 192, due to the restric-

4https://github.com/Jiaoyang-Li/RHCR
5https://github.com/Kei18/pibt2



tions for starting locations introduced in (Li et al. 2021). We
generated 10 random instances for each number of agents
for evaluation.
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Figure 5: Average throughput and runtime (seconds per joint
action) on warehouse map. The shaded area indicates
95% confidence intervals.

The results are presented in Fig. 5. As can be seen on the
left part of the Fig. 5, both versions of RHCR significantly
outperform the other solvers when the number of agents is
up to 128. However, when this number increases to 160 and
192, the performance of RHCR with a 1s time cap degrades
dramatically. It is then outperformed by both FOLLOWER
and FOLLOWERLITE. This highlights the principal limita-
tion of the centralized approach: it does not scale well to
a large number of agents, especially when a strict time limit
for finding a MAPF solution is imposed. PIBT does not have
such a problem with scalability but its throughput is the low-
est among all the evaluated methods.

To better understand how the runtime of the evaluated
methods is affected by the increasing number of agents, see
the right pane of the Fig. 5. In this plot each data point in-
dicates how much time on average is spent to decide the
next action for all agents. Indeed, FOLLOWER needs much
less time to choose an action and, consequtively, scales bet-
ter to the increasing number of agents compared to RHCR.
To make it fair we ran all the solvers on a single CPU. We
measured the time (in seconds) required for a solver to de-
cide the next action for all agents. As expected, PIBT is the
fastest approach, as its rule-based procedures are computa-
tionally cheap compared to the ones used by RHCR and
FOLLOWER. Recall, however that the throughput of PIBT
is inferior. Moreover, in practice our method can be paral-
lelized, i.e. run individually on each agent, while the oth-
ers can not. Running FOLLOWER individually on each agent
will result in decreasing the runtime.

Ablations
In this experiment, we investigate the impact of differ-
ent components on the performance of FOLLOWER. To
this end we turn them off and run the resultant solver on
the warehouse map from the RHCR paper. Specifically,
FOLLOWER (no RL) omits the learnable policy. At each
timestep, it plans a path, taking into account other observ-
able agents as static obstacles, and selects its first action for
the execution. If no path is found a random action is picked.
FOLLOWER (no dynamic cost) and FOLLOWER (no static
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Figure 6: Impact of FOLLOWER components on it’s perfor-
mance. The shaded area indicates 95% confidence intervals.

cost) use both planning and learning components, but they
do not utilize one of the introduced techniques that penalize
transitions to the frequently used cells.

The results are shown in Fig. 6 (left pane). First, note that
the performance of FOLLOWER (no RL) is inferior, which
justifies the importance of the learnable policy and its con-
tribution to the efficiency of FOLLOWER. The same can be
said about the cost-penalizing techniques. Overall, it is clear
that all components of FOLLOWER are crucial; omitting any
of them results in a notable degradation of performance.

In addition, we run FOLLOWER with different episode
lengths (up to 10, 000), as the initial distribution of the
agents can be very different from the distribution that hap-
pens after some time. The results are shown in Fig. 6 (right
pane). Notably, the absense of RL policy and dynamic cost
accumulation lead to a very low throughput in the limit.
We explain this by the congestion that occurs and grows
like a rolling snowball and prevent the agents from reaching
their goals. Indeed, FOLLOWER copes well with this as its
throughput monotonically increases with the episode length
and then plateaus.

Summary
The proposed approach surpasses learnable decentralized
competitors, especially when the number of agents is large
or when dealing with maps different from the training ones.
Both the learnable component and the cost-penalizing tech-
niques are essential to FOLLOWER’s performance. Further-
more, FOLLOWER scales much better than a state-of-the-art
search-based solver and provides solutions of better quality
compared to modern rule-based solver.

Conclusion
In this study, we addressed the challenging problem of de-
centralized lifelong multi-agent pathfinding. We proposed a
solution that leverages heuristic search for long-term plan-
ning and reinforcement learning for short-term conflict res-
olution. Our method consistently outperforms decentralized
learnable competitors. Moreover, it provides a better trade-
off between the scalability and the solution quality compared
to the modern search-based and rule-based planners. Direc-
tions for future research may include: enriching the action
space of the agents, handling uncertain observations and ex-
ternal stochastic events.
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