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Abstract— In autonomous driving, maneuver planning is es-
sential for ride safety and comfort, involving both motion plan-
ning and decision-making. This paper introduces FFStreams,
a novel approach combining high-level decision-making and
low-level motion planning to solve maneuver planning prob-
lems while considering kinematic constraints. Addressed as an
integrated Task and Motion Planning (TAMP) problem in a
dynamic environment, the planner utilizes PDDL, incorporates
Streams, and employs Fast-Forward heuristic search. Evaluated
against baseline methods in challenging overtaking and lane-
changing scenarios, FFStreams demonstrates superior perfor-
mance, highlighting its potential for real-world applications.

I. INTRODUCTION

In autonomous driving, the system mimics human drivers
by navigating, following a planned route, and adhering to
traffic rules. Core components include localization, percep-
tion, prediction, planning, and control modules.

Lane changing, especially on highways (Fig. 1 (a)), is
a safety-critical maneuver in autonomous driving, requir-
ing safe and comfortable trajectories. Overtaking a moving
obstacle is another critical maneuver involving two lane
changes, which adds complexity, particularly on two-way
roads with potential oncoming traffic (Fig. 1 (b)). In such
scenarios, the planning system prioritizes safety and human-
like driving behavior to minimize disruption to other drivers.

The planning module has two layers: high-level for driv-
ing action and low-level for trajectory planning. The final
trajectory must ensure safety and adhere to vehicle kinematic
constraints. The choice of integration or decoupling depends
on the approach. Decoupling decision-making and trajectory
planning may lead to infeasible trajectories, requiring repeti-
tive planning with low-level constraints. Integrated Task and
Motion Planning (TAMP) combines high-level task planning
with low-level motion planning (Fig. 2), generating feasible
solutions for long-horizon tasks with geometric constraints
and logical reasoning. Recent research [1], [2] has focused
on advancing TAMP.

Unlike traditional TAMP with restrictive assumptions [3],
our approach relaxes some constraints, moving from abstract
to numeric planning and adapting to dynamic environments.
We integrate Task and Motion Planning using Fast-Forward
heuristic search and Streams, which were introduced by [4].
This allows for the generation of jerk-optimized trajectories,
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Fig. 1. Critical scenarios: (a) Lane-changing on a highway. (b) Overtaking
a low-speed front obstacle on a two-way road.

Fig. 2. Integrated task planning and motion planning.

discretized and added to the task problem, enabling the Fast
Forward heuristic planner to search for an optimal plan for
autonomous driving in a changing environment.

This work focuses on lane-keeping, overtaking, and lane-
changing maneuvers. Two primary criteria guide our plan-
ning process: ensuring a safe trajectory and generating a
comfortable maneuver by optimizing jerk values with ac-
celeration and curvature constraints. This paper makes the
following contributions: (1) Integration of Task and Motion
Planning in the dynamic environment of autonomous driv-
ing, using Fast Forward Heuristic Search with streams for
planning lane-keeping, lane-changing, and overtaking safe
maneuvers. (2) Validation of our approach through perfor-
mance comparisons with recent baseline methods in planning
overtaking and lane-changing maneuvers on CommonRoad
real-life scenarios. Results demonstrate superior performance
over baseline methods. (3) Significant reduction in runtime
compared to other TAMP approaches, making our approach
well-suited for real-time applications.

The remainder of the paper is structured as follows:
Section II discusses recent related work, Section III provides
background on PDDL and streams, Section IV describes the
methods, Section V presents experiments and results, and
Section VI concludes with a discussion of future work.

II. RELATED WORK

Some studies [5], [6] focus solely on making the decision
for overtaking or lane-changing maneuvers at high speeds,
while others [7], [11] also address trajectory planning along-
side decision-making.

In [5], the overtaking decision is modeled as an MDP,
with the policy learned using dynamic fuzzy logic. The



TABLE I
CHARACTERISTIC COMPARISON OF MANEUVER PLANNING METHODS

Method Strategy Decision- Trajectory Kinematic Curvature Overtake Lane Open
making planning constraints constraint planning Change source

Fuzzy RL [5] MDP & RL ✓ ✗ ✗ ✗ ✓ ✗ ✗
Adaptive Behavior Tree [6] Behavior tree ✓ ✗ ✗ ✗ ✓ ✗ ✗

Semantic Sampling [7] Decision tree&Opt. ✓ ✓ ✓ ✓ ✓ ✗ ✗
Iterative Path&Speed Opt. [8] Piecewise-Jerk Opt. ✓ ✓ ✓ ✓ ✗ ✗ ✓

MCTS-OPD [9] Tree search&RL ✓ ✓ ✗ ✓ ✓ ✓ ✓
IRP [10] Interval-based planning ✓ ✓ ✗ ✓ ✓ ✓ ✓

CLF-CBF-QP [11] Rule-based FSM ✓ ✓ ✓ ✗ ✗ ✓ ✓
FFStreams Search-based&Jerk Opt. ✓ ✓ ✓ ✓ ✓ ✓ -

scenario involves four surrounding obstacles, and the MDP
model has nine states. Experiments are simulated in SUMO.
In [6], an adaptive behavior tree is used for overtaking
decisions, with a genetic programming algorithm learning the
structure. Successful tree structures emerge, but the learning
process has significant execution time constraints. Kinematic
constraints are not considered in both studies, questioning the
method’s applicability and leaving a gap between decision-
making and trajectory planning.

[7] planned the overtaking maneuver including decisions
and trajectories in the Frenet coordination system by con-
structing a semantic decision tree with nodes defining which
vehicles to follow and which to overtake, generating mul-
tiple longitudinal and lateral trajectory candidates for each
obstacle considered to be overtaken. Then, of all trajectory
candidates, the trajectory of the minimum cost is selected.
However, the maximum longitudinal acceleration reaches 4.5
m/s2, leading to uncomfortable rides.

In [11], a rule-based planner using a FMS manages the
lane-changing maneuver through five states: Change to the
right/left lane, Back to the left/right lane, and adaptive cruise
control. Trajectory planning employs a quadratic program
optimization with control Lyapunov functions and control
barrier functions (CLF-CBF-QP). Tested in Urban Road and
Highway scenarios, the proposed method achieves a 62.46%
success rate in the urban setting and 55.58% on the highway.

In [12], various RL baseline agents for autonomous driving
in Highway-Env environments [13] are introduced. The pri-
mary baseline, Monte-Carlo Tree Search (MCTS), employs
Optimistic exploration for deterministic systems [9] to search
the trajectory space for the best driving action. Another
essential baseline is Interval-based Robust Planning (IRB),
addressing safe decision-making by considering uncertain
non-linear systems and using an interval-based predictor of
drivers’ behaviors [10]. MCTS-OPD and IRB, cover various
maneuvers, including overtaking, and can be integrated into
Highway-Env environments for trajectory planning, with
actions like Idle, Faster, Slower, Lane Right, and Lane Left.

In Baidu Apollo’s open-source autonomous driving plat-
form [14], a planner integrates decision-making with path
smoothing and Piecewise-Jerk speed optimization techniques
[8]. It selects the minimum-cost path in the Frenet coordinate
system and optimizes its longitudinal speed for a collision-
free trajectory. However, it does not fully address the need
for spatiotemporal trajectories crucial for overtaking or lane-
changing maneuvers with high-speed dynamic obstacles, as

it prioritizes spatial path planning over temporal profile
adjustments.

To overcome challenges, we adopted FFStreams, an inte-
grated TAMP approach leveraging human experiences for
decision-making while considering kinematic constraints.
Using FastForward heuristic search, this approach addresses
autonomous driving problems modeled in PDDL2.1 and
modified through Streams. Table I compares the maneuver
planning methods, including ours, across decision-making,
trajectory planning, curvature, kinematic constraints, and
overtaking/lane-changing planning. Our planner uniquely
covers both overtaking and lane-changing while considering
curvature and kinematic constraints.

III. BACKGROUND

Formulating a TAMP problem involves defining key com-
ponents: the task domain (states and actions), the motion do-
main (configuration space), and their interactions. Choosing
the de-facto standard [15], the Planning Domain Definition
Language (PDDL) [16], specifically its extension PDDL2.1
for numeric planning. Additionally, we use Streams to imple-
ment the configuration space, generating new variables and
predicates associated with the world’s current state.

The maneuver-planning task involves a planning domain
and problem (Dom,Prob) in PDDL. The domain Dom
defines predicates, object types, and actions for constructing
the world model, focusing on autonomous driving with
maneuvers like overtaking and lane-change. The planning
problem Prob specifies objects, current state, and goal state,
with a heuristic planner searching for a plan using the relaxed
plan length heuristic hFF [17]. A relaxed plan is designed
for a simplified version of a problem, ignoring the negative
consequences of actions. While determining the optimal
relaxed plan is NP-complete, it is possible to calculate it
efficiently in polynomial time. The hFF is an admissible
heuristic; it returns infinity if no relaxed plan exists, and
otherwise, it returns the relaxed plan’s length, indicated by
the number of action layers in the relaxed planning graph.

PDDL2.1 [18] introduced numeric fluents representing
the ego vehicle’s configurations, aiding in collision-checking
with obstacle configurations. Additionally, plan metrics en-
able the integration of optimization metrics, crucial for
selecting plans with minimum cost (e.g., driving time).

The planning task has a finite set of objects X . The
domain Dom is a tuple ⟨P, F,A⟩, where P is a finite set of
predicates, which are binary-valued functions of one or more



objects, F is a finite set of functions (variables) also of one
or more objects, and A is a finite set of actions (operators).

A predicate p is a positive literal if it is evaluated on
its associated objects x̄ = ⟨x1, x2, ..., xk⟩ to true and a
negative literal if evaluated to false. A state I is a set of
literals. An action a is given by a tuple of object arguments
X̄ = ⟨X1, X2, ..., Xk⟩ and a set of preconditions pre(a) of
X̄ , which are positive literals pre+(a) and negative literals
pre−(a) that must hold for the operator to apply, and a set
of effects eff(a) on X̄ , which are positive literals eff+(a)
and negative literals eff−(a) that is the result of applying
the operator. The action a is applicable at the state I if

( pre +(a(x̄)) ⊆ I
)
∧ ( pre −(a(x̄)) ∩ I = ∅

)
. (1)

The resulting state I ′ after applying action a in a state I:

I ′ =
(
I\eff−(a(x̄))

)
∪ eff+(a(x̄)). (2)

The planning problem Prob is a tuple ⟨X, I0, G⟩, where
X is a set of objects in the domain, I0 is a set of positive
literals expressing the initial state, and G is a set of both
positive and negative literals expressing the goal state. A plan
π = [a1 (x̄1) , . . . , ak (x̄k)] is a finite sequence of k action
instances such that each ai (x̄i) is applicable in the state Ii−1
leading to the state Ii. A stream s(x̄) is a conditional function
of an input set of object arguments x̄ = ⟨x1, x2, ..., xk⟩.
This function can modify the planning problem Prob by
generating an output tuple of new objects ȳ = ⟨y1, y2, ..., yk⟩,
and a set of certified facts associated with them, where
s.cert = {p | ∀x̄ ∈ X̄, ∀ȳ ∈ s(x̄).p(x̄ + ȳ)}. The stream
can yield None if generating new objects is impossible. The
stream can be applied on input parameters x̄ only if a set of
positive literals p related to them exists in the domain, where
s.dom = {p | ∀x̄ ∈ X̄ · p(x̄)}.

Integrated TAMP balances sampling continuous state vari-
ables by streams and iteratively searching discrete action
plans. The Incremental Algorithm increases the planning
level iteratively until reaching the maximum level N . At
each level l ≤ N , all stream instances s(x̄) are initiated
and evaluated. Upon evaluation, if the stream is applicable,
its certified facts are added to the current problem state, and
the search planner is called.

Online collision checking at each future time step is
vital in autonomous driving tasks and is implemented as an
action in the PDDL domain. The time variable implicitly
incorporates changes in obstacle states into the planning
domain. Illustrating its importance, consider an example
(Fig. 3): during plan search, after examining a lane-change
action and transitioning the car from one configuration state
qa to another qb via trajectory Tab, the current driving time tc
must be updated before subsequent collision checking. The
current driving time tc is increased by the needed time to
follow the trajectory Tab . Subsequently, the trajectory Tbc is
evaluated for collision with obstacles at the updated tc, and
if collision-free, the following lane-change action is applied.

Compared to the PDDLStream framework [4], which
performs offline collision checking in a dedicated stream
before constructing the PDDL problem and calling the search

Fig. 3. Online collision checking of trajectories (Tab, Tbc) with obstacle’s
predicted trajectory (in red). It is crucial to update the current time after
applying any action during the plan search.

planner, assuming the robotic agent handles static objects
with state changes only during agent-performed actions. In
the FFStreams planner, we adapt numeric planning using
PDDL2.1 with Streams, integrating online collision-checking
actions and utilizing the Fast-Forward heuristic planner
(FF)[17], which supports the numeric-fluents feature.

IV. METHODS

To address autonomous driving problems, we consider the
integrated TAMP problem. We model the planning domain
using PDDL2.1, make modifications with Streams, and em-
ploy the FastForward heuristic search for an iterative search
of the optimal plan. We enhance the Metric-FF-v2.1 version,
improving the parser’s capability for extensive input and
addressing comparison issues related to operations on the
Float data type in C.

Modeling task planning in PDDL helps interpret the solu-
tion plan’s searching process. Streams allow the sampling of
new configurations and trajectories for the vehicle, consid-
ering autonomous vehicle kinematics. Using the FF planner,
numerical operations in the domain associate a cost with each
action. The Incremental algorithm iterates between sampling
and searching processes. One domain covers autonomous
driving tasks, including lane-keeping, yielding for obstacles,
lane-changing, and overtaking maneuvers.

Motion planning relies on prior knowledge of the au-
tonomous vehicle’s state and other obstacles’ states, in-
cluding coordination, heading, and speed. Ideal perceptional
observation of surrounding obstacles’ states is assumed, with
dynamic obstacles moving at a constant speed.

Illustrated in Algorithm 1 and depicted in Fig. 4, the
planning task takes inputs are the ego’s initial configuration
q0, goal predicates Pgoal, which includes moving forward
and positioning finally on either: current lane in the case of
following speed, yield, and overtaking maneuver; neighbor
lane in the case of lane-changing maneuver, initial observa-
tions of obstacles’ coordination and speeds O(0), planning
domain Dom, and the maximum number of levels N , set to
five experimentally to compromise performance and runtime.

At each timestep, t, an initial PDDL problem is generated,
and for N -levels, applicable streams update the problem until
finding a plan. Configurations are constructed from the initial
configuration q0 and sampled configurations on the current
and neighbor lanes: Q(t) = [q0, q1, ..., qn]. The Configu-
ration stream generates new configurations [q1, q2, ..., qn]
with 2D Frenet coordinates and speed. Different speeds
enable planning for varied trajectories needed for maneuvers.
Simultaneously, the Trajectory stream generates discretized
trajectories traj(qi, qj) between every two configurations,
constructing a connectivity graph. If a kinematic trajectory
exists, it consists of a set of in-between configurations



Fig. 4. The scheme of the FFStreams maneuver planner.

[qi j 1, qi j 2, ..., qi j s], where s is constant and equals the
planning time divided by ∆t.

Algorithm 1 Autonomous Maneuver Planning
INPUT : q0, O(0), N(levels), Pgoal, Dom
OUTPUT : traj = [q1, ..., qk], [a1, . . . , ak]
initialize : t← 0 , traj ← ∅
while t ≤ tk do

Q(t)← q0
Prob(t)← GenerateInitialProb(q0, O(t), Pgoal)
for l = 1, 2, ..., N do

ApplyApplicableStreams(Prob(t))
Prob(t)← Prob(t) ∪ s.cert
π ← FFPlanner(Dom,Prob(t))
if π then

at, q1 ← PlanDispatch(π)
traj ← traj ∪ q1

end if
end for
q0 ← q1
O(t)← ObserveEnv()
t← t + 1

end while

After calling each applicable stream, its certified facts are
added to the PDDL problem. At each level, the updated
problem and domain are handed to the FF planner to find
a plan π. Once a plan is found, the first action and its cor-
responding trajectory are extracted. The action is executed,
updating the ego vehicles state and the obstacles state with
a new observation. Possible actions include following speed,
yielding, moving to the left or right lane, and overtaking.
The algorithm outputs the entire trajectory from the initial
to the goal state traj = [q1, ..., qk], the followed plan, and
its set of actions: π = [a1, . . . , ak].

A. Maneuver-Planning Domain

Representing our planning domain in PDDL, we define
two types of objects in the planning domain: car configura-
tion −conf and obstacle −obstacles. In addition, the set of
predicates including: (traj ?q1 ?q2) indicating the existence
of a trajectory from configurations ?q1 to ?q2, (next ?q1
?q2 ?qend) indicating a sequence of sub-configurations on
a trajectory to the final configuration ?qend, idle stating that
the collision checking process is idle to start a new check,
(checking traj ?q1 ?q2 ?o) indicating that the trajectory
between configurations ?q1 and ?q2 is under checking with
obstacle ?o, (checked traj ?q1 ?q2 ?o) indicating that the
trajectory between the two configurations is checked with
obstacle ?o and is collision-free, (ego at ?q) stating that the
ego vehicle is currently at configuration ?q, (on right lane)

and (on left lane) stating the ego’s current lane. The func-
tions of the maneuver-planning domain include the following
changing variables: (total cost) - total cost, (curr time) -
current time, (time of traj ?q1 ?q2) - the duration of following
the trajectory, (at s ?q) (at l ?q) (at time ?q) - coordination
and the reaching time of a certain configuration, (obst at s
?o) (obst at l ?o) (obst at speed ?o) - coordination and speed
of a certain obstacle when the current time is zero.

The maneuver domain consists of 14 actions. Four moving
forward actions through a specific trajectory from first con-
figuration ?q1 to the second configuration ?q2; follow speed,
yield, and change to the left/right lane. For the moving action
to occur, the ego vehicle must start at the first configuration
(ego at ?q1). A collision-free trajectory between the initial
and final configurations should be established (traj ?q1 ?q2)
after checking with all existing obstacles ?o; (checked traj
?q1 ?q2 ?o). The action results in the ego vehicle transition-
ing to the second configuration(ego at ?q2), and incrementing
current time by the duration of following the trajectory. In
the case of a lane change, the ego vehicle shifts to the
neighboring lane (e.g., (on left lane)), no longer occupying
the initial lane.

( : a c t i o n c h a n g e l a n e l e f t
:parameters ( ? q1 ? q2 − conf )
: p r e c o n d i t i o n ( and ( e g o a t ? q1 )

( t r a j ? q1 ? q2 )
(> ( a t l ? q1 ) ( a t l ? q2 ) )
( f o r a l l ( ? o − o b s t a c l e s )

( c h e c k e d t r a j ? q1 ? q2 ? o ) )
( o n i n i t l a n e ) ( i d l e ) )

: e f f e c t ( and ( moved forward )
( e g o a t ? q2 ) ( not ( e g o a t ? q1 ) )
( o n l e f t l a n e ) ( not ( o n i n i t l a n e ) )
( i n c r e a s e ( c u r r t i m e ) ( t i m e o f t r a j ? q1 ? q2 ) )
( i n c r e a s e ( t o t a l c o s t ) 3 ) ) )

In the current work, we implement the prediction in
the collision-checking actions of the domain. Due to the
linearity restriction in PDDL2.1 functions, we model the
motion of the surrounding vehicles as ∆x = V.∆t, where
V is constant. Real-time planning accounts for changes in
the speed of surrounding vehicles in each planning cycle,
modifying the plan accordingly. Each trajectory is discretized
on ∆t and associated with configurations. For checking a
current trajectory with an existing obstacle, we use one be-
gin check action, eight actions for eight checking situations,
and one end check action. The collision-checking actions
iterate through all trajectory configurations, comparing the
vehicle’s longitudinal and lateral coordination with the pre-
dicted coordination of the obstacle at each ti. The checking



Fig. 5. Linear collision checking on ∆s and ∆l in the Ferent system.

process is exemplified by one of the eight actions, each
corresponding to a situation related to the obstacle’s lane,
ego’s lane, ∆s, and ∆l in the Frenet system (Fig. 5).

( : a c t i o n b e g i n c h e c k
:parameters ( ? f i r s t q ? l a s t q −conf ? o − o b s t a c l e s )
: p r e c o n d i t i o n ( and

( i d l e ) ( e g o a t ? f i r s t q ) ( t r a j ? f i r s t q ? l a s t q )
( not ( c h e c k e d t r a j ? f i r s t q ? l a s t q ? o ) ) )

: e f f e c t ( and
( i s f i r s t ? f i r s t q ? o ) ( i s l a s t ? l a s t q ? o )
( c h e c k i n g t r a j ? f i r s t q ? l a s t q ? o ) ( not ( i d l e ) ) )
)

( : a c t i o n c h e c k f o r w o r d d i f f l a n e u p p e r b i g g e r d e l t a y
:parameters ( ? m o s t f i r s t ? f i r s t ? a f t e r f i r s t

? l a s t − con f ? o − o b s t a c l e s )
: p r e c o n d i t i o n ( and ( i s f i r s t ? f i r s t ? o )

( i s l a s t ? l a s t ? o )
( n e x t ? f i r s t ? a f t e r f i r s t ? l a s t )
( c h e c k i n g t r a j ? m o s t f i r s t ? l a s t ? o )
( not (= ? f i r s t ? l a s t ) )
(> ( a t l ? a f t e r f i r s t ) ( o b s t a t l ? o ) )
(>= ( − ( a t l ? a f t e r f i r s t ) ( o b s t a t l ? o ) ) 3 ) )

: e f f e c t ( and
( not ( i s f i r s t ? f i r s t ? o ) ) ; up da t e i s f i r s t
( i s f i r s t ? a f t e r f i r s t ? o ) ) )

B. Configuration stream
The configuration stream Conf generates new config-

urations, sampling forward positions on the current and
neighboring lanes with varying speeds. Configurations in
the current lane with higher speeds facilitate acceleration,
while those with lower speeds aid in deceleration, essential
for following a slow-moving front obstacle. Sampling con-
figurations in neighboring lanes with speeds higher than the
current speed enables lane-change and overtaking maneuvers
within acceleration limits.

( : s t r e a m conf
: i n p u t s ( ? q1 )
:domain ( and ( e g o a t ? q1 ) ( a t s ? q1 ) ( a t l ? q1 )

( a t t i m e ? q1 ) )
: o u t p u t s ( ? q2 )
: c e r t i f i e d

( and ( a t s ? q2 ) ( a t l ? q2 ) ( a t t i m e ? q2 ) ) )

C. Trajectory stream
The Trajectory stream generates feasible trajectories be-

tween two configurations in the Frenet. Trajectory optimiza-
tion involves minimizing squared jerk over a time interval
T [19]. This process includes defining quintic polynomials
for lateral movement and quartic polynomials for longitu-
dinal movement, calculating their costs, and selecting the
trajectory with the minimum cost. The cost of each trajectory
is a weighted sum of costs on longitudinal and lateral
movements, expressed by the equation:

Ctotal = klatCl + klonCs. (3)

The cost of the trajectory on the lateral movement is a
function of the lateral jerks Jl, trajectory duration, and lateral
error, expressed by the equation:

Cl = kj
∑

J2
l + ktT + kddl

2, (4)

TABLE II
VEHICLE AND TRAJECTORY OPTIMIZATION SOFT AND HARD

PARAMETERS

Parameter Symbol Value(soft) Value(hard)
Maximum acceleration amax 1.0 [m/s2] 15 [m/s2]

Jerk weight kj 0.1 0.08
Trajectory duration weight kt 0.1 0.9

Error weight kd 1.0 1.0
Maximum speed vmax 33.33 [m/s]

Maximum Curvature K 1 [1/m]
Time step ∆t 0.2 [s]

Lane width l 3.4 [m]
Lateral weight klat 1.0

Longitudinal weight klon 1.0

where kj is the jerk weight, T is the time interval, and dl
is the lateral error of the final trajectory’s point. The cost of
the trajectory on the longitudinal movement is a function of
the longitudinal jerks, trajectory duration, and longitudinal
error, expressed by the equation:

Cs = kj
∑

J2
s + ktT + kdds

′2, (5)

where ds′ is the longitudinal speed error of the final tra-
jectory’s point. The parameters of optimization are stated in
Table II.

( : s t r e a m m o t i o n t r a j e c t o r y
: i n p u t s ( ? q1 ? q2 )
:domain ( and ( a t s ? q1 ) ( a t l ? q2 ) ( a t t i m e ? q1 )

( a t s ? q2 ) ( a t l ? q2 ) ( a t t i m e ? q2 ) )
: o u t p u t s ( ? q {1 2 1} . . . ? q {1 2 2 4 })
: c e r t i f i e d

( and ( t r a j ? q1 ? q2 ) ( t i m e o f t r a j ? q1 ? q2 )
( n e x t ? q1 ? q 1 2 1 ? q2 ) . . .
( n e x t ? q1 2 23 ? q1 2 24 ? q2 ) ) )

V. EXPERIMENTS AND RESULTS

The proposed method has been validated through simu-
lation experiments in two main driving scenarios and real-
life scenarios: (1) a single forward lane and a bidirectional
neighboring lane with varying obstacle speeds and initial
positions. (2) a multi-lane highway. (3) Three CommonRoad
scenarios. The experiments were conducted locally on an
Ubuntu system with an Intel Core i7-10700KF CPU:8x3GHz
computer with 32 GB RAM and NVIDIA GeForce RTX
3060 Ti video card.

Scenario 1: Two lanes, different directions
The scenario involves two obstacles: a low-speed dynamic

obstacle in the same lane as the ego vehicle, positioned 50
m ahead with a random speed of [7m/s, 8m/s], and another
oncoming obstacle in the neighboring lane moving in the
opposite direction. The oncoming obstacle starts at a random
position on the x-axis [50 m, 350 m] with a speed [4 m/s, 12
m/s]. The ego vehicle, with an initial speed v0 of 10 m/s,
aims to overtake the front obstacle. It can either accelerate to
overtake the front obstacle before the oncoming one passes
or yield, adjusting speed until the oncoming obstacle passes,
and then accelerate to overtake.

In 100 random scenarios, our method, with soft parameters
optimized for comfort (table II), achieved a 92% success rate
in overtaking. In 9% of cases, overtaking was completed
before being passed by the neighboring-lane obstacle, while



Fig. 6. A successful overtaking by FFStreams planner with soft parameters
at a critical scenario where oncoming obstacle’s velocity is 7.22 m/s.

in 83%, overtaking was performed after the obstacle passed,
aligning with a safer and human-like driving attitude. In
8% of cases the planner failed to find a plan within the
maximum level. A critical scenario is illustrated in fig. 6,
showcasing the planned trajectory, velocity, acceleration, and
jerk profiles. The planned actions include maintaining the
lane and accelerating to overtake when a safe trajectory is
available, ensuring smooth paths, and a maximum jerk of 0.8
m/s3.

We compared FFStreams to open-source planners Monte
Carlo Tree Search with Optimistic Exploration for Deter-
ministic Systems (MCTS-OPD) and Interval-based Robust
Planning (IRP)[10], implemented in[12]. We configured our
method with optimization hard parameters (table II). Three
behaviors were differentiated: 1) overtaking before the back-
ward obstacle passes; 2) yielding until the backward obstacle
passes, then overtaking; and 3) following an unsafe trajec-
tory leading to collision. Trajectories were evaluated using
the Occupant’s Preference Metric (OPM) [20], considering
comfort based on the maximum lateral and longitudinal jerk.

In 100 random experiments, FFStreams achieved a 94%
success rate in overtaking, while MCTS-OPD had an 82%
success rate, and IRP achieved 62%. Unsuccessful overtak-
ing attempts in MCTS-OPD (18%) and IRP (38%) often
resulted from decisions made when the oncoming obstacle
had high speed, leading to collisions. FFStreams, consistently
provided candidate trajectories for lane-keeping or yielding
to the front obstacle’s speed, except of 6% of cases where
no plan was found within the maximum planning level.
FFStreams outperformed in overtaking before being passed
by the oncoming vehicle in 44% of experiments, compared
to 40% for MCTS-OPD and 37% for IRP.

On the OPM metric, all three planners exhibited highly
aggressive driver behavior. Thus, we designate the FFStreams
planner with soft optimization parameters as the safest,
ensuring overtaking only when safe and comfortable for
passengers, achieving a Normal drivers behavior on the
OPM metric. In Fig. 7(a), a critical scenario is presented,
where the ego’s velocity is 7.5 m/s, and the oncoming
vehicle’s velocity is 4.47 m/s. The planned trajectory by
FFStreams with hard parameters is demonstrated, including
velocity, acceleration, and jerk profiles. Planned actions
involve maintaining the lane and accelerating to overtake

the front obstacle when a safe collision-free trajectory for
overtaking exists. Despite the extreme acceleration limit,
the planned optimized trajectory has a maximum absolute
acceleration of 4.3 m/s2.

In Fig. 7 (b), the planned trajectory by MCTS-OPD in a
critical scenario demonstrates a rapid and unsafe overtaking
decision with unrealistic values, including a maximum ac-
celeration of 15.0 m/s2 and a maximum jerk of 25.3 m/s3,
posing a high risk to the passengers of the autonomous vehi-
cle and other vehicles. In Fig. 7 (c), the planned trajectory by
IRP in a critical scenario reveals inconsistent and abnormal
decisions, alternating between changing to the left and right
lanes multiple times. These decisions pose a high risk of
affecting other vehicles’ driver attitudes. Additionally, the
planned trajectory exhibits unrealistic values of acceleration
and jerk, reaching a maximum absolute acceleration of 15.0
m/s2 and a maximum absolute jerk of 52.5 m/s3, which
are impractical for real-life applications. The acceleration
and jerk values in both MCTS-OPD and IRP deviate signif-
icantly from human driver behavior, posing safety concerns.
Additionally, the decision-making process in these methods
exhibits inconsistency, potentially influencing other drivers
negatively.

Scenario 2: Highway
To show the efficiency of our approach, we tested it on

the same experiments introduced in the rule-based Control
CLF-CBF-QP approach [11] in the highway environment.
The ego has an initial speed of vego(0) = 29 m/s. The
scenario consists of one front obstacle placed randomly
x1(0) = [50 m, 65 m], moving at a random constant speed
[26 m/s, 32 m/s]. In addition to the front obstacle, there
are four obstacles in the neighboring lane on a random x
coordination [−85 m, 85 m], moving at random speeds [26
m/s, 32 m/s] and with random accelerations [−3 m/s2, 3
m/s2], and an additional obstacle in the third lane, x6(0) =
[−85 m, 85 m], which changes to the neighboring lane at
a random time. The goal is to change to the left lane.
After running 50 experiments, in 88.00% of the experiments,
the ego successfully changed the lane. In 84.00% of them,
the lane-change happened under 60 seconds (Table IV). By
contrast, the rate has not exceeded 56% in the CLF-CBF-QP
method. We have also evaluated the trajectories of the two
methods on the Occupants Preference Metric (OPM) [20].
The results show that both methods are classified under the
Public Transportation driving type classification.

Fig. 8 demonstrates an example of a successful exper-
iment of lane-changing. In this experiment, one obstacle
changes lanes, and the planner changes the lane when it
is safe to change. In Fig. 8, the speed, acceleration, and
jerk profiles are shown; the acceleration ranges in [−0.5
m/s2,+0.5 m/s2] and the jerk ranges in [−0.5 m/s3,+0.5
m/s3] which leads to a comfortable ride. The results show
that the FFStreams planner has a higher success rate and
outperforms the Rule-based control CLF-CBF-QP method.
The FFStreams planner runs with a frequency of ≈ 6 Hz.

Additional scenarios: CommonRoad
To showcase the effectiveness of our approach, we tested



TABLE III
RESULTS OF OVERTAKING SIMULATIONS

Method Overtake Yield&Overtake Failure rate Success rate OPM
MCTS-OPD baseline 40% 42% 18% 82% Extremely Aggressive Driver

IRP baseline 37% 25% 38% 62% Extremely Aggressive Driver
FFStreams - Opt. hard params 44% 50% 6% 94% Extremely Aggressive Driver
FFStreams - Opt. soft params 9% 83% 8% 92% Normal Driver

(a) (b) (c)

Fig. 7. (a) A successful overtaking by FFStreams planner(hard parameters). (b) A successful but risky overtaking was planned by MCTS-OPD. In a
critical scenario where the oncoming obstacle’s velocity is 10.7 m/s. (c) A successful but very risky overtaking was planned by IRP, where the oncoming
obstacle’s velocity is 6.0m/s.

Fig. 8. A successful lane-changing, when the ego vehicle changes the lane
when it is safe to change and merges into the middle of four obstacles.

TABLE IV
RESULTS OF LANE-CHANGE SIMULATIONS

Method Lane-Change under 60s OPM
FFStreams 84.00% Public Transportation

CLF-CBF-QP 55.58% Public Transportation

it on three CommonRoad scenarios USA US101-1 1 T-1,
ESP Monzon-2 1 T-1, ITA Empoli-18 1 T-1 derived from
real-life situations. These scenarios present diverse chal-
lenges an autonomous driving system might face. The first
involves rapid lane changes and merging with fast-moving
obstacles. The second requires following a decelerating bus,
necessitating speed adjustments. The third involves following
an accelerating vehicle, demanding speed adaptations. We
compared our method with the Search-Based planner in
CommonRoad, which utilizes 2697 motion primitives and
is based on the Search-Based Planning Library (SBPL) [21].

In Fig. 9, FFStreams excels over the Search-based planner
in various scenarios. In the second scenario, FFStreams
avoids collision, and adjusts speed to follow a bus, while
the Search-based planner results in the ego vehicle stopping.
In the last scenario, FFStreams accelerates to follow the
leading vehicle, whereas the Search-based planner maintains

zero speed, causing the ego vehicle to stop throughout.
FFStreams excels in acceleration and jerk values, offering
a more comfortable trajectory. Its superiority in comfort,
safety, and human-like criteria arises from its ability to
integrate semantic knowledge for human-like behavior.

To assess planning efficiency, we analyzed average run-
time in experiments with up to eleven obstacles comparing
our algorithm with two baselines; MCTS-OPD and IRP
(Fig. 10). While runtime increases with the number of
checked obstacles, focusing on a limited number of relevant
obstacles is practical for executing autonomous overtaking
or lane-changing maneuvers in diverse scenarios.

VI. CONCLUSION

The FFStreams planner efficiently handles maneuver plan-
ning by integrating TAMP, interpreting decisions with logic
rules, and considering kinematic constraints to avoid infeasi-
ble trajectories. Currently supporting lane-keeping, yielding,
lane-changing, and overtaking maneuvers, future work may
expand the domain to include diverse intersection scenarios.
The use of a standard planning language allows performance
comparisons with different heuristic search planners. En-
hancements may involve replacing the heuristic planner for
increased efficiency, and testing the method with uncertain
information in the observable environment.
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