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Abstract. Standard robotic control works perfectly in case of ordinary
conditions, but in the case of a change in the conditions (e.g. damaging
of one of the motors), the robot won’t achieve its task anymore. We
need an algorithm that provide the robot with the ability of adaption
to unforeseen situations. Reinforcement learning provide a framework
corresponds with that requirements, but it needs big data sets to learn
robotic tasks, which is impractical. We discuss using Gaussian processes
to improve the efficiency of the Reinforcement learning, where a Gaussian
Process will learn a state transition model using data from the robot
(interaction) phase, and after that use the learned GP model to simulate
trajectories and optimize the robot’s controller in a (simulation) phase.
PILCO algorithm considered as the most data efficient RL algorithm. It
gives promising results in Cart-pole task, where a working controller was
learned after seconds of (interaction) on the real robot, but the whole
training time, considering the training in the (simulation) was longer.
In this work, we will try to leverage the abilities of the computational
graphs to produce a ROS friendly python implementation of PILCO, and
discuss a case study of a real world robotic task.

Keywords: Robot learning · Reinforcement learning · Gaussian
process · Data efficient

1 Introduction

The standard control methods in robotics are based on the dynamical model of
the robot, and also on the model of the dynamics of the environment to build
the needed closed loop control scheme [1–6]; in the real world to realize such
methods for manipulators, we have to follow the following steps: (1) taking an
observation of the environment using cameras or sensors (2) estimating the state
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of the robot and the task (e.g. position of the end-effector and the goal position)
(3) planning the trajectory of motion of the end-effector to achieve the task
(4) using low-level controllers (or force controller for harder tasks) to ensure
following the planned path by minimizing the errors (5) sending the resulting
commands to the joints of the robot. The errors which are occurred in each step,
accumulated to produce a cumulative error making the control process hard to
realize with desired accuracy.

The essence of the robot learning is to find a way to develop robotic behavior
to a human’s level behavior. Hence the Reinforcement Learning (RL) [6,7] seems
to be the most viable way for robot learning, where the learning process depends
on an agent taking actions, noticing the changes in the environment’s state and
the resulted reward of that action. The goal of RL is to learn the best possible
policy to achieve a task by a trial and error hypothesis.

The state of the art deep reinforcement learning algorithms, which has tried
to handle robotic tasks can be classified to two major classes: (1) model-free
algorithms: (TRPO [9], PPO [10], DDPG [11]) which can learn to achieve the
task after sampling training sets from interacting with environment, so we can
consider the robot’s model as a black-box (2) model-based algorithms ([12–14]):
depends on a learned transition model of the environment. The model-free algo-
rithms need days of training to learn basic robotic tasks. On the other hand,
ordinary model-based algorithms can learn much faster (less than an hour), but
mostly can’t adapt to unforeseen situation (the learned model is no longer valid)
such in case a damaged motor [15–17].

Model-based algorithms learns a state transition model, that represent how
would the next state will be in case of taking an action, without knowing the
dynamic model of the robot. When using deterministic models, the results of the
RL depend on the accuracy of the model, and mostly it failed with unforeseen
states.

In this paper we are interested in the idea of using probabilistic models in RL
algorithms [18–21], to handle the uncertainty of model and reduce its training
time. The approach uses a Gaussian process (1) its input will be a state xt (the
robot joints’ angles and positions) and the control u, (2) the output will be the
resulted state xt+1 (or the difference xt+1 −xt). The reason to use the Gaussian
process is its ability to learn from small data sets. After training the model we
will use it to simulate the task (generate trajectories), and optimize the controller
over that trajectories. We have chosen PILCO algorithm [22], which considered
the most data efficient RL algorithm, we are interested in using of computational
graphs to implement PILCO, and see how our work could scale to robotic tasks.

The following sections are structured as follows. First we will outline some
preliminaries (Sect. 2), which will be a brief introduction to RL, GP, PILCO and
computational graphs. Then we describe our work (Sect. 3) and experiments on
a robotic task (Sect. 4). Then we discuss out the results (Sect. 5). Finally, we add
a discussion (Sect. 6) and future work (Sect. 6).
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2 Preliminaries

2.1 Reinforcement Learning

Reinforcement learning is a part of the machine learning, which study how should
the agent have to interact in its working space, in order to minimize (maximize)
a long-term cost (reward) (see Fig. 1).

AgentAgent

Environment

Action
ut

State
xt+1

cost
ct+1

Fig. 1. Reinforcement learning paradigm

We represent the RL problem as a Markov Decision Process (MDP) at Fig. 2.
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x2

u2 u3

p(xt+1|xt, ut)

πθ(xt)

p(xt+1|xt, ut)

πθ(xt) πθ(xt)

Fig. 2. Markov decision process for RL problem

Where xt is the state, ut - control (action), c - cost (reward), the transition
function: xt+1 = f(x, ut) + ω, that we aim to learn in model based RL. The
policy function, which gives the best action for each state after the training
process (could be called as the controller): ut = π(xt, θ). The goal is to minimize
the expected long-term cost:

J(θ) =
T∑

t=1

E[c(xt)|θ].

2.2 Gaussian Processes

In probability theory and statistics, a Gaussian process is a stochastic process (a
collection of random variables indexed by time or space), such that every finite
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collection of those random variables has a multivariate normal distribution, i.e.
every finite linear combination of them is normally distributed.

In other words, a Gaussian process is a probability distribution over possible
functions. Gaussian process defined by mean function m(.) and a covariance
function (kernel) k(., .).

We will use an independent Gaussian process for each dimension (variable)
of the output. It will describe how would be the next state beginning from the
current state and implementing control signal u, f : x → f(xt, u) = x(t + 1).
The Gaussian process will learn using the data collected from the real robot,
the data set consists of transitions xt, ut, xt+1, ct. And the learning process is a
regression problem, so if we start from a prior

P (f |x) ∼ N (μ,Σ).

We get a posterior

P (y∗|D,x) ∼ N (μ(y∗|D),Σ(y∗|D))

after a training epoch (the process is called Bayesian inference) (see Fig. 3).

Fig. 3. GP prediction at uncertain input. The input distribution p(xt, ut) (the blue
curve and term in the equation) propagates though the GP model (the gray model),
we obtain the expected distribution of the next state p(xt+1) (Color figure online)

And we will use the learned model to make a long term prediction (build
trajectories in the simulation steps), so if we make an action u in the state x,
we map it through the Gaussian process to get the output as the probability of
the next state. Using the formula:

The output distribution is irregular, so we use the moment matching algo-
rithm to approximate it.
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2.3 PILCO Algorithm

PILCO (Probabilistic Inference for Learning COntrol) algorithm [22] is a model-
based policy search reinforcement learning algorithm, which achieved unprece-
dented data-efficiency of several control benchmarks. PILCO is a model based
algorithm, which means it consists of two alternating steps:

1. Interaction step in which we run the real robot (using a random policy in the
first episode, and the optimized policy afterward), collect the roll-out’s data,
and train the Gaussian process model on the collected data.

2. Simulation step in which we have to:
(a) Use the Gaussian process to build long-term predictions over a trajectory

from p(X0) to p(XT ).
(b) After that compute the long term cost function:

J(θ) =
T∑

t=1

E[c(xt)|θ]

J(θ) =
T∑

t=1

∫
c(xt)N(xt|μt,Σt)dxt

(c) At the end use the computed cost to optimize the controller’s parame-
ters to minimize the cost, by using a line search algorithm based on the
gradient of the cost function (L-BFGS-B algorithm):

θ ← arg min
θ

J(θ)

PILCO is summarized by Algorithm 1.

Algorithm 1. PILCO
1 Define a model and a policy
2 Collect a random roll-out, record data
3 repeat
4 learn the model
5 Collect trajectories using the model

from p(x0) to p(xT )
6 evaluate the policy

J(θ) =
∑T

t=1 E[c(xt)|θ]
7 optimize policy

θ ← arg minθ J(θ)
8 run the policy and collect data

until task solved ;

Model bias is a problem that faced model-based algorithms, when selecting
only a single dynamic model and assuming that model is the correct model, and
hence the prediction errors in the model compound to produce a inaccurate long
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term predictions. PILCO uses Gaussian processes as a probabilistic models to
avoid model bias, by considering all plausible dynamics models in prediction of
the next states, i.e. give the model sufficient uncertainty. Which leads to a better
results in terms of data efficiency.

2.4 Computational Graphs for Gaussian Process Regression

Computational graphs are directed graphs, in which the nodes are either vari-
ables or operations, and the edges define the inputs to each node (see Fig. 4).

Fig. 4. Simple computation graph; the blue node is the input X, the yellow nodes are
constants, and the green nodes are the operations (Color figure online)

There are two key strength of using computational graphs:

– It can be used to form a complex operations from simple operation.
– They enable automatic differentiation, which is needed in optimization.

We propose using computational graphs for Gaussian process regression
(Algorithm 1, line 4), where the process of learning the model means fitting
a probability model to the collected data, in other words; we start from a (1)
prior distribution with zero mean function and an initial covariance function,
(2) observe the collected data and compute the posterior distribution, and after
that (3) learning the hyper-parameters (length-scales, signal variances and noise
variances which define the covariance function) of the GP via evidence maxi-
mization.

The bottle-neck in this process, is in (1) the computation of the posterior
over the data points, and (2) the differentiation which is needed in the process
of evidence maximization.

The formulas to find the mean and the variance of the posterior:

mt(x) = K(x,Xt)[K(Xt, Xt) + σ2
ε I)]−1yt

kt(x, x) = k(x, x) − K(x,Xt)[K(Xt, Xt) + σ2
ε I)]−1K(Xt, x)

where Xt is the observed inputs, x all possible input points, yt observed outputs
and σε noise variance.

We can compute then evidence (log marginal likelihood):

log p(y|X,φ) = −1
2
yT K−1

y y − 1
2

log |Ky| − n

2
log 2π

where Ky = K(X,X) + σ2
ε I is the covariance matrix of the noisy outputs y.
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The hyper parameters of the GP:

φ = (l, σ2
f , σ2

ε )

length-scales l, signal variance σw
f , noise variance σ2

ε .
The evidence maximization goal:

φ̂ = arg max
φ

log(p(y|X,φ))

The evidence maximization process, make uses of the partial derivatives of
the log marginal likelihood with respect to the hyperparameters to find the
combination that maximize evidence.

By representing the previous relations as a computational graph, we can
(1) leverage the GPU by run the matrix operations on it, (2) use the auto-
matic differentiation property of the computational graph instead of compute
the derivatives analytically (see Fig. 5).

Fig. 5. High level representation of the computational graph used for Gaussian process
regression

3 Problem Formulation

We consider using Gaussian process to achieve better data efficiency for rein-
forcement learning in robotic tasks. We will use PILCO as a base algorithm for
our work (as it is the most data efficient RL algorithm). In this work, we start
from two observations about PILCO:

– The Robot Operating System (ROS) [25] is an open source, flexible framework
for writing robot software. It is a collection of tools, libraries, and conventions
that aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms. Most of the robotics laboratories
are using ROS in research experiments and projects, and it has been used
widely in the industry, making it as the most powerful tool in the robotics
community. ROS support C++ and Python only, but the official code release
of PILCO [26] was written in Matlab, which makes it not compatible with
ROS, So we decided to reproduce PILCO in Python to make it compatible
with ROS.
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– The recent revolution of the deep learning relies on exploiting the computing
power of the GPU, the father of the RL Richard Sutton has mentioned it
in his “bitter lesson” [27]. PILCO reduces the amount of interaction time
on the real robot, but it takes a relatively long time after that for inference
and controller optimization. Reducing this time may give the algorithm the
ability to learn in real time (or with a little latency), for robotics, it means
the ability to adapt to unforeseen cases, which is a step toward the intelligent
robot. We used GPflow library [23], which is a Gaussian process library that
uses TensorFlow for its core computations and Python for its front. GPflow
follows the computation graphs of the TensorFlow, which make the best use of
the GPU power. That facts reduce the training time (especially when working
with large scales).

We evaluated our implementation on a 7-DoF robotic arm task, in the Ope-
nAI gym [24] to robotic environment. In the following, we will discuss the Exper-
imental setup of this experiment, with an explanation that is needed to under-
stand the points of interest, and sample of results with discussion.

4 Experimental Setup

We applied our implementation on a 7-DoF robotic arm (Fig. 6). We assume that
we don’t know any thing about the model of the robotic arm or the environment,
we can just observe the coordinates of the end effector and joints’ angles, and
receive a reward (cost) after each movement. We can control the robotic arm
by sending 7 control signals to each of its joints. For the algorithm, it is not
needed to know what the state or the control signal represents, but to make our
experiment more applicable to real world robots, we will constrain the control
signal, and we will also constrain the length of the interaction phase.

Firstly we will define the following:

– State: the coordinates of the end effector and the joints’ angles

Xe = [xe, ye, ze, j0, ..., j7] ∈ R
10

– Target: the coordinates of the target

X∗ = [x∗, y∗, z∗] ∈ R
3

– Actions: the control signal for each joint

Uj = [u0, u1, ...., u7] ∈ R
7

– The cost function:

c(x) = 1 − exp(− 1
2σ2

c

d(Xe, X∗)2) ∈ [0, 1]
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Fig. 6. A 7-Dof robotic arm’s task in simulation, the control signal u is just a relative
rotation angle for each joint, the state is the position of the end effector and joints’
angles, the goal is to reach the red point. The joint which is surrounded by an ellipse,
is the broken (unresponsive) joint in the second part in results (Color figure online)

– The transition model the model consists of an independent stochastic GP
regression model for each variable of the output. In our test case, we have
10 GPs, each one takes the state and the control command as an input, and
the output is resulted difference of one of the state variables (Fig. 7a).

– Controller we have used RBF (Radial Basis Function) as a controller. We
can use the RBF controller as a deterministic GP regression model, by consid-
ering it like that, we exploit the multi output GP class that we have already
used for the transition model (Fig. 7b).

5 Experimental Results

5.1 Classic Reaching Task

As we are interested in an implementation that could be applicable in the real
world robotics applications, we have tested our work on the task of reaching a
goal in the workspace of the robotic arm, that task is a sub task of any industrial
task for manipulators, in the following we will give the results of the experiment
with an analysis and comments.

For the following hyperparameters:

– Number of the basis function of the controller = 50.
– Number of the iterations in each episode on the real robot (horizon) = 50.
– The control function is constrained to 0.1.
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Fig. 7. (a) The transition model: multi-output Gaussian process regression model, the
input is a for each sub GP is the state Xt and the control Ut, the output is the resulted
difference of an output variable. (b) The controller: multi-output Gaussian process
regression model, the input a for each sub GP is the state Xt, the output is a control
variable ui.

The average time results was:

– The time of interaction (running the robot) = 21.22 s.
– The time of training the transition model = 37.53 s.
– The time of optimizing the controller = 1380.95 s.
– The program running time = 1598 s

The corresponding plots for this case are presented on Fig. 8.
The algorithm can learn the inverse kinematics of the robot and achieved the

task in a considerable time, and improved the trajectory also. Here we have to
mention that, the performance of the algorithm was impressing because of the
formulation of the experimental setup in a way exploiting the best of the PILCO
algorithm, and matching the needs of such algorithm.

One of the interesting experimental results, is to monitor the confidence of
our learned model, and how it match the real transition model. In the following
we will list samples form one step prediction for the three coordinates of the end
effector (Fig. 9).

5.2 Damaged Robot

To asses our implementation on one of the most interesting features of rein-
forcement learning algorithm, we have use a test case that could be happen for
any robot. The damage of any joint’s motor could lead the ordinary control
algorithms to a complete fail in achieving the task. In our test case, we are con-
sidering the damage of a joint’s motor (the joint which is surrounded by a red
ellipse in Fig. 4), so the joint will be unresponsive.

We have used the same implementation with similar hyperparameters from
the last experiment, the robot could adapt to the damage, and learned to achieve
the task. The plots for that case in the right (Figs. 10 and 11). The speed of the
learning process hasn’t been affected by the damaging of the motor, because the
algorithm doesn’t depend on the dynamical model of the robot.
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Fig. 8. The distance between the end effector and the target position, (a) is the random
roll-out, (b) is the first roll-out after optimizing the controller in the simulation, we can
see the robot approaches the target point here, but after that go away from it, but in
(c) it learns to reach the goal after just 20 time steps, and improve that time by reach
it in 10 time steps only in (d)

5.3 Comparison with the Matlab Implementation

We were interested in comparing how much using the computational graph could
help us speed up the learning process for PILCO algorithm. We have tested our
implementation in the Cartpole environment, with a similar hyperparameters to
ones in the Matlab implementation, and same conditions.

The average time for running both implementations for 8 epochs:

– PILCO in python with computational graphs = 671 s.
– PILCO original implementation = 1265 s.

The using of the computational graphs, leverage the GPU power, and give
as a speed up by a factor

S =
TMatalb

Tpython
=

1265
671

= 1.885.

Which is considered as a satisfying result.
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Fig. 9. The one step prediction of the transition model: the plot shows the difference
between the states and the confidence level for each prediction; in (a) we can see the
model is not confident in the first iteration. After the first learning epoch (b) it reduce
the margin of uncertainty, but it failed to follow the real transition (orange line in the
plot), the model has reduce the uncertainty about transition over the next iterations
(c) and (d), reaching a small margin (d is better than c-check the scale of y-axis) (Color
figure online)

Fig. 10. The distance between the end effector and the target position - the case of
an unresponsive joint, similar results to the previous case, the robot approaches the
target in the second iteration (b) and third (c), reaches it in the in the fourth (d) after
just 8 time steps.
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Fig. 11. The one step prediction of the transition model- the case of an unresponsive
joint; confidence over the x axis was bigger than other two coordinates in (b), but
the robot could learn to solve the task and reduce the margin of the uncertainty in
(c) and (d).

6 Discussion and Future Work

Our implementation for PILCO in Python, with the using of computational
graphs through GPflow gives the desired results in terms of the two goal pro-
prieties (1) ROS friendly, where it is in python, and it is easy to describe a real
world robotic experiment as a gym environment. (2) it leverage the computation
power of the new hardware, so it could learn faster; while we couldn’t feel the
importance of this feature for our simple experiments, it may play an important
role when working with more complex applications.

We have to mention to the compromise between long horizon and the accu-
racy of the model. Smaller horizon means less interaction on the real robot,
which is desirable; but also mean smaller data set, and worse model for the state
transition. So before deploying the learned controller, it is important to check
the one step prediction plots over test (plausible for our task) trajectories. It is
not recommended to deploy the controller after the first time achieving the task.

The importance of our work impedes in: (1) demonstrating the ability of
adapt for robots when using algorithms that doesn’t depends on the dynamical
model (e.g reinforcement learning), (2) it is desirable to adapt as fast as possible,
so it is important to work toward fast reinforcement learning, (3) using the prob-
abilistic models and computing power could be the right method in achieving
that goals.

We have many interesting points to work in this direction. While GP gives
a good results, but it has some down points, like it can’t handle discontinuities
in the state, so using our implementation we can easily try to use Deep GPs
instead of shallow GPs and compare the results. The computation complexity
of the GP equals O(n3) which cause problem when working on a scale, in our
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work we used computational graphs to speed up the inference process of GPs,
but we can work also on using GPU in other parts of the algorithm. In robotics,
sometimes we are working with sparse rewards, so we can study how to solve
such problems efficiently, and how we could make use of GPs.
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