
ISSN 1064-5624, Doklady Mathematics, 2022. © The Author(s), 2022. This article is an open access publication.
Russian Text © The Author(s), 2022, published in Doklady Rossiiskoi Akademii Nauk. Matematika, Informatika, Protsessy Upravleniya, 2022, Vol. 508, pp. 94–98.

ADVANCED STUDIES IN ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Application of Pretrained Large Language Models
in Embodied Artificial Intelligence

A. K. Kovaleva and A. I. Panovb,*
Presented by Academician of the RAS A.L. Semenov

Received October 28, 2022; revised October 31, 2022; accepted November 3, 2022

Abstract—A feature of tasks in embodied artificial intelligence is that a query to an intelligent agent is formu-
lated in natural language. As a result, natural language processing methods have to be used to transform the
query into a format convenient for generating an appropriate action plan. There are two basic approaches to
the solution of this problem. One is based on specialized models trained with particular instances of instruc-
tions translated into agent-executable format. The other approach relies on the ability of large language mod-
els trained with a large amount of unlabeled data to store common sense knowledge. As a result, such models
can be used to generate an agent’s action plan in natural language without preliminary learning. This paper
provides a detailed review of models based on the second approach as applied to embodied artificial intelli-
gence tasks.

Keywords: embodied artificial intelligence, large language models, common sense knowledge, construction
of action plans
DOI: 10.1134/S1064562422060138
1. INTRODUCTION
In recent years, increased interest has been shown

in embodied artificial intelligence (EAI) tasks, which
are generally represent the operation of objects in
human-oriented environments (household tasks) or
the displacement of objects and navigation in homes
or open areas. A distinctive feature of EAI tasks is that
instructions describing a task to be completed or a goal
to be reached that are transferred to an embodied
intelligent agent (EIA) are formulated in natural lan-
guage. Accordingly, natural language processing tech-
niques have to be used to transform the instructions
into a form convenient for EAI. There are two
approaches to the solution of this problem.

One relies on specialized models trained for gener-
ating a plan of agent’s actions based on instructions.
Examples are techniques for using templates of possi-
ble actions and determining arguments of these
actions [1] or models generating token sequences
(Seq2seq) [2].

The other approach is based on the fact that mod-
ern large language models (LLMs) [3, 4] pretrained
with large corpora of unlabeled texts produce good
1

a Artificial Intelligence Research Institute, Moscow, Russia
b Federal Research Center “Computer Science and Control,”
Russian Academy of Sciences, Moscow, Russia
*e-mail: panov@airi.net
results on tasks for which they were not initially
designed after few-shot learning [5] or without learn-
ing at all [6]. This is achieved due to the ability of such
models to store common sense knowledge. In modern
works, this property of LLMs is used in EAI tasks, for
example, in [7].

This paper provides a detailed review of models
based on the second approach to EAI tasks in which
pretrained LLMs are used to generate a plan of EIA
actions in some environment.

2. APPROACHES OF BASED
ON PRETRAINED LLM

In Zero-Shot Planners [7], it is proposed using
LLMs for grounding high-level tasks expressed in nat-
ural language to a set of elementary actions executable
by an intelligent agent. As a result, given a task descrip-
tion, LLM must to construct an action plan for imple-
menting the task. Here, the LLM is not additionally
trained. As an environment where the intelligent agent
acts, we use the Virtualhome simulator [8]. A plan is
constructed iteratively. First, a specially formulated
query with a task description made in natural language
is fed as input to the model. Then the model generates
in free form a description of the action to be executed
at the first step. For the resulting action description, a
special vector representation is calculated [9], for
which an action with the closest vector representation

2 KOVALEV, PANOV
is sought in the set of elementary actions. Next, the
description of the obtained action is added to the
query text and the procedure is repeated. A query to
the LLM is formulated in the form of a hint with a task
example and an action plan for its execution placed at
the beginning of the query and with the description of
the current task added to the end of the query. Primary
attention is given plan generation. The agent is
assumed to be able to perform elementary actions.

In G-PlanET [10], LLMs are also used for action
plan generation. However, in contrast to [7], emphasis
is placed on binding to a particular environment,
rather than to only agent’s actions. A modification of
an ALFRED task [11] is used in which the scene is
represented as a table with an attached list of all scene
objects with their type, position, orientation, and par-
ent object (on which the given object lies/in which it is
placed). At the planning stage, the scene table is
unfolded in lines and is added to the description of the
task. The resulting text in the form of a query is fed to
the input of the LLM. Thus, a query in G-PlanET [10]
consists of a generated tabulated representation of the
scene with an operating intelligent agent in it and a
task description in natural language. A plan is gener-
ated iteratively. The result of the current step is concat-
enated with the query for this step and is fed to the
input of the model for generating the next step. A sim-
ilar approach is used in EA-APG (environmentally-
aware action plan generation) [12], but the scene
description consists of only a list of objects.

In the SayCan architecture [13], a key stage is
training an agent to execute elementary actions. An
action consists of three parts: a strategy, i.e., a
sequence of instructions for the displacement of an
intelligent agent or its movable parts; a natural lan-
guage description; and an affordance function return-
ing the probability of successful execution of the
action in the current state of the environment. The
generation of a plan is similar to the process imple-
mented in Zero-Shot Planners [7], with the only dif-
ference being that the LLM does not generate a
description of the next action, but rather estimates the
probability that an elementary action is useful for exe-
cuting the task in question. Such an estimate is pro-
duced for all possible elementary actions and is multi-
plied by the successful action execution probability
obtained from the utility function correspondences.
The next action is chosen to be the one with the max-
imum estimate value. A distinctive feature of this work
is that experiments were conducted in both virtual
environment and on robotic platforms in a realistic
environment. It should also be noted that a query con-
sists not of a single example as in Zero-Shot Planners
[7], but rather contains several examples. Another dif-
ference in the formation of a query is that it represents
not a task description with an action plan, but rather a
dialogue between the user and the intelligent agent in
which the former asks a question, for example, “How
can you bring some snack to me?”, and the agent lists
the actions necessary for executing this task. Addition-
ally, the authors use the approach to query formation
proposed in [14]. According to this approach, a task
execution description is added to the query in addition
to the task and its solution. The use of such a hint in
SayCan [13] improves the performance of the model
for tasks involving negation or reasoning. A limitation
of this approach is that, as was shown in [14], improve-
ments are demonstrated only for LLMs with more
than 100 billions of parameters.

In the ProgPromt architecture [15], the basic idea
is that a query in represented in the form of a Python-
like code. A query consists of a description of available
actions in the form of imported corresponding soft-
ware modules, a list of objects in the scene, task exam-
ples, and their execution in the form of software mod-
ules. This form of query is justified by the fact that
LLMs, such as GPT-3 with 175 billion parameters [5],
are trained on large amounts of data from open soft-
ware code repositories. A similar approach is used in
the CaP model [16], which generates an agent’s strat-
egy. A distinctive feature is that the resulting programs
are executable software codes, and they can be exe-
cuted in a hierarchical manner.

Some works, for example, the Socratic Model [17]
and Inner Monologue [18], propose not a particular
model, but rather an approach to the construction and
union of a set of models. For example, pretrained
models involving various modalities (sound, text,
image, etc.) are used in the Socratic Model [17]. Such
models can be combined in systems capable of solving
tasks going beyond the scope of tasks for each individ-
ual model. This is achieved by developing an interface
for data exchange between the models. As an example
of robotic task, planning displacements of objects over
a table is considered. The Pybullet simulator [19] is
used to detect objects in a scene. Given an image, its
description is produced by applying the ViLD
approach [20], after which the scene description in the
form of a query is fed to LLM for generating an action
plan by analogy with Zero-Shot Planners [7] and Say-
Can. Next, the plan is executed following a CLIPort-
like strategy [21, 22]. A query consists of a scene
description in the form of a python-like list of objects,
examples of tasks formulated in natural language, and
their implementation in the form of a pseudocode.

The Inner Monologue architecture [18] makes use
of text-like feedback obtained from either the environ-
ment (scene description, success of action execution)
or from the user (refinement of agent’s actions). The
general approach remains fixed, while, depending on
the considered task, different models are used for
implementation. The basic idea is that feedback from
the environment in the form of text is added iteratively
to the input query used for planning LLM. A query
with a scene description and task examples is used in
manipulations with objects (in an environment with a
virtual or actual table). For executing a task in a realis-
DOKLADY MATHEMATICS 2022

APPLICATION OF PRETRAINED LARGE LANGUAGE MODELS 3

Fig. 1. General architecture of using large language models (LLM) in the task of generating an embodied agent’s action plan.

Query Action plan

LLM

AgentEnvironment

Action

ObservationFeedbackEnvironment
information

Instruction:
Wash cup

Examples
Instruction

1. Find cup
2. Grab cup
3. Find sink
4. ...
 ...

Additional
information
tic kitchen, a query is formulated in the form of a dia-
logue between the user and the embodied agent.

The LM-Nav [23] relies on an approach that falls
into Socratic Models [17], in which case separately
pretrained models are joined in a single system to be
used for text and image navigation. LLM GPT-3 [5] is
employed for generating a sequence of text labels
based on natural language instructions, a visual lan-
guage model assigns text labels to images obtained by
the agent [24], and an image navigation model [25]
generates and executes a plan of the agent’s displace-
ment. Three examples of extracted text labels are used
as a query for LLM.

3. CLASSIFICATION OF LLM
FOR PLANNING TASK

A classification of the considered approaches by
types of queries, testing environments, and used
LLMs is presented in Table 1. Generalizing the data
given in Table 1, we should note that, in the general
form, a query to a language model can consist of the
following parts:

1. a scene description, which is simply a list of
available objects possibly supplemented with their
properties;

2. a list of actions available to the embodied agent;
3. examples of tasks posed for the embodied agent;
4. examples of executing posed tasks.
The query itself can be expressed as a plain text or a

dialogue. In addition to natural language queries, it is
possible to use queries representing a pseudo-code or
an executable software code written, for example, in
the Python language.

It should be noted that choosing a proper query is a
rather difficult task, and its result can be affected by
seemingly minor modifications, such as the number-
ing of the list of planned actions and additions of line
break symbols (see the examples in SayCan [13]).
DOKLADY MATHEMATICS 2022
All the considered approaches can be described by a
common architecture with LLM for the task of plan-
ning the embodied agent’s actions represented in Fig. 1.

At the first stage, a natural language instruction
describing the task for the embodied agent is used to
form a query for LLM. In the simplest case, a query
consists of task examples with execution plans in terms of
instructions available to the embodied agent [7, 13, 23].
A query of more complex structure can include addi-
tional information on the environment, for example, a
list of present objects and their properties [10, 12, 15–18]
or available actions of the agent [15, 16]. Next, the
query is fed to LLM, which iteratively generates an
action plan. It should be noted that queries are mainly
formulated in natural language [7, 10, 12, 13, 17, 18, 23],
but there are approaches using pseudo-codes [16, 17] or
software codes [15] for this purpose. At the second
stage, the agent implements the generated plan. This
formulation means that the action plan is completely
generated prior to its implementation in the environ-
ment and is not modified in the course of the imple-
mentation. This may lead to a situation when the agent
gets stuck at some stage of the plan implementation,
which, in turn, may lead to the initial task failed to be
executed. A possible way out of this problem is to use
feedback from the environment (dashed arrow in Fig. 1)
at every iteration generating the next agent’s action. As
feedback, it is possible to use information on the pos-
sibility of executing a particular action [13] or a report
concerning the correct execution of an action or the
variation in the object state [18].

CONCLUSIONS
The considered approaches to the use of LLM for

generating action plans yield moderately good results
in both virtual environments and implementations on
robotic platforms. Nevertheless, a quantitative com-
parison of these works is complicated by the fact that
they involve different environments (except for several
works). Note that there are well-known benchmark

4

DOKLADY MATHEMATICS 2022

KOVALEV, PANOV

Table 1. Comparisons of algorithms for embodied artificial intelligence tasks based on pretrained LLMs

Algorithm Language model Environment
Robot

implementation
Type of query Navigation

Interact. with

environment

Zero-Shot

Planners [7]

GPT-3 175B [5]

Codex 12B [29]

VirtualHome [8] – Examples of tasks and

their solutions

+ +

G-PlanET

[10]

TaPEX [30] ALFRED [11]

(modification)

– Scene description, task

description

– –

EA-APG [12] GPT-3 [5] VirtualHome [8] – Scene description,

examples of tasks and

their solutions

+ +

SayCan [13] PALM 540B [4] Realistic environ-

ment (kitchen)

Everyday Robots Examples of tasks and

their solutions formu-

lated in the form of

dialogue

+ +

ProgPromt

[15]

GPT-3 175B [5] VirtualHome [8] – Python-like code with

description of admissi-

ble actions, scene,

examples of tasks, and

their implementation

+ +

Socratic [17] GPT-3 175B [5] Pybullet [19] – Scene description,

examples of tasks, and

their implementation

on pseudo-code

– +

Inner Mono-

logue [18]

InstructGPT [31] Pybullet [19] – Scene description,

examples of tasks, and

their implementation

– +

InstructGPT [31] Realistic

environment

(table)

Everyday Robots Scene description,

examples of tasks, and

their implementation

– +

PALM 540B [4] Realistic

environment

(kitchen)

Everyday Robots examples of tasks, and

their implementation in

dialogue form

+ +

CaP [16] Codex [29] code-

davinci-002

Realistic environ-

ment (drawing on

white board)

UR5e Python-like code with

description of admissi-

ble actions, scene,

examples of tasks, and

their implementation

+ –

Codex [29] code-

davinci-002

Realistic environ-

ment (table)

UR5e Python-like code with

description of admissi-

ble actions, scene,

examples of tasks, and

their implementation

+ –

Codex [29] code-

davinci-002

Realistic environ-

ment (kitchen)

Everyday Robots Python-like code with

description of admissi-

ble actions, scene,

examples of tasks, and

their implementation

+ +

LM-Nav [23] GPT-3 [5] Realistic environ-

ment (street)

Clearpath Jackal

UGV

Examples of tasks and

their implementation

+ –

APPLICATION OF PRETRAINED LARGE LANGUAGE MODELS 5
tasks with established quality metrics and comparison
tables for testing embodied intelligent agents. Exam-
ples are ALFRED [11] and TEACh [26] for following
natural language instructions, RoomR [27] and
Benchbot [28] for object rearrangements, and others.
Unfortunately, most of the indicated works are not
presented in these benchmarks, which is largely
explained by the complexity of organizing queries in
various environments with a large number of objects
and actions.

A promising future direction of research is as fol-
lows. First, the feedback should be made more com-
plicated and trained in order to determine the quality
of LLM responses. Second, the training of LLMs
should be modified, namely, a regularizer modeling
the reality of generated responses should be added to
the loss function of the entire language model.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-

bution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made. The images

or other third party material in this article are included in the

article’s Creative Commons license, unless indicated other-

wise in a credit line to the material. If material is not included

in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. S. Y. Min et al., “Film: Following instructions in
language with modular methods,” arXiv preprint
arXiv:2110.07342 (2021).

2. H. Liu et al., “LEBP—language expectation & binding
policy: A two-stream framework for embodied vision-
and-language interaction task learning agents,” arXiv
preprint arXiv:2203.04637 (2022).

3. J. Devlin et al., “Bert: Pre-training of deep bidirection-
al transformers for language understanding,” arXiv pre-
print arXiv:1810.04805 (2018).

4. A. Chowdhery et al., “Palm: Scaling language modeling
with pathways,” arXiv preprint arXiv:2204.02311 (2022).

5. T. Brown et al., “Language models are few-shot learn-
ers,” Advances in neural information processing sys-
tems,” 33, 1877–1901 (2020).

6. J. Wei et al., “Finetuned language models are zero-shot
learners,” arXiv preprint arXiv:2109.01652 (2021).
DOKLADY MATHEMATICS 2022
7. W. Huang et al., “Language models as zero-shot plan-
ners: Extracting actionable knowledge for embodied
agents,” arXiv preprint arXiv:2201.07207 (2022).

8. X. Puig et al., “Virtualhome: Simulating household ac-
tivities via programs,” Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (2018),
pp. 8494–8502.

9. N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” arXiv pre-
print arXiv:1908.10084 (2019).

10. B. Y. Lin et al., “On grounded planning for embodied
tasks with language models,” arXiv preprint
arXiv:2209.00465 (2022).

11. M. Shridhar et al., “Alfred: A benchmark for interpret-
ing grounded instructions for everyday tasks,” Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2020), pp. 10740–10749.

12. M. Gramopadhye and D. Szafir, “Generating execut-
able action plans with environmentally-aware language
models,” arXiv preprint arXiv:2210.04964 (2022).

13. M. Ahn et al., “Do as I can, not as I say: Grounding
language in robotic affordances,” arXiv preprint
arXiv:2204.01691 (2022).

14. J. Wei et al., “Chain of thought prompting elicits rea-
soning in large language models,” arXiv preprint
arXiv:2201.11903 (2022).

15. I. Singh et al., “ProgPrompt: Generating situated robot
task plans using large language models,” arXiv preprint
arXiv:2209.11302 (2022).

16. J. Liang et al., “Code as policies: Language model pro-
grams for embodied control,” arXiv preprint
arXiv:2209.07753 (2022).

17. A. Zeng et al., “Socratic models: Composing zero-shot
multimodal reasoning with language,” arXiv preprint
arXiv:2204.00598 (2022).

18. W. Huang et al., “Inner monologue: Embodied reason-
ing through planning with language models,” arXiv pre-
print arXiv:2207.05608 (2022).

19. E. Coumans and Y. Bai, “Pybullet, a python module
for physics simulation for games, robotics, and machine
learning,” GitHub Repository (2016).

20. X. Gu et al., “Open-vocabulary object detection via vi-
sion and language knowledge distillation,” arXiv pre-
print arXiv:2104.13921 (2021).

21. M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What
and where pathways for robotic manipulation,” Confer-
ence on Robot Learning (PMLR, 2022), pp. 894–906.

22. A. Zeng et al., “Transporter networks: Rearranging the
visual world for robotic manipulation,” arXiv preprint
arXiv:2010.14406 (2020).

23. D. Shah et al., “Lm-nav: Robotic navigation with large
pre-trained models of language, vision, and action,”
arXiv preprint arXiv:2207.04429 (2022).

24. A. Radford et al., “Learning transferable visual models
from natural language supervision,” International Confer-
ence on Machine Learning (PMLR, 2021), pp. 8748–8763.

25. D. Shah et al., “Ving: Learning open-world navigation
with visual goals,” 2021 IEEE International Conference
on Robotics and Automation (ICRA) (IEEE, 2021),
pp. 13215–13222.

6 KOVALEV, PANOV
26. A. Padmakumar et al., “Teach: Task-driven embodied
agents that chat,” Proceedings of the AAAI Conference on
Artificial Intelligence (2022), Vol. 36, No. 2, pp. 2017–
2025.

27. L. Weihs et al., “Visual room rearrangement,” Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2021), pp. 5922–5931.

28. B. Talbot et al., “Benchbot: Evaluating robotics re-
search in photorealistic 3d simulation and on real ro-
bots,” arXiv preprint arXiv:2008.00635 (2020).

29. M. Chen et al., “Evaluating large language models trained
on code,” arXiv preprint arXiv:2107.03374 (2021).

30. Q. Liu et al., “Tapex: Table pre-training via learning a
neural SQL executor,” arXiv preprint arXiv:2107.07653
(2021).

31. L. Ouyang et al., “Training language models to follow
instructions with human feedback,” arXiv preprint
arXiv:2203.02155 (2022).

Translated by I. Ruzanova
DOKLADY MATHEMATICS 2022

	1. INTRODUCTION
	2. APPROACHES OF BASED ON PRETRAINED LLM
	3. CLASSIFICATION OF LLM FOR PLANNING TASK
	CONCLUSIONS
	REFERENCES

