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A B S T R A C T

Reducing environmental pollution with household waste and emissions from the computing clusters is an
urgent technological problem. In our work, we explore both of these aspects: the deep learning application
to improve the efficiency of waste recognition on recycling plant’s conveyor, as well as carbon dioxide
emission from the computing devices used in this process. To conduct research, we developed an unique
open WaRP dataset that demonstrates the best diversity among similar industrial datasets and contains more
than 10,000 images with 28 different types of recyclable goods (bottles, glasses, card boards, cans, detergents,
and canisters). Objects can overlap, be in poor lighting conditions, or significantly distorted. On the WaRP
dataset, we study training and evaluation of cutting-edge deep neural networks for detection, classification
and segmentation tasks. Additionally, we developed a hierarchical neural network approach called H-YC with
weakly supervised waste segmentation. It provided a notable increase in the detection quality and made it
possible to segment images, learning only having class labels, not their masks. Both the suggested hierarchical
approach and the WaRP dataset have shown great industrial application potential.
1. Introduction

The problem of garbage pollution reaches dangerous proportions
(Hoornweg et al., 2013). It is predicted that by the end of the 21st
century, the amount of garbage produced will reach 11 million tons
per day. The main danger of garbage accumulation is a decrease of
harmless organic waste and an increase of chemical active products in
waste. Plastic garbage have radically changed the situation because it
does not decompose. It can be recycled, but there is no adequate system
for its storage. To solve the problem with garbage most effectively, it
must be automatically sorted. For this purpose, robotic conveyor lines
are commonly used. They are equipped with industrial manipulators
and video cameras, capable of localizing the desired categories of waste
and carrying out its capture and separation (Zhihong et al., 2017).
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The development of such systems requires the creation of algorithms
and software that reliably allow to recognize images by performing
the detection of bounding boxes, classifying objects and segmenting
them (Ni et al., 2021; Bashkirova et al., 2022; Demetriou et al., 2023).
Accurate detection and segmentation are needed to determine the
object location for the capture by the actuator, which is usually a
pneumatic sucker (Koskinopoulou et al., 2021).

Such tasks are most effectively solved by deep neural networks
(Chen and Xiong, 2020; Bobulski and Kubanek, 2021a; Terven and
Cordova-Esparza, 2023). They have a significant limitation, which is
the availability of a labeled suitable dataset for a specific task of
classification, detection and/or image segmentation. Currently, there
are no universal datasets for detecting and segmenting waste on a
conveyor belt of recycling plant. This is because of a great variety
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Fig. 1. Variants of the proposed hierarchical detector scheme: (a) H-YC(5) network, which detects five joint object groups and uses three additional CNN classifiers and class
activation map generators for ‘bottle’, ‘cardboard’, and ‘detergent’ groups, (b) more simple H-YC(28) network, which detects bounding boxes for all 28 object categories and uses
one classifier with class activation map generator. Such hierarchical model architectures and problem formulation for simultaneous detection and weakly supervised segmentation
of described waste categories have not been considered in previous studies.
of processed objects, their possible overlap or deformations in camera
images.

The focus of this article is creation of a large custom dataset from
real recycling plant and exploring the possibilities of modern deep
learning approaches for waste recognition.

Contributions. In this article we propose a novel architecture of a
hierarchical neural network called H-YC (see Fig. 1) that improves
the quality of state-of-the-art object detection methods thanks to the
developed joint learning algorithm with an additional classifier and the
possibility of weakly supervised segmentation. A particular attention is
paid to low response time models for their suitability to operate on the
equipment of processing plants in real time mode.

To train the neural network, a new special open WaRP dataset
was developed. This is the largest diverse dataset containing 28 ob-
ject categories that can be found on the conveyor belt of recycling
plants. It includes subcategories of bottles, glasses, card boards, cans,
detergents, canisters that can overlap, be heavily deformed, or be in
non-satisfactory lighting conditions.

The dataset and the implementation of hierarchical network mod-
ules are publicly available at https://github.com/AIRI-Institute/WaRP
and on Kaggle platform.1

2. Related work

Waste classification. A number of papers consider waste recognition
in images only as a classification problem. For example, Bircanoğlu
et al. (2018) investigates ResNet50, MobileNet, Inception-ResnetV2,
DenseNet121 and Xception models. They demonstrate acceptable qual-
ity on a dataset with 6 garbage categories images taken in good lighting

1 https://www.kaggle.com/datasets/parohod/warp-waste-recycling-plant-
dataset.
2

conditions and without object overlap. Zhang et al. (2021b) proposed a
simple ResNet-18-like convolutional model of waste classification. This
demonstrated high quality recognition of cardboard, glass, metal, plas-
tic and trash categories in good imaging conditions. Another example is
the usage of EfficientNet classification models for waste image samples
from ImageNet dataset (Malik et al., 2022).

There are methods for hierarchical two-stage waste classification
based on popular feature extractors and neural network ensembles,
for example, an accurate combined classification model based on the
modified NASNetLarge encoder (Huang et al., 2020).

In the paper (Zhang et al., 2021a), the authors solve the problems
of data imbalance, the same type of background and small image size
using transfer learning with the DenseNet169 model. Using examples
or prototypes of objects may improve the quality of the garbage clas-
sification on unbalanced samples, as well as classify new object classes
that were not in the training dataset, as shown in the recent work (Han
et al., 2023).

Mao et al. (2021) used the DenseNet121 model with image aug-
mentation and a genetic algorithm to select hyperparameters. Binary
classification of plastic waste using the Capsule neural networks allows
marginally superior to simple convolutional neural networks under
similarly good imaging conditions (Sreelakshmi et al., 2019).

There are hybrid approaches based on convolutional neural net-
works and multilayer perceptrons, which use information from extra
sensors, in addition to the camera (Chu et al., 2018). This improves
the quality, but is not always technically feasible in real practice. A
good improvement in waste recognition was achieved by Ahmad et al.
(2020), who used a hybrid classification model composed of models of
different architectures. The disadvantage of this work is that the data
used contained images with the uniform background. This is rarely seen
in the industrial environment of recycling plants.

Vision transformer based on hybrid convolution neural network,
proposed by Alrayes et al. (2023) showed an advantage in waste classi-
fication quality over some conventional convolutional models such as

https://github.com/AIRI-Institute/WaRP
https://www.kaggle.com/datasets/parohod/warp-waste-recycling-plant-dataset
https://www.kaggle.com/datasets/parohod/warp-waste-recycling-plant-dataset
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Fig. 2. Parts of the developed WaRP dataset: WaRP-D — images with bounding box labeling for the detection task, WaRP-C — cropped images with class labels, WaRP-S —
cropped images with labeling for weakly supervised segmentation.
ResNet50 and MobileNet on the TrashNet dataset (Thung and Yang,
2017). What has not been studied enough is the use of transformer
architectures to classify waste on more diverse datasets and compare
them with more modern convolutional models.

To classify a sequence of images with solid waste, Li and Chen
(2023) propose a convolution neural network with Graph long short-
term memory. It should be noted that there are practically no labeled
datasets for training such models in the public domain.

Waste detection and segmentation. Some studies analyze the waste de-
tection problem based on the single-stage YOLO neural network model
family (Terven and Cordova-Esparza, 2023), for example YOLOV4
(Chen and Xiong, 2020), YOLOv5 (Yang et al., 2021), YOLOv6-v7
(Demetriou et al., 2023), YOLOv8 (Bawankule et al., 2023) models.
They note the high speed of these methods, but a significant depen-
dence of the recognition quality on the training dataset. It should be
noted that there are also more complex approaches specialized for
a specific task object detection with unstructured background (Tang
et al., 2023a). Examples are classical image processing and YOLOv7
fusion algorithm (Zhou et al., 2022), 3D object detection using stereo
vision with YOLOv3-v5 models (Tang et al., 2023b) or based on Depth
image analysis and YOLOv5 model (Wu et al., 2022).

Simultaneous detection and segmentation of waste objects on the
conveyor can be carried out using the Mask R-CNN (Koskinopoulou
et al., 2021) two-stage model which is trained in a supervised manner
and requires a large set of target objects labeled for the segmen-
tation task. In general, two-stage RCNN-based waste detectors are
usually significantly inferior in performance to single-stage models
(SSD, YOLO) (Demetriou et al., 2023).

As for object segmentation, there are many supervised realtime seg-
mentation models, for example, convolutional ones like DeepLabv3+
(Wu et al., 2023) or transformer ones like Segformer (Xie et al., 2021).
However, they all assume well-labeled datasets with feature masks

It is worth studying the possibility of unsupervised or weakly su-
pervised waste segmentation, which does not require the presence
of segmentation masks in the dataset, but only information about
belonging to one or another category of the whole image. This allows
us to significantly save resources for labeling the dataset, and to quickly
adapt recognition algorithms to a new domain (for example, associated
with new camera installation locations, etc.)

In Bashkirova et al. (2022), the authors considered various neu-
ral network methods for deformable object segmentation in cluttered
scenes. They conducted a study of fully-, semi-, and weakly-supervised
learning for garbage segmentation, which demonstrated a significant
superiority of methods implementing fully supervised approaches based
on DeepLabv3+ and poor results for weakly-supervised methods (CAM,
PuzzleCAM, EPS). There are another approaches based on class ac-
tivation map generation for segmentation without direct supervision:
Grad-CAM (Selvaraju et al., 2017), CAMERAS (Jalwana et al., 2021),
Layer CAM (Jiang et al., 2021), contrastive learning based CAM (Xie
et al., 2022), etc. Often, methods for constructing class activation
maps are used not for explicit segmentation, but for visualizing and
explaining the results of object classification, as for example, in the
paper (Mao et al., 2021) authors used Grad-CAM to explain the results
of hierarchical recycling waste classification.
3

In our article, we show that the use of weakly supervised segmenta-
tion methods as a part of the hierarchical detector allows us to achieve
a sufficiently high quality of segmentation without ground truth masks
labeling.

Datasets for waste recognition. A great number of datasets with various
waste images have appeared recently. Some of them contain pho-
tographs of littered nature or urban infrastructure (UAVVaste Kraft
et al., 2021), others are collected from photographs of various pack-
aging items against a neutral background (TACO Proença and Simões,
2020, Trashnet Thung and Yang, 2017). The most popular modern
datasets are listed in Table 1. Each of the mentioned datasets contains
waste categories that we are interested in, such as plastic bottles or
cans, but the environment of such objects in the photographs does not
look like the one seen on a conveyor belt.

Among other datasets, the ZeroWaste Dataset (Bashkirova et al.,
2022) stands out: this dataset contains photos of a transporter line at
the paper recycling plant. There are such categories as metal, cardboard
and plastic in the dataset markup. ZeroWaste Dataset is designed to
solve the problem of paper waste segregation, while our recognition
task includes different types of packaging for drinking and household
fluids. To meet the specific challenges of recycling plants, this paper
considers the creation of a new dataset, which is added to Table 1 and
called WaRP (Fig. 2). It is described in detail in the next Section.

3. WaRP dataset

Waste recycling plants need to automatically select and sort recy-
clable items on the conveyor. In our case, these objects should fall
into several main categories: plastic and glass bottles, card boards,
detergents, canisters and cans. For the first three categories, it is
desirable to know what color they are and what they are used for, since
recycling technologies differ. There are no open datasets containing
all the required object categories for such an application. Therefore,
there was a need to develop our own dataset in order to train and test
methods for detecting, classifying and segmenting waste on it.

Our dataset named WaRP (abbreviation of Waste Recycling Plant)
consists of manually labeled pictures of an industrial conveyor. We
selected 28 recyclable waste categories. Objects in the dataset are
divided into the following groups (see Table 2): plastic bottles of 17
categories (class name with the bottle-prefix), glass bottles of three
types (the glass-prefix), card boards of two categories, detergents of
four categories, canisters and cans. The -full postfix means that the
bottle is filled with air, i.e. not flat. This is important for the correct
work of the manipulator on the conveyor. Examples of instances of each
category of the WaRP Dataset are presented in Fig. 3. An important
difference from other datasets is that objects can overlap, be heavily
deformed, or be in poor lighting conditions.

It should be noted that the collected and manually labeled dataset is
unbalanced; for example, there are significantly more objects of bottles
than canisters. This is due to the fact that household waste on the
conveyor belt of a recycling plant has a natural uneven distribution
due to the different frequency of use of various objects.

The dataset has three parts (see Fig. 2): WaRP-D, WaRP-C, and
WaRP-S. The first two parts are intended for training and objective
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Table 1
Modern datasets for waste recognition images.

Dataset Categories
(sub-categories)

Images Task Description

Trashnet (Thung and Yang, 2017) 6 2527 Classification Contains 501 annotation per category glass and 482 per plastic

Glassense-Vision (Sosa-García and
Odone, 2017)

7 (136) 2000 Classification 144 pictures with bottles and 158 pictures with cans inside

Open litter map
(GeoTech Innovations, 2020)

11 (187) >100,000 Multilabel classification This is a website that collects a dataset from images with garbage
from all over the world

Spotgarbage (Mittal et al., 2016) 3 ∼2400 Classification Pictures with garbage on the streets (scraped from Bing search)

Waste Class. data v2 (Sapal6,
2019)

3 ∼27,500 Classification Organic, recyclable and non-recyclable categories, pictures scraped
from google search

Waste_pictures (Wang, 2019) 34 ∼24,000 Classification There are 209 cans, 201 glass bottles and 160 plastic bottles in
this dataset, all of them were scrapped from Google

Wade-ai (Haamer, 2020) 1 >1500 Instance-segmentation Outdoor images with different garbage

TACO (Proença and Simões,
2020)

28 (60) 1500 Segmentation Dataset contains ∼420 annotations per bottle category and ∼230
annotations per can category

Sushi Restaurant (Cen, 2020) 16 500 Classification Dataset contains 61 annotations per plastic cup category, 37 per
plastic utensil category and other items

Litter (Mikołajczyk, 2021) 24 ∼14,000 Detection This is a website with limited access to datasets

Drinking Waste Class (Serezhkin,
2020)

4 9640 Detection Dataset contains images with cans (∼1000), glass bottles (∼1200),
plastic bottles (∼2500)

MJU-Waste v1.0 (Wang et al.,
2020)

1 2475 Segmentation Contains photographs of people holding different types of garbage
in their hands (one category — garbage)

Google Open Images (Kuznetsova
et al., 2020)

3 14,226 Detection, Instance-seg. Outdoor and indoor images (bottles, plastic bags, tin cans)

UAVVaste (Kraft et al., 2021) 1 772 Segmentation Dataset contains 772 pictures from drone camera with different
rubbish

WaDaBa (Bobulski and Kubanek,
2021b)

8 4000 Classification All images contain objects made of different type of plastic

Domestic Trash (Datacluster-labs,
2021)

10 >9000 Classification, Detection Waste in the wild, paid license, 250 images for free

NWNU-TRASH (Zhang et al.,
2021a)

5 20,000 Classification Images with heterogeneous background

ZeroWaste Dataset (Bashkirova
et al., 2022)

4 12,125 Detection, Segmentation Conveyor images, contain cardboard, metal and plastic objects

WRTD (ZotBins, 2023) 61 3010 Detection, Classification,
Segmentation

Dataset consists of garbage images in an urban environment

WaRP (ours), 2023 5 (28) 2974
(10,406)

Detection, Classification,
Segmentation

Images from the conveyor of recycling plant with categories of
bottles, cardboards, detergents, canisters and cans
Fig. 3. Example labeled images (for classes of ‘bottle’, ‘cans’, ‘cardboard’, ‘canister’, ‘detergent’) in the WaRP dataset.
quality assessment of detection (WaRP-D) and classification (WaRP-
C) tasks, and the third WaRP-S is for validation of weakly supervised
segmentation methods. The full statistics of our dataset parts are given
in Table 2.

The main dataset part WaRP-D contains 2452 images in the training
sample and 522 images in the validation sample. The images have full
HD resolution of 1920 × 1080 pixels.

WaRP-C is cut-out image areas from the WaRP-D set with class
labels. This part includes 8823 images for training and 1583 for testing.
4

The images range in size from 40 to 703 pixels wide and 35 to 668
pixels high. The dataset is unbalanced because of the real conditions of
an industrial enterprise. The rarest class is the bottle-oil-full (air-filled
plastic sunflower oil bottles) category, which includes only 32 crops.
The most common category is bottle-transp (transparent bottles), with
1667 clipped images.

WaRP-S contains a total of 112 images ranging in size from 100 × 96
pixels to 412 × 510 pixels, each category has 4 images with significantly
deformed recyclable objects.
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Table 2
WaRP dataset statistics.
Category WaRP-D-Train WaRP-D-Test WaRP-C-Train WaRP-C-Test WaRP-C-Total WaRP-S-Test

Bottle-blue 535 87 634 106 740 4
Bottle-green 403 65 466 75 541 4
Bottle-dark 451 80 533 96 629 4
Bottle-milk 324 54 347 60 407 4
Bottle-transp 947 164 1432 235 1667 4
Bottle-multicolor 125 28 127 31 158 4
Bottle-yogurt 261 41 277 42 319 4
Bottle-blue-full 263 40 285 45 330 4
Bottle-transp-full 457 79 528 93 621 4
Bottle-dark-full 173 31 185 36 221 4
Bottle-green-full 229 33 238 35 273 4
Bottle-multicolor-full 105 20 107 22 129 4
Bottle-milk-full 110 21 110 21 131 4
Bottle-oil 254 46 276 48 324 4
Bottle-oil-full 23 8 24 8 32 4
Bottle-blue5l 345 60 413 75 488 4
Bottle-blue5l-full 87 23 89 24 113 4
Glass-transp 165 34 177 37 214 4
Glass-dark 132 24 136 25 161 4
Glass-green 131 23 135 25 160 4

Juice-cardboard 251 63 260 71 331 4
Milk-cardboard 358 85 390 96 486 4

Detergent-white 300 42 319 44 363 4
Detergent-color 277 43 296 44 340 4
Detergent-transparent 245 39 262 42 304 4
Detergent-box 66 17 66 17 83 4

Canister 144 28 149 30 179 4
Cans 495 88 562 100 662 4

Total 2452 522 8823 1583 10406 112
4. Neural network for hierarchical waste detection with weakly
supervised segmentation

On complex datasets containing images of objects with overlaps
and deformations, state-of-the-art detection methods usually work im-
perfectly and generate false positives and miss objects. Such datasets
include the proposed WaRP dataset.

It is promising to improve the quality of pre-trained detection neural
network with the additional classification and segmentation modules.
On the one hand, this does not require intervention in the architecture
of the detector, and on the other hand, it can clarify the assignment
of certain labels to the found bounding boxes. Adding the ability to
semantic segmentation of objects without resource-intensive supervised
learning is also beneficial.

This article proposes to explore two main variants of the hierarchi-
cal classifier scheme, which are shown in Fig. 1.

The first option (Fig. 1,a) involves the neural network-based detec-
tion of object bounding boxes belonging not to all 28 categories of the
WaRP-D dataset, but to 5 ‘‘supercategories’’: bottle (including glass),
card board, detergent, cans and canisters. The first three categories
include 20, 2 and 4 subcategories, respectively, and for them it is pro-
posed to train independent classifiers. Their feature maps can be used
to generate class activation maps and further segmentation without
additional model training and supervision.

The second option (Fig. 1,b) involves the detection by the neural
network of objects belonging to 28 categories at once, and further
refinement of the found classes using an additional classifier. Its class
activation maps can also be used for weakly supervised segmentation.
The second option is closer to the industrial application of neural
networks, when the modularity of the solution is important.

The detector is separately trained with a supervision on the WaRP-D
dataset. As basic models, we investigate fast one-stage models YOLOv3
(Redmon and Farhadi, 2018), YOLOv5 (Yang et al., 2021), YOLOX (Ge
et al., 2021), CenterNet (Zhou et al., 2019), two-stage approaches
5

Faster R-CNN (Ren et al., 2015), Dynamic R-CNN (Zhang et al., 2020),
Sparse R-CNN (Sun et al., 2021), transformer architectures D-DETR
(Zhu et al., 2021), TOOD (Feng et al., 2021).

As basic classification models, it is proposed to study both architec-
tures that have become classical (ResNet (He et al., 2016), DenseNet
(Huang et al., 2019), MobileNet (Howard et al., 2017), Efficient-
Net (Tan and Le, 2019), ResNeXT (Xie et al., 2017)), and more modern
neural networks: ConvNeXT (Liu et al., 2022), Vision Transformer
(Dosovitskiy et al., 2020), Data-Efficient Image Transformers (Touvron
et al., 2021), Swin Transformer (Liu et al., 2021), ReXNet (Han et al.,
2021), RepVGG (Ding et al., 2021).

The article also explores 2 training cases for the proposed hierarchi-
cal detector. In the first case, the base detector and the classifier learn
independently of each other, the base detector learns on images with
ground truth (GT) markup from WaRP-D, and the classifier learns on
crops from these images included in the WaRP-C sample. In the second
case, the classifier is trained on the crops obtained by predicting the
WaRP-D training dataset by the basic detector, while the class labels
for the crops are assigned based on the intersection over union with
the boxes from the original GT-labeling.

As for weakly supervised segmentation, we explore the possibili-
ties of popular methods for constructing class activation maps based
on Grad-CAM (Selvaraju et al., 2017) and its modification mGrad-
CAM (Kuznetsov and Yudin, 2022) that does not use average pooling,
Layer CAM methods (Jiang et al., 2021) and CAMERAS (Jalwana et al.,
2021), as well as a new unsupervised approach CCAM (Xie et al.,
2022) using contrastive learning. To move from class activation maps
to segmentation masks, we use the algorithm proposed by the authors
of the current article in Kuznetsov and Yudin (2022).

5. Experimental results and discussion

Waste detection. We performed experiments with different state-of-the-
art neural networks on WaRP-D dataset (see Table 3). Each image was
annotated with bounding boxes. There was a significant overfitting

problem, while training our YOLO models, solved by using an efficient
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Fig. 4. Examples of Hierarchical detector work on test sample of the WaRP-D dataset.
Table 3
Detection quality on 28 categories of WaRP-D dataset for state-of-the-art detectors. In brackets we show detection metrics for 5 joined
categories.
Detector 𝑚𝐴𝑃50

(bottle), %
𝑚𝐴𝑃50
(cardboard), %

𝑚𝐴𝑃50
(detergent), %

𝐴𝑃50
(canister), %

𝐴𝑃50
(cans), %

𝑚𝐴𝑃50,
%

𝑚𝐴𝑃50..95,
%

FPS
(bs = 1)

YOLOV3 44.8
(75.0)

12.9
(37.6)

21.1
(43.4)

27.3
(44.4)

20.6
(49.8)

37.6
(50.0)

26.0
(32.5)

52.9

YOLOV5-x 62.6
(79.6)

41.1
(46.4)

38.6
(48.8)

32.0
(56.8)

58.1
(55.7)

56.4
(57.5)

46.6
(43.8)

66.6

YOLOX-m 63.5
(80.9)

39.7
(54.6)

45.0
(48.6)

54.0
(46.6)

59.3
(62.9)

58.6
(58.3)

45.7
(44.5)

64.9

YOLOX-l 51.8
(80.9)

27.9
(52.3)

27.7
(47.7)

28.1
(44.8)

45.2
(59.5)

45.6
(57.0)

34.6
(43.5)

52.4

D-DETR 60.1
(83.0)

41.3
(48.7)

44.3
(50.9)

43.5
(57.0)

55.3
(54.7)

55.7
(58.9)

40.3
(42.8)

13.9

Dynamic-RCNN 61.6
(77.2)

35.8
(40.9)

44.9
(51.2)

39.7
(50.3)

55.2
(55.2)

56.4
(55.0)

38.3
(40.4)

33.8

Faster-RCNN 41.6
(75.1)

24.3
(39.5)

31.0
(47.6)

24.5
(36.3)

33.4
(47.6)

56.4
(48.0)

38.0
(31.8)

35.3

TOOD 65.8
(78.5)

34.5
(41.9)

47.2
(51.0)

52.7
(46.2)

61.5
(57.5)

60.2
(55.0)

46.5
(41.4)

28.9

CenterNet 56.0
(76.2)

24.4
(36.3)

36.4
(37.7)

30.5
(38.3)

56.2
(52.1)

50.1
(48.1)

37.6
(33.0)

9.1

ATSS 62.6
(79.0)

32.3
(41.6)

41.9
(48.9)

52.9
(51.5)

51.5
(48.4)

56.7
(53.9)

43.0
(40.6)

38.5

Sparse-RCNN 50.9
(75.0)

24.8
(37.3)

30.2
(40.3)

32.2
(35.7)

45.0
(51.9)

45.2
(48.1)

32.0
(33.0)

27.3
set of augmentations. The highest impact obtained within mosaic aug-
mentation (Ghiasi et al., 2020). MixUp was set to 50%, 90 degrees
rotation and resize to 448 × 832 (height/width). Keeping mosaic until
about the middle of the process and then turning it off gave huge
leap in metrics. It becomes easier for the model to perceive images,
a consequence of this 𝑚𝐴𝑃50 (mean average precision for boxes with
intersection over union more than 50%) instantly increase by ∼15%.

We trained YOLOV5 with SGD+Nesterov setting the initial learning
rate to 10−2, weight decay 5𝑒−4, initial momentum 0.937. Linear
scheduler was used, warmup for 3 epochs. Training was performed on
Tesla V100 32 GB.

Fig. 4 contains several more examples of waste detection on the test
sample of the proposed WaRP-D dataset. Two images at the bottom line
of the figure illustrate working with errors.

Referring to Table 3, we see that the best 𝑚𝐴𝑃50 results on 28 classes
of WaRP-D dataset is obtained by TOOD, which is slightly inferior
to the YOLOV5 model in 𝑚𝐴𝑃50..95. The most problematic classes,
processing the lowest metrics are bottle-oil-full, juice-cardboard and
bottle-multicolor. We can see that two-stage detectors architectures
behave unpredictably, some of them get quite high accuracy on the
same category and others show very poor performance, unlike one-
stage models, which show themselves well on each class. The YOLOV5
6

model shows the best inference speed (FPS) and corresponding de-
tection quality. The transformer detector D-DETR loses a lot in speed
compared to the YOLO models although it outperforms other models in
terms of detection metric 𝑚𝐴𝑃50 of 5 categories (see Table 3). It should
be noted that the fast YOLOX-m model also shows consistently high
quality indicators, and is able to recognize objects of 5 categories with
the best quality in terms of the 𝑚𝐴𝑃50..95 metric.

The main criterion for choosing a detector model for our hierar-
chical approach is the trade-off between its speed and a high quality
metric 𝑚𝐴𝑃50 for all 28 object categories, which indicates correct coarse
bounding box detection. We have the two fastest models: YOLOV5-x
(66.6 FPS) and YOLOX-m (64.9 FPS), as well as the two most accurate
models: TOOD (60.2% mAP) and YOLOX-m (58.6% mAP). Thus, for
further experiments in the hierarchical model, we select the YOLOX-m
compromise detector.

Classification. As a part of the experiment, several types of classifiers
were trained on the WaRP-C dataset. Architecture types and training
results are shown in Table 4. Classification model performance is
demonstrated in Table 5 We used model implementations from the time
deep learning library (Wightman, 2019).
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Table 4
Classifier module quality on WaRP-C dataset.
Classifier Mean recall, % Recall, % Accuracy, %

Bottle Cardboard Detergent Canister Cans

ViT (bs8) 49.1 54.4 60.8 46.7 70.4 51.5
DEiT (bs8) 64.6 70.1 59.9 90.0 84.7 68.0
RepVGG (bs8) 55.0 70.0 51.9 83.3 92.9 59.1
SWiN (bs8) 58.8 66.3 42.7 43.3 93.9 64.8
ResNet18 (bs8) 63.8 74.2 53.4 59.0 91.6 67.6
ResNet18 (bs32) 67.6 78.9 65.15 60.0 93.0 74.2
MobileNetv3 (bs8) 70.7 79.3 69.9 66.7 94.9 72.8
MobileNetv3 (bs32) 75.7 82.2 70.3 73.3 92.9 77.4
DenseNet121 (bs8) 75.5 79.6 71.0 90.0 96.9 78.3
DenseNet121 (bs32) 76.8 84.1 72.9 63.3 82.7 76.6
RexNet (bs8) 74.8 78.3 72.4 90.0 94.9 76.8
RexNet (bs32) 79.5 84.0 74.5 80.0 93.9 80.1
EfficientNet-B5 (bs8) 78.8 83.2 67.2 96.7 95.9 79.8
EfficientNet-B5 (bs32) 79.6 83.3 76.3 86.7 95.9 81.9
ResNeXT (bs8) 78.8 80.9 72.7 86.7 93.9 79.0
ResNeXT (bs32) 76.9 80.9 77.4 83.3 95.9 79.5
ConvNeXT(28) (bs8) 73.7 84.1 69.1 73.3 95.9 78.8
ConvNeXT(28) (bs32) 77.0 83.0 75.0 86.7 98.0 81.8

ConvNeXT(20) (bottle) 75.7 – – – – 75.4
ConvNeXT(2) (cardboard) – 90.5 – – – 90.1
ConvNeXT(4) (detergent) – – 91.7 – – 92.4
a
c
s

Table 5
Classifier module performance on WaRP-C dataset.

Classifier FPS (bs = 1) Model name Params Layers

ViT 100 ViT_small_resnet50d_s16_224 57M 277
DEiT 120 DEiT_tiny_patch16_224 6M 188
RepVGG 98 RepVGG_a2 28M 306
SWiN 77 SWiN_tiny 28M 217
ResNet18 230 Resnet18 12M 71
MobileNetv3 107 MobileNetv3_large_100 5M 195
DenseNet121 42 DenseNet121 8M 433
RexNet 74 ReXNet_100 5M 313
EfficientNet-B5 38 EfficientNet-B5 30M 551
ResNeXT 82 ResNeXT50_32 × 4d 25M 177
ConvNeXT 48 ConvNeXT_tiny 28M 202

For improving the model quality, image augmentation methods
ere applied. The following augmentation approaches were used: resiz-

ng the image with adding paddings for preserving the original image
ides ratios; adding a partially covering mask (for helping CAM method
o localize as many pixels of the object as possible), 20% of image is
losed; random shifts and turns with 80% probability, 0.2 shift limit,
.2 scale limit, rotate limit of 90 degrees; random changes in brightness
nd contrast with 50% probability, 0.1 brightness limit; random color
hanges for each RGB channel with 50% probability, color shift limit
f 15; random vertical and horizontal flips with 50% probability.

Each model used pre-trained weights, which were further tuned dur-
ng the experiments. Cross Entropy Loss was chosen as error function.
he models were trained for 40 epochs with an initial learning rate of
.001, which decreased during the training process if the quality metric
n the validation data was not improving over several epochs.

The training and the test datasets had similar unbalanced distri-
ution, so balancing methods like equivalent inter-class sampling and
eighted Cross Entropy Loss did not significantly improve results

ompared to the conventional training.
From Table 4 with the obtained quality metrics on the WaRP-C

ataset, we can see that the highest quality scores are achieved by the
onvNeXt and EfficientNet-B5 models, while the ResNet-18 model is
he fastest one. ConvNeXt is also significantly faster than EfficientNet-
5. So, ConvNeXt-tiny is most promising for use as a part of the
ierarchical detector. ResNet-18 can also be used if we need the best
ossible detector speed.

To select a classifier in our hierarchical model, we must provide a
rade-off between its accuracy and performance. Therefore, we chose
7

the ConvNeXT classifier architecture, which provided an Accuracy
of 81.8% on the WaRP-C dataset and a performance of 48FPS (see
Table 5). Its performance is significantly higher than the 38FPS of the
competing model EfficientNet-B5, which is better in quality by only an
insignificant 0.1%.

Quality of hierarchical waste detection. The quality indicators of various
options for implementing a hierarchical approach to waste detection
were analyzed. The results are shown in Table 6. We named as H-YC
our hierarchical neural networks which include YOLOX-m detection
module and ConvNeXt classification module. Table shows that for
hierarchical model H-YC(5) independent training of the YOLOX-m(5)
detector on 5 detected classes and three ConvNeXt-tiny models for
bottles (20 categories), detergents (4 categories) and cardboards (2
categories) does not improve the 𝑚𝐴𝑃50 metric (the first scheme of the
pproach demonstrated in Fig. 1,a). So, training of three independent
lassifiers leads to a significant deterioration in the quality metrics, and
uch an implementation of the hierarchical detector is inappropriate.

In the same time we have improvement of the 𝑚𝐴𝑃50 and 𝑚𝐴𝑃50..95
metrics for option shown in Fig. 1,b for hierarchical network H-YC(28)
with YOLOX-m(28) detector and ConvNeXt-tiny(28) classifier trained
on the all 28 categories.

Weakly supervised waste segmentation. After classification, CAM (Class
Activation Map) methods are applied, which allow one to build classi-
fier attention maps for a given image according to a certain class. These
maps are subsequently converted into binary segmentation maps based
on the algorithm described in Kuznetsov and Yudin (2022). To assess
the quality of the methods, a standard semantic segmentation metric –
mIoU (mean Intersection over Union) – was used. The fastest ResNet-
18 model was chosen as the base model for the verification of using
these methods. The obtained quality scores are listed in Table 7. The
visualization of the generated class activation maps and binary object
masks is shown in Fig. 5.

The best quality is shown by the unsupervised approach CCAM(5)
based on contrastive learning, which is trained for 5 different ‘‘supercat-
egories’’. CCAM(28) trained on the combined 28 categories is slightly
inferior to it. Among the rest of the methods, the best approach is
CAMERAS, which uses classifier directly trained on 28 classes.

Cropped images as input of segmentation method may suffer from
overlapping objects, poor lighting conditions, or significantly distorted.
We are primarily interested in the rough segmentation mask, which
we obtain automatically in weakly-supervised mode, having a trained
classification model on the selected data set. Therefore, if the data used
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Fig. 5. The results of various weakly supervised waste segmentation approaches. For each image, the generated class activation maps and binarized masks based on them are
shown.
Table 6
Hierarchical detector metrics.

Per category AP, % YOLOX-m(28) H-YC(5) H-YC(28)

Bottle-blue-full 66.8 51.6 66.8
Bottle-transp-full 70.8 64.4 70.6
Bottle-dark-full 85.5 77.7 79.9
Bottle-green-full 85.3 83.7 85.6
Bottle-multicolor-full 77.4 60.9 78.5
Bottle-blue5l-full 84.5 67.3 84.5
Bottle-milk-full 88.6 81.3 93.9
Bottle-blue5l 64.2 51.9 64.5
Bottle-blue 59.3 48.5 58.3
Bottle-green 74.5 63.7 74.1
Bottle-dark 73.1 72 74.1
Bottle-milk 46.6 41.8 46.4
Bottle-transp 54.6 40.4 53
Bottle-multicolor 36.0 30.4 31.8
Bottle-yogurt 37.9 31 40.5
Bottle-oil-full 44.5 35.1 58.9
Bottle-oil 22.2 35.1 23.6
Glass-transp 53.4 54.7 55.3
Glass-dark 74.7 73.7 74.7
Glass-green 69.2 58.8 72.3
Juice-cardboard 35 40.0 35.9
Milk-cardboard 44.5 38.7 44.2
Cans 59.3 52.9 61.2
Canister 54 42.6 55.1
Detergent-color 43 34.8 43.1
Detergent-transparent 37.0 34.4 36.8
Detergent-box 53.3 68.0 59.4
Detergent-white 46.7 47.6 46.6

𝑚𝐴𝑃50 58.6 52.7 59.6
𝑚𝐴𝑃50..95 45.7 40.4 46.7

to train the base classifier contains object overlaps, various lighting
augmentations, or distortions, then acceptable segmentation quality
can be expected. However, if there is no such diversity in the training
set, then this is a significant limitation of the proposed approach.

6. Results of model integration

After the model integration, useful fractions of garbage detecting
experiments were carried out. During the experiment, a small fragment
of video from the camera was recorded. Then, the video was viewed
by an expert and the number of correctly and incorrectly recognized
objects, as well as the number of missed objects, were counted. In
different days, 3 experiments were made in total. The duration of
a single measurement was 2 min. This period is equivalent to 1830
8

pictures. As a result, total amount of the analyzed information is 5490
pictures.

For statistics calculation we grouped 28 classes into 4 more general
classes: bottle, cardboard, detergent and cans. Canisters were not de-
tected during the experiment. It is important to note that the analyzed
data is quite different from the training dataset because camera located
at the end of the pipeline. Thus, the problem made by this camera have
diverse background, lighting conditions, angle and composition of mov-
ing objects. Despite this fact, the model shows good results of detection
and classification. F1-score was 63% for detergent recognition, 73%
for cardboard, 79% for bottle and 81% for cans. This indicates high
generalization ability of the detection model.

7. Conclusion

In the study we proved the problem of waste recognition on the
conveyor of recycling plants to be successfully tackled with various ar-
chitectures of deep neural networks, even being integrated into in-plant
exploitation processes.

At the same time, it was noted there were no suitable open datasets
containing the required categories of recyclable waste. The created
specialized WaRP dataset is a unique and diverse tool that allows to
train and test neural network methods for detection (WaRP-D set),
classification (WaRP-C set) and segmentation (WaRP-S set) of recy-
clable waste in non-satisfactory lighting conditions, overlapping and
deformations.

The proposed hierarchical approach to waste detection made it
possible to improve the quality of the basic pre-trained models, and
also to carry out additional weakly supervised object segmentation
with acceptable accuracy. Such a solution is practically useful, since
for industrial applications it is necessary to constantly expand and
re-label the existing dataset in order to provide the best recognition
quality for new domains (for different conveyors and plants). For
weakly supervised segmentation in the formulation considered, it is
sufficient to simply label objects in images as bounding boxes with the
object categories. Moreover, for a CCAM algorithm based on contrastive
learning, categorization information is not necessary. This labeling is
much easier, faster and cheaper to implement.

The experiment with the developed approach at the waste pro-
cessing complex RT Invest Recycle confirmed its applicability at the
conveyor site after the manual waste sorting. The neural network
detector of recyclable objects (bottles, card boards, detergents, cans)
passed by people showed acceptable precision and recall of recognition.
This indicates its superiority over manual conveyor monitoring, which
is monotonous and harmful to human health.
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Table 7
Weakly supervised segmentation quality, %.
Method Approach architecture 𝑚𝐼𝑜𝑈𝑏𝑜𝑡𝑡𝑙𝑒 𝑚𝐼𝑜𝑈𝑐𝑎𝑟𝑑𝑏 𝐼𝑜𝑈𝑐𝑎𝑛𝑠 𝐼𝑜𝑈𝑐𝑎𝑛𝑖𝑠𝑡𝑒𝑟 𝑚𝐼𝑜𝑈𝑑𝑒𝑡𝑒𝑟𝑔𝑒𝑛𝑡 𝑚𝐼𝑜𝑈𝑎𝑙𝑙

CCAM(5) H-YC(5) 64.78 71.73 63.01 65.28 69.31 65.88
CCAM(28) H-YC(28) 62.48 66.54 69.18 69.11 65.25 63.64
CAMERAS H-YC(28) 55.63 59.40 57.83 61.00 60.51 56.87
GradCAM H-YC(28) 55.01 60.39 38.20 59.31 58.22 55.41
LayerCAM H-YC(28) 60.19 63.71 44.76 66.77 60.30 60.14
mGradCAM H-YC(28) 52.87 59.40 39.73 60.29 55.31 53.48
Promising topics for further development of the study are the inte-
ration of few shot learning methods for working with rare categories
f objects and the issue of quality improving of waste detection not
rom single images, but from a video sequence.
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