l‘)

Check for
updates

Flexible Data Augmentation in Off-Policy
Reinforcement Learning

Alexandra Rak'®™) Alexey Skrynnik'2, and Aleksandr I. Panov'?

! Moscow Institute of Physics and Technology, Moscow, Russia
rakalexandra@mail.ru
2 Federal Research Center Computer Science and Control of the Russian
Academy of Sciences, Moscow, Russia

Abstract. This paper explores an application of image augmentation in
reinforcement learning tasks - a popular regularization technique in the
computer vision area. The analysis is based on the model-free off-policy
algorithms. As a regularization, we consider the augmentation of the
frames that are sampled from the replay buffer of the model. Evaluated
augmentation techniques are random changes in image contrast, random
shifting, random cutting, and others. Research is done using the environ-
ments of the Atari games: Breakout, Space Invaders, Berzerk, Wizard of
Wor, Demon Attack. Using augmentations allowed us to obtain results
confirming the significant acceleration of the model’s algorithm conver-
gence. We also proposed an adaptive mechanism for selecting the type
of augmentation depending on the type of task being performed by the
agent.

Keywords: Reinforcement learning - Image augmentation - Rainbow -
Regularization

1 Introduction

One of the best techniques that can significantly increase the generalizing prop-
erty of a machine learning model is increasing the amount of data for the training.
In practice, this approach often cannot be applied due to the limited amount of
available data. One of the ways to solve this problem is to form an extension
of the source data based on some knowledge about the problem being solved
and some known requirements for model invariance. For example in the image
classification problem, such requirement is model invariance to a wide variety
of transformations, such as reflection, resizing, adding noise, or changing color.
In speech recognition problems such properties are model invariance to adding
noise, changing the volume, and changing the speed of the audio track. This
approach is called data augmentation and it allows us to generate new data-
target pairs using the described transformations and thus obtain more data for
learning [15]. However, we should be careful about using different types of aug-
mentations, since such data transformations may affect the label of the true

© Springer Nature Switzerland AG 2021
L. Rutkowski et al. (Eds.): ICAISC 2021, LNAI 12854, pp. 224-235, 2021.
https://doi.org/10.1007/978-3-030-87986-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87986-0_20&domain=pdf
https://doi.org/10.1007/978-3-030-87986-0_20

Data Augmentation for Reinforcement Learning 225

class of the object being classified. For example, vertical reflection can change
the label of a true class for images that represent numbers or letters [5].

The described augmentation methods have proven their effectiveness in the
fields of Computer Vision and speech recognition, where knowledge about model
invariance can be easily used for data augmentation. However, such techniques
weren’t studied a lot in the field of reinforcement learning. At the same time
image provides a representation of the agent’s environment state, it is often one
of the main information components received from the environment by the agent
as an observation. This work is devoted to exploring the image augmentation
influence on the quality of the off-policy model-free model in reinforcement learn-
ing. In this work, we investigate the effect of applying a simple idea of image
augmentation representing the current and subsequent state of the environment,
which are extracted from the replay buffer along with the rest of the data during
the operation of the model algorithm. It is assumed that due to the limited size
of the buffer this technique will work as regularization and will help to increase
the generalization property of the model’s algorithm.

Thus, the contribution of the work is as follows:

— studying the influence of popular Computer Vision augmentation techniques
in model-free off-policy reinforcement learning algorithms,

— conducting experiments with several Atari environments and identifying aug-
mentation techniques that affect the final quality and speed up the model’s
algorithm convergence,

— results generalization and interpretation of the augmentation effect for the
off-policy algorithms.

2 Related Works

Image augmentation is actively researched in the field of Computer Vision. Suc-
cessful attempts to solve image classification problem using image augmentation
are made in [11]. The efficiency of training data extension using simple aug-
mentation methods, such as cropping, rotating, and flipping input images is
demonstrated widely. In this work, the authors restricted data access to a small
subset of the ImageNet dataset and evaluated the results for each conversion
method. One of the most successful strategies to increase the size of training
data in the work is the traditional transformations mentioned above. This work
also experiments with generative models for creating images of various styles and
suggests a method called Neural Augmentation, which allows the neural network
to study transformations that are most suitable for classification problems. In the
article [2] a new algorithm was used to automatically search for the best image
augmentation technique for each individual dataset. The proposed automatic
augmentation selection mechanism showed high validation accuracy on the tar-
get dataset and achieved state-of-art accuracy on CIFAR-10, CIFAR-100, Svhn,
and ImageNet (without using additional data). The augmentation algorithms
obtained on the ImageNet dataset can be transferred to another algorithm and

226 A. Rak et al.

can be used for other datasets such as Oxford Flowers, Caltech-101, Oxford-IIT
Pets, FGVC Aircraft, and Stanford Cars.

In Reinforcement Learning (RL) the topic of augmentation has not been
studied a lot, but more interesting papers on this topic have recently appeared.
In [9] authors presented a plug-and-play method that can improve any RL algo-
rithm. Authors demonstrated how random cutout, color jitter, patch cutout,
and random convolution can allow simple algorithms to perform the same way
or even outperform complex modern methods by common criteria in terms of effi-
ciency and communication capability. It is argued that only a variety of data can
cause agents to focus on meaningful information from multidimensional obser-
vations without any changes in the training method. The results are demon-
strated in DeepMind environments, where state-of-art quality is shown for 15
environments.

The article [8] offers a simple method that can be applied to standard model-
free reinforcement learning algorithms, allowing to get more stable learning of
the model directly from images without introducing auxiliary loss functions or
doing pre-training. The approach uses augmentations commonly used in Com-
puter Vision tasks to transform input data and as a result dramatically improves
the Soft Actor-Critic algorithm’s performance, enabling it to reach state-of-the-
art performance on the DeepMind control suite. The proposed algorithm, which
they dub DrQ: Data-regularized Q, can be combined with any model-free rein-
forcement learning algorithm. It was also demonstrated by applying it to DQN
algorithm and significantly improve its data-efficiency on the Atari 100k bench-
mark.

In other work [12] the method UCB-DrAC was proposed. This new method
is used for automatically finding effective data augmentation for RL tasks. It
enables the principled use of data augmentation with actor-critic algorithms by
regularizing the policy and value functions with respect to state transformations.
It was shown that UCB-DrAC avoids the theoretical and empirical pitfalls typical
in naive applications of data augmentation in RL. The method improves training
performance by 16% and test performance by 40% on the Procgen benchmark,
relative to standard RL methods such as Proximal Policy Optimization [14].

We can also mention works in which task-oriented augmentation was carried
out [16,17]. Episodes of solving one of the tasks available to the agent were
replenished by episodes in which another goal was achieved. In our work, we
focus on studying the impact of data augmentation specifically for off-policy
algorithms, for which such research has not been conducted before.

3 Model Description

@-Learning. Unlike classical algorithms and machine learning methods, Rein-
forcement Learning is a class of models that do not receive direct information
about object-response pairs. Instead of this the agent learns to act in some
environment in a way that maximizes some scalar value of the reward. At each
discrete step t = 0,1, 2, ..., the environment presents an observation S; to the

Data Augmentation for Reinforcement Learning 227

agent, the agent reacts by selecting an action Ay, after which it receives a new
reward value from the environment R;;; and the next state S;yi. This interac-
tion is formalized by the concept of MDP or Markov decision - making process
represented by a tuple < S, A, T,r,~v >, where S is a finite state space, A is a
finite set of actions, T'(s,a,s’) = P[Siy1 = §'|S: = s,A; = a] is a stochastic
transition function between states, r(s,a) = E[Ri1|st = s,a: = a] - reward
function, and « € [0,1] - discount coefficient.

Reinforcement Learning uses the assumption that future rewards are dis-
counted with a coefficient of « for each step. Then the total discounted reward
at time ¢ is defined as

T
Ry = Z Wt/_trt’

t'=t

where T is understood as the moment when the game ends. Here it is important
to define the so-called action-value function Q*(s,a) as the maximum expecta-
tion of the reward received for any policy w after the agent visits the state s and
performs the action a:

Q*(s,a) = max E[Ry|S; = s, Ay = a, 7]

The 7 policy determines the probability distribution of actions for each of
the states. The optimal Q-function, in this case, obeys the equation of Bellman.

Q*(s,a) = Eg . [r + 7y max Q*(s’,a’)|s,a}

The basic idea of many reinforcement learning algorithms is to evaluate the
action-value function using the Bellman equation in an iterative algorithm:

Qi+1(s,a) = E [7" +ymax Q;(s', a’)|s, a}
a/

Such iterative algorithms converge to the optimal action-value function Q; —
Q* for t — oo In practice, this basic approach is not very applicable, since
the Q-function is evaluated separately for each sequence of steps, without any
generalization. Instead, an approximation is used to estimate the Q-function:

Q(s,a;0) = Q" (s, a)

This can be a linear approximator function, or a non-linear approximator can
be used instead, including a neural network with 6-weights. Such a @-neural
network can be trained by minimizing the sequence of loss functions L;(6;):

Li(0:) = Eqamp() [(i — Q(s,0:6:))?]

where y; is the value of the desired function on the iiteration:

Yi = Egne |:T + v max Q*(sla a/; 0i71)|57a}
a/

228 A. Rak et al.
The gradient of such a function will be equal to:

Vo, Li(0;) = Ey arp();s! e [(7‘ + 7m§xQ(s/,a/;0i,1) —Q(s,a; 92)> Vo, Q(s,a;0;)

Instead of calculating the total expectation in the gradient above, it is often
computationally appropriate to optimize the loss function using stochastic gra-
dient descent. If the model weights update each step and replace the expectation
with a sample from the distributions p and the emulator €, respectively, then we
come to the familiar Q-learning algorithm [20]. This algorithm is a model-free
algorithm, as well as an off-policy - it learns using an e-greedy strategy, choosing
an action with the maximum value of the @Q-function with probability € and
with probability 1 — e taking a random action. This strategy allows the model
to adjust its own estimates if necessary [10].

Deep @Q-Network. Deep Q-Network is a successful generalization of combining
convolutional neural networks and reinforcement learning to approximate the
Q-function for s; in the t-step. In this case, the state is fed as input to the
neural network in the form of a sequence of pre-processed pixel frames. At
each step of the algorithm, depending on the current state, the agent selects
the next action using the e-greedy strategy described above and also adds a
tuple (s¢, at, 441, S¢41) to a special playback buffer called the replay buffer. The
parameters of the neural network are optimized using stochastic gradient descent
to minimize the loss of the function:

2
L= (r+ymaxQ(s',) ~ Qo(s,0))

In this case, the gradient of the loss function is considered only for online — a
neural network that is also used to select the optimal action. The parameters 0
represent target, a neural network that is a periodic copy of the online network.
Target — the network is not directly optimized. Using a replay buffer and a target
network allows for greater stability of model training and leads to good results
for many reinforcement learning tasks.

Rainbow. This algorithm is an extension of the DQN algorithm described above
and uses the following 6 improvements: Double Q-Learning [18], Prioritized
replay [13], Dueling networks [19], Multi-step learning [3], Distributed RL [1],
Noisy Nets [4]. This modification of the DQN was used for research on the use
of augmentation in reinforcement learning. The described algorithm was chosen
because it exceeds the standard DQN in terms of convergence rate, and also
preserves the model-free and off-policy properties.

4 Augmentation in Reinforcement Learning

Data augmentation in Computer Vision problems is considered as a good method
not only for increasing the amount of source data but also for increasing the

Data Augmentation for Reinforcement Learning 229

diversity of these data [15]. The most popular image augmentation techniques
are horizontal reflection, multi-pixel shifts, rotations, and other transformations.
However, not all of these types of augmentation can be applied in reinforcement
learning tasks. For example, rotation and horizontal reflection can significantly
affect the optimal action that will maximize the agent’s reward at a particular
step of the game. Therefore, for the model under study, we have chosen augmen-
tations with respect to which the model is invariant. This property means that
after the data augmentation steps the optimal action at a particular step does
not change.

4.1 Augmentation Types

Random Erase. To augment an arbitrary frame of the game a random point is
selected within the borders of the image and a rectangle is constructed from it
with side lengths distributed randomly from 0 to 20. The built shape is colored

gray.

Random Crop. The original image is expanded by 4 pixels on each side and
filled in with black. Then the resulting frame is randomly cut from the resulting
image. The size of the final frame corresponds to the size of the initial image
without expansion.

Random Contrast. Before augmentation, the regularization coefficient for con-
trast is randomly selected as a sample from the normal distribution N(1,0.5).
Then the image contrast is changed with this coeflicient. In such transformation,
the value k£ = 1 corresponds to the absence of changes, and k = 2 corresponds
to a double increasing of the contrast.

Random Augmentation. One of the three augmentations described above is
applied to the image with equal probability.

4.2 General Framework for Action-Value Function Regularization

In DQN-algorithm deep networks and reinforcement learning were successfully
combined by using a convolutional neural net to approximate the action-value
function @ for a given state S, which is fed as input to the network in the form
of a stack of raw pixel frames. Applying any augmentation to such frames can be
considered as some regularization of the value function. Here we can define the
general framework for such regularization by adding augmentation function f,
which will apply some exact type of state augmentation. Generalizing, we can say,
that augmentation function f can apply to the exact state any transformation
which preserves invariance property of the model. Invariant state transformation
function can be defined:

f:SxT—S

230 A. Rak et al.

as a mapping that preserves the Q-values

Q(Sva) = Q(f(57y)aa)

for all s € S;a € A and v € T. where v are the parameters of f, drawn from the
set of all possible parameters T'.

In DQN-algorithm a non-linear approximator can be used for Q-value func-
tion approximation, including a neural network with #-weights. Applying a new
value-function regularization framework such @-neural network can be trained
by minimizing the sequence of loss functions L;(6;):

Li(ei) = Es,aep(.) [(yz - Q(fl(sa V)a a; 91))2]

where y; is the value of the desired function on the i-iteration.

The choice of a particular regularization function strongly depends on the
current problem being solved. The choice of function can be influenced by the
specifics of the game, the agent’s strategy for getting the maximum reward,
and other features. Thus, the task of selecting the f function is non-trivial and
requires additional experiments. We need to find such a function, and to choose
its parameters to minimize the loss function described above:

f=argminger,erL(0)

where F' is a family of functions with mapping f : S x T — S that preserves the
property of model invariance.

Due to the complexity of the optimization problem for such a family of func-
tions, this problem can be simplified and reduced to the problem of finding some
approximation of a function f . An important property of such an approxima-
tion function is adaptability, the ability of the function to take into account the
features of the problem being solved.

In further experiments, we consider f as one of the image augmentation
types described above. Set of all possible parameters T can be understood as
all possible values of such augmentation parameters. For example among T will
be all possible probability distributions of different augmentations for random
augmentation.

Each state of the environment can be associated with a certain frame from
the game. However, in this case, we can say little about the direction in which,
for example, the ball is moving in a Breakout game and at what speed it does
so. This raises the question of fulfilling the Markov property of the model, that
is, if only one frame is used to represent a certain state of the environment, this
property is violated. To solve this problem instead of a single frame of the game
to characterize the state, several consecutive frames are used (in our case, 4).
This allows you to get more information about the environment, and we can
draw conclusions about the direction of the ball and its speed from two frames
of the game, and about its acceleration — by three.

In all evaluated games, the source frames are reduced to the size of 84 x 84
and converted to the black and white format.

Data Augmentation for Reinforcement Learning 231

An augmentation procedure is added to the Rainbow algorithm, which is
performed every time an image is sampled from the replay buffer. In this case, the
randomness property should be performed only for different pairs of (s¢, s¢41)-
Within each such pair, the augmentation is exactly the same for s; and s441.
This is necessary in order to preserve the integrity of each observation of the
environment, that is, the tuple (s, at, 7441, S¢4+1) is an integral, indivisible unit
for a reinforcement learning algorithm.

5 Experiments

5.1 Data Augmentation for Off-Policy RL

Currently, there is a lot of environments for solving RL tasks. We decided
to explore the impact of augmentation regularization using the OpenAl Gym
library, which provides APIs for simulating a large number of virtual environ-
ments, including Atari games. In this section, we compare four types of aug-
mentation for the following environments: Berzerk, Breakout, Demon Attack,
Space Invaders, Wizard of Wor. As a baseline model, we used the original Rain-
bow algorithm with the parameters specified in the original paper [6]. Table 1
reports summary results for whole 5 games. Learning curves for Berzerk and
Space Invaders environments presented in Fig. 1.

Breakout. For Breakout, several augmentations showed a result that exceeds
the result of the original algorithm. Augmentations not only increased the con-
vergence rate of the algorithm but also resulted in a higher reward after conver-
gence. The best result was shown by Random Augmentation, which increased the
model’s reward by 17%. Random Crap and Random Erase augmentations also
accelerated convergence and were able to increase the reward by 10% and 8%,
respectively. Random Contrast augmentation did not show results significantly
different from baseline.

Space Invaders. The game requires more training time compared to other
tested games, so we got significant results only after a large number of training
steps. We obtained higher reward results for all types of augmentations in this
game. The best type of augmentation is Random Erase, which increases the
model’s reward by rather 400%. In our experiment, Random Augmentation and
Random Contrast are also successful with the result of more than 250% reward
increasing. The model with Random Crop augmentation got 47% higher score
than a Baseline model.

Wizard of Wor. For Wizard of Wor the best types of augmentation were Ran-
dom Augmentation and Random Erase with 45% and 20% higher reward result.
These two augmentations also increased the convergence rate of the algorithm.
For this environment, we got worse results for Random Crop and Random Con-
trast augmentation with reward decreasing by 17% and 32%.

Berzerk. For this game, we obtained the highest reward results for Random
Crop augmentation, which increases the model’s reward after 30M training steps

232 A. Rak et al.

by 202%. In our experiment, Random Augmentation is also successful with a
result of more than 173% reward increasing. The model with Random FErase
on average shows the same score as a baseline model. The worse results were
provided by the model with Random Contrast augmentation with 20% reward
decreasing.

Demon Attack. For Demon Attack all augmentation types provided good
results. But here we got more acceleration of the convergence rate and less
increase of models reward in the end. The best augmentations for this game
are Random Crop and Random Augmentation with over 15% reward increasing
after 30M training steps. For these two augmentation types, we got over 160%
increasing of convergence from 10M to 20M training steps. Random Erase pro-
vided 90% increasing of convergence from 10M to 20M training steps and 6%
reward increasing in the end. For Random Contrast we got 15% increasing in
convergence and nearly the same results as a baseline model in the end.

Table 1. Final results for each type of the augmentation for five Atari games. The
column for each augmentation shows the final cumulative reward and its percentage
relative to the Rainbow without augmentations (Original).

Steps | Original Random Erase Crop Contrast
Environment x10° | Score | % | Score % | Score | % Score | % Score | %
Berzerk 40 2527 0 | 7301 189 | 2821 12 11841 369 | 2298 -9
Breakout 20 353 0 | 389 10 | 370 5 368 4 338 —4
Demon Attack | 40 107648 | 0 | 124237 | 15 | 115004 | 7 124057 | 15 | 106936 | —1
Space Invaders | 40 2663 0 | 9406 253 | 13253 | 398 | 3926 47 10021 | 276
Wizard of Wor | 30 8261 0 | 12746 |54 |10196 |23 |6175 —25 | 5027 -39

5.2 Behavioral Cloning

Augmentations work fine for such tasks as classification. In the following series
of experiments, we decided to study the effects of different augmentation types
on the behavioral cloning model. The main idea of this section is to explore how
different proportions of image transformations can influence the final quality of
a model trained to copy the behavior of an expert. We took the model with the
best results for the Wizard of Wor game from the previous section. The selected
model was trained during 50 m steps using the Rainbow algorithm with Random
Augmentation regularization. We launched inference for this model and saved
10,000 state-action transitions to use it as input data for the behavioral cloning
model. The input data was augmented using the Random Augmentation method
with different proportions of Random Crop, Random Erase, Random Contrast,
and Original Data augmentations (data without changes). As a model, we took a
simple classifier with Cross-Entropy Loss. To iterate through various augmenta-
tion ratios for each of the augmentations in Random Augmentation we used dis-
cretization of [0, 33, 66, 100] followed by normalization to obtain the final discrete

Data Augmentation for Reinforcement Learning 233

Berzerk Space Invaders

-« original contrast == crop = random -« original contrast == crop = random
25000

15000

reward
reward

20000

15000 10000

10000
5000
5000

leans RS s
/ steps

iom 20M 30M 40M 50M iom 20M 30M 40M 50M

Fig. 1. Learning curves for Berzerk (left) and Space Invaders (right) environments.
The correct choice of augmentation leads to a significant improvement in the conver-
gence of the algorithm. The Crop augmentation shows superior results for Berzerk
environment, but for the Space Invaders environment, the result is almost the same as
the original Rainbow.

distribution {RandomCrop, RandomErase, RandomContrast, OriginalData}.
This distribution is used to sample an augmentation for each item of a batch
during the training process.

We tested model results with augmentation discretization above. Figure 2
shows the results for the top 30 and worst 30 sets from 256 experiments. The
trained model for each ratio set tested over 100 evaluation episodes in the Wiz-
ard of Wor environment. The best cumulative reward 8650 showed the following
augmentation ratio: contrast 33%, crop 100%, erase 100%, original 66% (nor-
malized: 0.11, 0.33, 0.33, 0.22). From these results, one can conclude that a
properly augmented model can achieve a better reward score than the original
model while testing in the environment. Also, different proportions of augmen-
tation types lead to different model quality. For example, for the Wizard of Wor
environment, we got that the higher rate of Random Contrast and low rates of
other augmentations leads to lower model quality. We also inspect the correlation
between the obtained reward score and model accuracy. For all 256 experiments
model accuracy varies not much (in the interval: 0.83 .. 0.86). Despite this, the
model reward varies a lot, so the small perturbation in model accuracy leads to
a significant difference in the reward score. Thus in our experiment, the mixture
of all discussed augmentations types with a higher proportion of Erase and Crop
Augmentations and a lower proportion of Contrast showed the best result.

Behavioral cloning experiments can be considered as a part of the search for
an approximation of an adaptable regularization function described in Sect. 4.2.
The experiment can be continued with subsequent model training using Rein-
forcement Learning algorithms and applying a new adaptable regularization
function. For example, the best augmentations distribution found in this section
can be applied to DQN from Demonstrations (DQfD) algorithm [7], where some
expert’s demonstrations produced by human or another well-trained agent also
can be used in DQN algorithm and could significantly speed up the training

234 A. Rak et al.

accuracy contrast crop erase original reward
0.860 100 = 1005 100 = 9,000
0 0 0 4000
80 80 80— >
7
70 70 S|
0 - 7760 -
50 o 50 o 50 o %/080
40 H = 40 —H
— 3 —~
20 4 20 20
N\NE 10— 10
0.836 : 1,000

Fig. 2. Hyperparameter search for behavioral cloning on Wizard of Wor environment.
We grid search over the ratio of frames for different augmentation type in training
batch, considering the following percentages: 0%, 33%, 66%, 100%. For visibility pur-
poses, this chart shows the results only for the top 30 and worst 30 sets from 256
experiments. The trained model for each ratio set tested over 100 evaluation episodes
in the environment. The best cumulative reward 8650 showed the following augmenta-
tion ratio: contrast 33%, crop 100%, erase 100%, original 66% (normalized: 0.11, 0.33,
0.33, 0.22). The leftmost column reports validation accuracy on test data consisting of
20,000 frames.

process. Such experiments can include applying adaptable regularization func-
tion during pre-train or fine-tuning stages and will be the next step of our
research.

6 Conclusion

Data augmentation methods have proven to be effective in image analysis. In
this paper, we have applied a number of well-known augmentation techniques to
the problem of Reinforcement Learning with image-based observations. We have
developed an adaptive version of data augmentation for off-policy algorithms
that use replay buffer as temporary memory. We have shown that augmentation
improves the quality of one of the well-known state-of-the-art Rainbow algo-
rithm. We conducted an experimental study on the selection of hyperparameters
for our method of augmented data mixing. In future work, we plan to develop
this method and conduct experiments with algorithms that use demonstrations.

Acknowledgements. The reported study was supported by the Ministry of Educa-
tion and Science of the Russian Federation, project No. 075-15-2020-799.

References

1. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on rein-
forcement learning. arXiv preprint arXiv:1707.06887 (2017)

http://arxiv.org/abs/1707.06887

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Data Augmentation for Reinforcement Learning 235

Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning
augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

De Asis, K., Hernandez-Garcia, J.F., Holland, G.Z., Sutton, R.S.: Multi-step rein-
forcement learning: A unifying algorithm. arXiv preprint arXiv:1703.01327 (2017)
Fortunato, M., et al: Noisy networks for exploration. arXiv preprint
arXiv:1706.10295 (2017)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://
www.deeplearningbook.org

Hessel, M., et al.: Rainbow: Combining improvements in deep reinforcement learn-
ing. arXiv preprint arXiv:1710.02298 (2017)

Hester, T., et al.. Deep ¢g-learning from demonstrations. arXiv preprint
arXiv:1704.03732 (2017)

Kostrikov, L., Yarats, D., Fergus, R.: Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649
(2020)

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., Srinivas, A.: Reinforcement
learning with augmented data. arXiv preprint arXiv:2004.14990 (2020)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

Perez, L., Wang, J.: The effectiveness of data augmentation in image classification
using deep learning. arXiv preprint arXiv:1712.04621 (2017)

Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., Fergus, R.: Automatic data
augmentation for generalization in deep reinforcement learning. arXiv preprint
arXiv:2006.12862 (2020)

Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv
preprint arXiv:1511.05952 (2015)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. J. Big Data 6(1), 60 (2019)

Skrynnik, A., Staroverov, A., Aitygulov, E., Aksenov, K., Davydov, V.,
Panov, A.l.: Forgetful experience replay in hierarchical reinforcement learn-
ing from expert demonstrations. Knowledge-Based Systems 218, 106844
(2021), https://linkinghub.elsevier.com /retrieve/pii/S0950705121001076
https://arxiv.org/abs/2006.09939

Skrynnik, A., Staroverov, A., Aitygulov, E., Aksenov, K., Davydov, V.,
Panov, A.l.: Hierarchical Deep Q-Network from imperfect demonstrations
in Minecraft. Cognitive Syst. Res. 65, 74-78 (2021). https://arxiv.org/pdf/
1912.08664.pdfwww.sciencedirect.com/science/article/pii/S13890417203007237
via%3Dihubwww.scopus.com/record/display.uri?eid=2-s2.0-85094320898&
origin=resultslistlinkinghub.elsevier.com /retrieve/pii/S138904172

Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
g-learning. arXiv preprint arXiv:1509.06461 (2015)

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning, pp. 1995-2003 (2016)

Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3-4), 279-292 (1992)

http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1703.01327
http://arxiv.org/abs/1706.10295
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1704.03732
http://arxiv.org/abs/2004.13649
http://arxiv.org/abs/2004.14990
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/2006.12862
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1707.06347
https://linkinghub.elsevier.com/retrieve/pii/S0950705121001076
https://arxiv.org/pdf/1912.08664.pdf www.sciencedirect.com/science/article/pii/S1389041720300723?via%3Dihub www.scopus.com/record/display.uri?eid=2-s2.0-85094320898&origin=resultslist linkinghub.elsevier.com/retrieve/pii/S138904172
https://arxiv.org/pdf/1912.08664.pdf www.sciencedirect.com/science/article/pii/S1389041720300723?via%3Dihub www.scopus.com/record/display.uri?eid=2-s2.0-85094320898&origin=resultslist linkinghub.elsevier.com/retrieve/pii/S138904172
https://arxiv.org/pdf/1912.08664.pdf www.sciencedirect.com/science/article/pii/S1389041720300723?via%3Dihub www.scopus.com/record/display.uri?eid=2-s2.0-85094320898&origin=resultslist linkinghub.elsevier.com/retrieve/pii/S138904172
https://arxiv.org/pdf/1912.08664.pdf www.sciencedirect.com/science/article/pii/S1389041720300723?via%3Dihub www.scopus.com/record/display.uri?eid=2-s2.0-85094320898&origin=resultslist linkinghub.elsevier.com/retrieve/pii/S138904172
http://arxiv.org/abs/1509.06461

	Flexible Data Augmentation in Off-Policy Reinforcement Learning
	1 Introduction
	2 Related Works
	3 Model Description
	4 Augmentation in Reinforcement Learning
	4.1 Augmentation Types
	4.2 General Framework for Action-Value Function Regularization

	5 Experiments
	5.1 Data Augmentation for Off-Policy RL
	5.2 Behavioral Cloning

	6 Conclusion
	References

