
Adaptive maneuver planning for autonomous
vehicles using behavior tree on Apollo Platform

Mais Jamal1 and Aleksandr Panov1,2

1 Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
mayssjamal@phystech.edu

2 Federal Research Center ”Computer Science and Control” of the Russian Academy
of Sciences, 117312 Moscow, Russia

panov.ai@mipt.ru

Abstract. In safety-critical systems such as autonomous driving sys-
tems, behavior planning is a significant challenge. The presence of nu-
merous dynamic obstacles makes the driving environment unpredictable.
The planning algorithm should be safe, reactive, and adaptable to envi-
ronmental changes. The paper presents an adaptive maneuver planning
algorithm based on an evolving behavior tree created with genetic pro-
gramming. In addition, we make a technical contribution to the Baidu
Apollo autonomous driving platform, allowing the platform to test and
develop overtaking maneuver planning algorithms.

Keywords: Maneuver planning · Behavior Trees · Apollo Auto · Self-
Driving Cars · Genetic Programming

1 Introduction

In automated driving systems, maneuver planning is a significant challenge. In
an unpredictable planning environment, the planner must make the best safe
decision. A bad decision endangers not only the passengers’ lives, but also the
lives of pedestrians and passengers in other nearby vehicles.

Behaviour planners [13, 12] and finite state machines (FSM) [11, 19, 22] are
an early approach for intelligent vehicle maneuver planning and decision-making.
The possible scenarios are implemented by hand to define its states and transi-
tions between the states, and the rules are based on human experience. However,
in complex control systems, such as automated driving systems, there are many
rules and traffic situations, making it difficult to implement all world scenarios
in the form of finite state machines.

Later approaches [2, 17, 10, 16] are based on probabilistic methods for dealing
with uncertainty in decision effects, such as Markov Decision Processes (MDPs),
as well as uncertainty in environmental observations, such as Partially Observ-
able Markov Decision Processes (POMDPs). Such methods rely on maximizing
the future possible rewards of actions to find the optimal policy. Because this
process examines all possible actions, it requires a significant computational load



2 M. Jamal et al.

and is difficult to apply in vehicle behavior planning. A compromise in the num-
ber of the states is usually employed to reduce the calculations.

Behavior trees (BT) are another approach that has previously been used in
AI games and, more recently, in robotics. BTs are a modular execution processes
that switches between a finite set of tasks. A task can be any program or sub-
routine and it can be either a conditional task or an action task. The control
flow nodes define the switching rules between the tasks. Control flow nodes can
be either a sequence, which executes all of its children and returns success only
if all of its children succeed, or a selector node (fallback node), which executes
all of its children and returns success if one of its children succeeds.

Because of their flexibility, reactivity, and modularity, BTs are effective tools
for autonomous agent maneuver planning. They are preferred over the FSMs
when the number of transitions between the states is significant. As the size of
the behavior tree rises proportionally to the complexity of the planning system,
several attempts [4, 14, 5, 20] have been made to learn a part or all of its struc-
ture from the environment rather than manually constructing the entire tree.
The learning approach adapts the behavior tree to the needs of an autonomous
vehicle’s maneuver planning.

In this paper, we present an adaptive maneuver planning approach based
on a learning behavior tree. As an example of maneuver planning, we consider
the overtaking maneuver decision-making. We use genetic programming (GP) to
learn the entire structure of the BT. The structure is denoted by the character
string x. The problem is viewed as an optimization problem, with the GP algo-
rithm searching in the genotype space G for the string x∗ denoting a behavior
tree program for which a fitness function f is optimized:

f(x)→ max : find−→x ∗so that ∀−→x ∈ G : f(−→x ) ≤ f(−→x ∗) = f∗ (1)

The programming language L = {F, T} of GP includes two sets: the function
set F and the terminal set T . F includes all the possible functions in the program
of a BT (control flow nodes). T includes all the possible conditions and actions.

In GP, the genotype space G includes strings representing all BT programs
that can be constructed from elements of the programming language L. P (t) ⊂ G
denotes the population’s state at time t. The GP’s run-time is defined in terms of
generations. N individuals −→x1(t),−→x2(t), ...,−→xn(t) make up the population. The GP
population evolves from the initial state P (t = 0) by selecting µ parents (Pp(t))
for variation and then performing a variation operation to them to produce λ-
offspring from each parent. The set of offspring is denoted by Pc(t). The variation
operation can be either a Crossover or a Mutation. After evaluating the fitness
of the new offspring, it is combined with the population to form the new set
Pa(t). The new generation P (t + 1) is a subset of Pa(t). Over generations, the
GP algorithm seeks for x values that maximize the fitness function f .

To conduct the experiments, we use the Baidu Apollo (open source) au-
tonomous driving platform [1]. The platform has multiple subsystems that give
the essential information to the planning subsystem regarding routing, local-
ization, perception, and prediction of surrounding objects. Because of its struc-



Title Suppressed Due to Excessive Length 3

ture, as well as its high concurrency and low latency, the platform provides an
accurate simulator suitable for developing and testing planning algorithms for
autonomous vehicles.

The decision-making process for overtaking maneuvers on the Apollo plat-
form is integrated with motion planning in the planning subsystem. The plan-
ning subsystem receives as input: the HD map , ego vehicle location and speed,
the surrounding objects, their estimated 3D shape, speed, and a prediction of
their future trajectory and heading. In the presence of a slowly moving obsta-
cle in front of the ego vehicle for an extended period of time, the candidates
include paths from neighbor lanes to allow lane change if necessary. Then, for
each candidate lane, the Piecewise-jerk optimizer [21] is used to optimize the
path, followed by optimizing the speed profile of the optimized path. Finally,
a trajectory decider will use a cost function to determine which lane to take.
With the appearance of dynamic obstacles, the path-speed approach does not
guarantee the optimal solution. In response to this limitation, the EM planner
is designed to select a lane-change maneuver rather than overtaking (nudging)
for high-speed dynamic obstacles.

We have integrated our overtaking planning method, as well as a technical
contribution that allows for overtaking high-speed dynamic obstacles, into the
Apollo platform.

The remainder of this paper is divided into five sections. Section 2 discusses
some recent related works. Section 3 presents the proposed approach of adaptive
planning using an evolving behavior tree and describes the simulation environ-
ment of Apollo. Section 4 presents the preparation for experiments in Apollo, as
well as the experimental results, and analysis. Finally, section 5 concludes with
a discussion of future work.

2 Related Work

The works [2, 3, 8] used probabilistic methods of MDPs, POMDPs, or a combina-
tion of them with other methods to plan the autonomous vehicle’s maneuver. [2]
developed a driver assistance maneuver planning framework based on MDP that
learns the policy using reinforcement learning (RL) by performing actions and
getting a reward. The researchers attempted to compromise the significant com-
putational load by combining offline and online planning. However, the frame-
work still has unresolved issues with computational complexity as the number of
objects in the surrounding environment grows. [18] developed an online POMDP
algorithm to plan lane changes, which are a part of overtaking maneuvers. The
computational complexity was reduced by the proposed algorithm. Because di-
rect state transitions from a lane change left to a lane change right were not
considered, the model had only eight states. The algorithm was tested in real-
world traffic, but the execution required the driver to confirm the lane changes.
[15] modeled the problem of intersection planning as an MDP that learns the
policy with RL using what is known as Hierarchical Options (HOMDP). Their
results showed an improvement in performance and success rate over POMDP.



4 M. Jamal et al.

Other works like [9, 16] depend on non standard methods for planning and
decision-making of lane change maneuver for autonomous vehicles. [9] proposed
a behavior planner that selects the appropriate maneuver by creating and evalu-
ating a set of all existing gaps between close dynamic vehicles. A neural network
was trained to predict future success based on prior experience and was in-
volved in the evaluation process. The results indicated a high success rate for
a lane change. However, the algorithm assumes that other vehicles behind the
autonomous one will brake within cautious limits, allowing to change into rel-
atively small gaps. As a result, in high-traffic situations, the algorithm will fail
to complete the lane change. On the other hand, [16] proposed a behavior plan-
ner to decide whether to stay in the lane or switch to the right/left lane. The
proposed planner’s model is a state-action spaced deep Q-network that learns
through reinforcement learning. The results indicated a relatively high success
rate.

Although probabilistic methods and RL [7, 6] have shown good results, they
are not reproducible and computationally expensive, necessitating some compro-
mise with the complexity of the planning system. When evolved through genetic
programming, behavior trees, on the other hand, are adaptive and reactive. The
GP searches for the best fit structure in the space of all possible tree structures
without interference from the expert, which may lead to creative solutions. As
a result, in this study, we use a behavior tree to plan the overtaking maneuver
and genetic programming to find the best-fit structure of the tree.

3 Method

The structure of the overtaking maneuver’s behavior tree is learned via genetic
programming. The BT determines whether the ego car will overtake the moving
vehicle (dynamic obstacle) in front of it from the right or left side, or if it will
keep the current lane. The scenario includes several variables: the speed of the
front obstacle, the number of dynamic obstacles on both the right and left lanes,
their speed and their initial location.

In the Apollo platform, a technical solution for overtaking dynamic obstacles
was developed and implemented with the genetic programming to evaluate the
individuals (behavior tree structures) in the population.

3.1 Behavior tree primitives

The phenotype is the program version of the genotype. To evaluate the fitness
of the BT individual, a mapping between genotype and phenotype is required.
A set of all the BT’s action, condition, and control nodes defines the phenotypic
primitives. KeepLane, SwitchToLeft, and SwitchToRight are the possible actions.
A Control node might be a sequence or a selector node. Each neighbor lane is split
into three zones with varying lengths of s to reflect occupancy status (Fig. 1).
s(t) indicates the safe following-distance and is dependent on the autonomous



Title Suppressed Due to Excessive Length 5

vehicle’s current speed. The ”three-second rule” is used to define it:

s(t) = τ ∗ v(t) (2)

where τ = 3 s. There are two states for each zone: {free, occupied}. Furthermore,
the speed of an occupant obstacle (km/h) is treated as a range and is expressed
in six conditions: [1, 10], [11, 20], [21, 30], [31, 40], [41, 50], [51, 60]. Table 1 contains
the whole list of conditions, actions, and descriptions.

Fig. 1. The zones of the two adjacent lanes. The left lane is divided into three zones
L1, L2, and L3. The right lane is also divided into R1, R2, and R3 zones. Each zone
has a variable length of s.

The state of the BT can be one of three: SUCCESS, FAIL, or RUNNING.
When an action is called for, the RUNNING status is activated. If the tree state
is RUNNING for an extended period of time without the action being performed,
the status is considered as a FAIL. Adding the RUNNING state to the tree’s
characteristics, not only excludes the trees that lead to an inapplicable actions,
but it also maintains the tree’s reactivity when the environmental conditions
change during the action.

Characters representing actions and conditions (Table 1) form the terminal
set T = {c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z,X, Y, Z}, which
maps the behavior tree program (phenotype) to the genotype alphabet. The
sequence node is represented by the symbol ’&’ with two parentheses containing
the sub-trees under the sequence node. Similarly, the selector node is represented
by the symbol ’/’ with two parentheses. The function set F is the set of two
control functions:{&, /}. For instance, the overtaking behavior tree that decides
to overtake only when one of the adjacent lanes is clear of obstacles (Fig. 2) is
represented by the following string: ’/(&(cegY)&(ikmZ)X)’.



6 M. Jamal et al.

Table 1. Primitives of the behavior tree. The possible actions and conditions, their
description and the alphabet representing them.

Alphabet Actions Description

Y SwitchToLeft Switch from the current lane to the left lane.
Z SwitchToRight Switch from the current lane to the right lane.
X KeepLane Keep going on the current lane.

Alphabet Conditions Description

c L1Free Is Zone L1 free? (Fig. 1)
d L1Occ Is Zone L1 occupied? (Fig. 1)
e L2Free Is Zone L2 free? (Fig. 1)
f L2Occ Is Zone L2 occupied? (Fig. 1)
g L3Free Is Zone L3 free? (Fig. 1)
h L3Occ Is Zone L3 occupied? (Fig. 1)
i R1Free Is Zone R1 free? (Fig. 1)
j R1Occ Is Zone R1 occupied? (Fig. 1)
k R2Free Is Zone R1 free? (Fig. 1)
l R2Occ Is Zone R2 occupied? (Fig. 1)
m R3Free Is Zone R3 free? (Fig. 1)
n R3Occ Is Zone R3 occupied? (Fig. 1)
o ObsSpeed1-10 Is the speed of the occupant obstacle between 1

and 10 km/h?
p ObsSpeed11-20 Is the speed of the occupant obstacle between 11

and 20 km/h?
q ObsSpeed21-30 Is the speed of the occupant obstacle between 21

and 30 km/h?
r ObsSpeed31-40 Is the speed of the occupant obstacle between 31

and 40 km/h?
s ObsSpeed41-50 Is the speed of the occupant obstacle between 41

and 50 km/h?
t ObsSpeedMore50 Is the speed of the occupant obstacle more than

50 km/h?
u EgoSpeed1-10 Is the speed of the Ego vehicle between 1 and 10

km/h?
v EgoSpeed11-20 Is the speed of the Ego vehicle between 11 and 20

km/h?
w EgoSpeed21-30 Is the speed of the Ego vehicle between 21 and 30

km/h?
x EgoSpeed31-40 Is the speed of the Ego vehicle between 31 and 40

km/h?
y EgoSpeed41-50 Is the speed of the Egovehicle between 41 and 50

km/h?
z EgoSpeedMore50 Is the speed of the Ego vehicle more than 50

km/h?



Title Suppressed Due to Excessive Length 7

Fig. 2. A simple behavior tree for the overtaking maneuver. The tree begins with the
selector node, which checks the SUCCESS state of its children nodes. This causes the
second selector node to check its children. The first child (sequence node) evaluates the
three conditions of the left lane’s zones state; if three free zones L1, L2, L3 exist, the
decision is made to switch to the left lane, and the tree returns the state RUNNING.
If one of the three conditions is not satisfied, the sequence node returns the state FAIL
and the selector node continues to check the second child; if it also returns FAIL, the
tree will finally decide to keep lane.

3.2 Genetic programming

To find the optimal structure of the behavior tree, we use a GP execution scheme
similar to the one described in [5]. However, for the planning optimization prob-
lem, we chose better-fitting parameters (Table 2). The binary tournament selec-
tion method is used to select µ parents for variation. This method selects two
random individuals and the one with the higher fitness value is chosen and added
to the parents’ set. Tournament selection allows individuals with poor perfor-
mance to maintain their genotype, resulting in better exploration of the genotype
space and less likelihood of being stuck in a local maximum. λ-offspring are cre-
ated by performing either a crossover operation or a mutation operation on the
selected parents with a probability (Algorithm 1). The variation operations are
as follows:

Crossover operation This operation takes two individuals P1, P2 from the
selected parents Pp(t) and performs a sub-tree swapping to create two new off-
spring C1, C2.

Mutation operation This operation allows an individual to vary in one of
three ways with probabilities: addition, mutation, or deletion. In mutation/addition,
a random element from the programming language L is added to the tree. In
mutation/mutation, a random element from L is mutated to another element in
L. In mutation/deletion, a terminal element (condition or action) gets removed
from the tree.

The mutation percent is set at 60% to improve the discovery of the searching
space and to avoid the rapid growth in the depth of the tree caused by the
crossover operation. 70% of the mutation operations are mutation or addition



8 M. Jamal et al.

to explore all the possible actions and conditions while searching for the optimal
solution.

Following variation, all offspring (Pc(t)) are evaluated and combined with the
population P (t) to form Pa(t). Afterwards, e individuals with the highest fitness
values are selected from Pa(t) to survive to the next generation (Elitist selec-
tion), and the rest of the generation(N − e) is chosen by the binary tournament
selection without repeating any individual. All previously surviving individuals
are evaluated again on the new scenario in the next iteration of GP. The follow-
ing equation combines the previous fitness value associated with the survived
individuals with the new fitness value calculated on the new iteration’s scenario:

f(−→x (t)) = α ∗ f(−→x (t− 1)) + (1− α) ∗ f(−→x (t)) (3)

where α = 1/2 . In this manner, a BT program’s fitness will be defined as an
integration of its fitness over scenarios.

Table 2. Parameters of Genetic Programming.

Parameters of GP

Population size (N) 20
Parents number(µ) 10
Parents selection method Binary Tournament
Offspring number(λ) 4
Max depth 6
Crossover percent 40%
Mutation percent 60%
Mutation/ addition percent 40%
Mutation/ deletion percent 30%
Mutation/ mutation percent 30%
Elitist selection percent 10%

Each individual’s (BT) fitness in the scenario is determined by two factors:
reaching the goal without colliding, and the time it takes to reach the goal
following this BT program. If the individual (BT) caused a collision, a negative
fitness value will be assigned to it. If the goal is reached without a collision, the
fitness is defined as the difference between the time spent following the action
KeepLane T a0 and the time spent following the tree’s output action T ax :

f(x) = T a0 − T ax (4)

As a result, the BT that results to an overtaking and reaching the goal faster
without colliding will be assigned a high fitness value. The BT that leads to the
KeepLane action will be assigned a fitness value close to zero.

3.3 Implementation in Apollo

The Apollo planning module includes two essential planners, Public Road Plan-
ner, which handles lane follow, junction, and U-sharp turn scenarios, and Open



Title Suppressed Due to Excessive Length 9

Space Planner, which handles parking scenarios. Every planner initializes a sce-
nario manager and updates it every planning cycle. The scenario manager spec-
ifies the current scenario, processes it, and executes a series of predefined tasks
for each scenario. Tasks can either be deciders or optimizers.

Algorithm 1 Genetic Programming

INPUT : N,MaxGenerations, e(ElitesNumber),
Crossover − Percent.
OUTPUT : −→x ∗so that ∀−→x ∈ G : f(−→x ) ≤ f(−→x ∗) = f∗

t = 0
initialize : P (t = 0) = {−→x1(0),−→x2(0), ...,−→xn(0)} ∈ G
while t < MaxGenerations do
evaluate : P (t) : {f(−→x1(t)), f(−→x2(t), ..., f(−→xn(t))}
Pp(t) = TournamentSelection(µ, P (t))
Pc(t) = ∅
for i = 1, 2, ..., µ do
rand = RandNumber(1− 100)
P1 = P i

p(t)
if rand ≤ Crossover − Percent then

for k = 1, ..., λ/2 do
P2 = RandSelect(Pp(t))
C1, C2 = CrossoverOperation(P1, P2)
Pc(t) = Pc(t) ∪ C1 ∪ C2

end for
else

for k = 1, ..., λ do
C = MutationOperation(P1)
Pc(t) = Pc(t) ∪ C

end for
end if

end for
evaluate : Pc(t) : {f(−→xc1(t)), f(−→xc2(t), ..., f(−→xcn(t))}
Pa(t) = Pc(t) ∪ P (t)
P (t+ 1) = ElitistSelection(e, Pa(t))
P (t+ 1) = P (t+ 1) ∪ TournamentSelect(N − e, Pa(t))
t← t+ 1

end while

To demonstrate the planning process in Apollo, we consider the planning of
a lane-follow scenario in which the planner can make an overtaking decision.
The planning process begins with the Lane Change Decider, which determines
if the road has additional lane available for change if necessary. Path Lane Bor-
row Decider then checks for the existence of a front static long-term blocking
obstacle, making the decision to overtake if it is there. The optimal path profile
in Frenet is then found using the Jerk path optimizer, followed by the optimal
speed profile in Frenet using the Jerk speed optimizer.



10 M. Jamal et al.

The Path Lane Borrow Decider in Apollo is designed to make overtaking de-
cisions exclusively for static front obstacles and obstacles with very slow speeds.
The proposed behavior tree method is implemented in a BT decider, which is
added to the tasks of the Lane-follow scenario in Apollo before the Path Lane
Borrow Decider. All the primitive conditions and actions of the BT are pro-
grammed in the decider as functions. The decider begins by decoding the tree
string generated by the GP from the genotype space to the phenotypic space.
The decider then runs a recursive tree execution function to perform the behav-
ior tree tasks based on the control flow nodes. For the behavior tree evaluation
process, an extra collision check function and a goal-reaching function were also
developed.

4 Experiment

4.1 Simulation in Apollo

The source code of Apollo is the pre-version of the Baidu Apollo Open Platform
6. The source code was modified and a decider of the behavior tree was added
to the tasks to allow testing of the overtaking maneuver, performance of the
behavior tree, and evaluation of it on each planning cycle. To run experiments
locally we used an Intel Core i7-9700 CPU:8×3GHz computer with 32 GB RAM,
and NVIDIA GeForce RTX 2080 Ti video card. The behavior tree decider runs
with a frequency of ≈ 10 HZ frequency. The algorithm simulates a random
overtaking scenario to evaluate the individuals (BTs) during the GP.

The overtaking scenario includes three lanes on a forward highway road, with
the ego vehicle always in the middle lane (Fig. 3). A front obstacle with a starting
distance of 20 m exists. The speed of the front obstacles is assigned at random
between 2.7 and 5.5 m/s. There are also 5 obstacles placed at random on the
neighboring lanes. The neighboring obstacles move at random speeds (between
2.7 and 6.5 m/s). The experiments are run in Apollo’s SimControl mode, and
the obstacles data is published at a rate of 10 Hz on the Perception channel.
Starting from the autonomous agent’s initial location, the distance to the goal
is 200 m.

4.2 Experiment result and analysis

Running 50 generations of the GP algorithm took nearly 48 hours, which is
considered very time-consuming. When compared to the time required for each
experiment to evaluate a BT individual, the time required for creating offspring
and decoding the BT’s string is relatively short and may be neglected. Each eval-
uation experiment can last between 10 and 70 seconds, depending on the tree’s
output action and validity. The results of running the GP algorithm for the first
50 generations, starting with a random first population P (0), are shown in Fig.
4. A behavior tree can either be successful or unsuccessful. A tree is considered
successful if it achieves its goal without colliding with any of the surround-
ing obstacles, regardless of the type of output action (KeepLane, SwitchToLeft,



Title Suppressed Due to Excessive Length 11

Fig. 3. A random overtaking scenario. The ego vehicle is surrounded by five random
dynamic obstacles and one in the front.

SwitchToRight). S(t) ⊆ P (t) denotes the set of successful BTs, O(t) ⊆ S(t)
denotes the set of successful BTs with an overtake output action. While a tree
is considered an unsuccessful tree in the following cases: the BT output action
resulted in a collision, the action run-time has exceeded a predefined maximum
limit and the action has not yet been performed, or the BT’s execution has ended
and no action is running.

U(t) ⊆ P (t) denote the set of unsuccessful BTs and P (t) = S(t) ∪ U(t).
The results in Fig. 4 show that the number of successful trees increases over
generations, while the number of unsuccessful trees decreases significantly. It can
be seen that the evolving population has found its way to generate behavior trees
with an overtaking action that has been successful in some scenarios. Starting
with a random population may cause the searching problem to take longer, but
such an algorithm should never end in a local maximum, because the mutation
feature and the selection method spread the searching process.

Table 3. A comparison between GP with prior and GP with random P (0).

GP with prior GP with random

t S(t)% O(t)% L(t)% S(t)% O(t)% L(t)%

1 80 0 0 5 0 5
5 100 0 5 75 0 20
10 100 0 15 95 0 60
15 95 5 40 95 0 15
20 100 75 35 100 0 60
25 100 90 75 100 0 60
30 100 75 95 100 0 50



12 M. Jamal et al.

Fig. 4. A bar graph of successful and unsuccessful trees over generations from the first
generation to the 50th. The initial population is a randomly generated population.

Fig. 5. A bar graph of the number of successful and unsuccessful trees over generations
from the first generation to the 30th. The initial population contains one simple effective
behavior tree.



Title Suppressed Due to Excessive Length 13

Figure 5 shows the results of running the GP algorithm for the first 30
generations, starting from an initial population that contains one simple effective
behavior tree (Fig. 2). Results show that the genetic algorithm is dynamically
converging to the optimum fitness value. The algorithm optimizes the fitness
function over generations, by evolving the trees that output an overtaking action
to reach the goal faster, and also keeps the size of the tree reasonable due to the
constraint of maximum depth of the behavior tree.

The set of BT individuals with a length of l bigger than 40 symbols (in-
cluding parentheses) is denoted by L(t) ⊆ P (t). Table 3 presents a percentage
comparison between successful trees, overtaking successful trees, and the length
of the tree over generations, when GP searching starts with random and with
prior.

5 Conclusion and Future Work

Running the proposed algorithm only for the first generations of the GP algo-
rithm yielded promising results for adaptive maneuver planning due to its high
flexibility, modularity, and potential. Although the time required to run each ex-
periment in the Apollo platform is a challenge, we can overcome this by running
multiple instances of Apollo in parallel to evaluate many behavior tree structures
at the same time (Fig. 6). This can be done with high-performance hardware
such as supercomputers. This solution will significantly reduce the amount of
time spent searching for the optimal BT structure. Another improvement to the
algorithm can be made by employing a more effective evolutionary algorithm, ex-
panding the environmental conditions, and including information from Apollo’s
Prediction module.

Fig. 6. Multi-instance architecture of GP

Acknowledgements. The reported study was supported by RFBR, research
Project No. 18-29-22027.

References

1. Baidu Apollo team (2017), Apollo: Open Source Autonomous Driving, howpub-
lished = https://github.com/apolloauto/apollo, note = Accessed: 2019-02-11



14 M. Jamal et al.

2. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic mdp-behavior planning for
cars. In: 2011 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC). pp. 1537–1542. IEEE (2011)

3. Brechtel, S., Gindele, T., Dillmann, R.: Probabilistic decision-making under un-
certainty for autonomous driving using continuous pomdps. In: 17th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC). pp. 392–399
(2014). https://doi.org/10.1109/ITSC.2014.6957722

4. Fu, Y., Qin, L., Yin, Q.: A reinforcement learning behavior tree framework for
game ai. In: 2016 International Conference on Economics, Social Science, Arts,
Education and Management Engineering. pp. 573–579. Atlantis Press (2016)

5. Iovino, M., Styrud, J., Falco, P., Smith, C.: Learning behavior trees with genetic
programming in unpredictable environments. arXiv preprint arXiv:2011.03252
(2020)

6. Ivanov, D., Panov, A.I.: Application of Reinforcement Learning in Open Space
Planner for Apollo Auto. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov,
A. (eds.) Proceedings of the Fifth International Scientific Conference “Intelligent
Information Technologies for Industry” (IITI’21). IITI’21 2021. Advances in Intel-
ligent Systems and Computing. p. (In Press). Springer (2021)

7. Kiselev, G., Panov, A.I.: Q-learning of Spatial Actions for Hier-
archical Planner of Cognitive Agents. In: Ronzhin, A., Rigoll, G.,
Meshcheryakov, R. (eds.) Interactive Collaborative Robotics. ICR
2020. Lecture Notes in Computer Science. vol. 12336, pp. 160–169.
Springer International Publishing (2020). https://doi.org/10.1007/978-
3-030-60337-3 16, https://link.springer.com/chapter/10.1007/978-3-
030-60337-3 16 https://www.scopus.com/record/display.uri?eid=2-s2.0-
85092940528&origin=resultslist

8. Martinson, M., Skrynnik, A., Panov, A.I.: Navigating Autonomous Vehi-
cle at the Road Intersection Simulator with Reinforcement Learning. In:
Kuznetsov, S.O., Panov, A.I., Yakovlev, K.S. (eds.) Artificial Intelligence.
RCAI 2020. Lecture Notes in Computer Science. vol. 12412, pp. 71–84.
Springer International Publishing (2020). https://doi.org/10.1007/978-
3-030-59535-7 6, https://link.springer.com/chapter/10.1007/978-3-
030-59535-7 6 https://www.scopus.com/record/display.uri?eid=2-s2.0-
85092200949&origin=resultslist

9. Menéndez-Romero, C., Winkler, F., Dornhege, C., Burgard, W.: Maneuver plan-
ning for highly automated vehicles. In: 2017 IEEE Intelligent Vehicles Symposium
(IV). pp. 1458–1464. IEEE (2017)

10. Mirchevska, B., Pek, C., Werling, M., Althoff, M., Boedecker, J.: High-level deci-
sion making for safe and reasonable autonomous lane changing using reinforcement
learning. In: 2018 21st International Conference on Intelligent Transportation Sys-
tems (ITSC). pp. 2156–2162. IEEE (2018)

11. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,
Haehnel, D., Hilden, T., Hoffmann, G., Huhnke, B., et al.: Junior: The stanford
entry in the urban challenge. Journal of field Robotics 25(9), 569–597 (2008)

12. Osipov, G.S., Panov, A.I.: Rational behaviour planning of cognitive semiotic agent
in dynamic environment. Scientific and Technical Information Processing 48(6),
(In press) (2021)

13. Panov, A.I.: Goal Setting and Behavior Planning for Cognitive Agents.
Scientific and Technical Information Processing 46(6), 404–415 (2019).
https://doi.org/10.3103/S0147688219060066



Title Suppressed Due to Excessive Length 15

14. Pereira, R.d.P., Engel, P.M.: A framework for constrained and adaptive behavior-
based agents. arXiv preprint arXiv:1506.02312 (2015)

15. Qiao, Z., Muelling, K., Dolan, J., Palanisamy, P., Mudalige, P.: Pomdp and hier-
archical options mdp with continuous actions for autonomous driving at intersec-
tions. In: 2018 21st International Conference on Intelligent Transportation Systems
(ITSC). pp. 2377–2382. IEEE (2018)

16. Rezaee, K., Yadmellat, P., Nosrati, M.S., Abolfathi, E.A., Elmahgiubi, M., Luo,
J.: Multi-lane cruising using hierarchical planning and reinforcement learning. In:
2019 IEEE Intelligent Transportation Systems Conference (ITSC). pp. 1800–1806.
IEEE (2019)

17. Ulbrich, S., Maurer, M.: Probabilistic online pomdp decision making for lane
changes in fully automated driving. In: 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC 2013). pp. 2063–2067. IEEE (2013)

18. Ulbrich, S., Maurer, M.: Probabilistic online pomdp decision making for lane
changes in fully automated driving. In: 16th International IEEE Conference
on Intelligent Transportation Systems (ITSC 2013). pp. 2063–2067 (2013).
https://doi.org/10.1109/ITSC.2013.6728533

19. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J.,
Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban envi-
ronments: Boss and the urban challenge. Journal of Field Robotics 25(8), 425–466
(2008)

20. Zhang, Q., Yao, J., Yin, Q., Zha, Y.: Learning behavior trees for autonomous
agents with hybrid constraints evolution. Applied Sciences 8(7), 1077 (2018)

21. Zhang, Y., Sun, H., Zhou, J., Pan, J., Hu, J., Miao, J.: Optimal vehi-
cle path planning using quadratic optimization for baidu apollo open plat-
form. In: 2020 IEEE Intelligent Vehicles Symposium (IV). pp. 978–984 (2020).
https://doi.org/10.1109/IV47402.2020.9304787

22. Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang,
T., Franke, U., Appenrodt, N., Keller, C.G., et al.: Making bertha drive—an au-
tonomous journey on a historic route. IEEE Intelligent transportation systems
magazine 6(2), 8–20 (2014)


